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Abstract: A recommender system not only “gains users’ confidence” but also helps them in other
ways, such as reducing their time spent and effort. To gain users’ confidence, one of the main goals
of recommender systems in an e-commerce industry is to estimate the users’ interest by tracking
the users’ transactional behavior to provide a fast and highly related set of top recommendations
out of thousands of products. The standard ranking-based models, i.e., the denoising auto-encoder
(DAE) and collaborative denoising auto-encoder (CDAE), exploit positive-only feedback without
utilizing the ratings’ ranks for the full set of observed ratings. To confirm the rank of observed
ratings (either low or high), a confidence value for each rating is required. Hence, an improved,
confidence-integrated DAE is proposed to enhance the performance of the standard DAE for solving
recommender systems problems. The correctness of the proposed method is authenticated using
two standard MovieLens datasets such as ML-1M and ML-100K. The proposed study acts as a vital
contribution for the design of an efficient, robust, and accurate algorithm by learning prominent
latent features used for fast and accurate recommendations. The proposed model outperforms the
state-of-the-art methods by achieving improved P@10, R@10, NDCG@10, and MAP scores.

Keywords: e-commerce; recommender systems; collaborative; confidence; denoising; auto-encoder

MSC: 91A80

1. Introduction

The emergence of the e-commerce industry has had a substantial and long-term
impact on transactional behavior of customers. Currently, businesses are promoted via
the e-commerce industry by identifying users’ likes and dislikes for various products.
Predicting a user’s taste for the items of their interest by fulfilling the user requirements
is a challenging and interesting task for the e-commerce industry. Therefore, designing a
suitable recommender system (RS) for the prediction of products relating to the users’ tastes
plays a significant role in the long-lasting support of businesses [1-4]. An RS provides the
top relevant recommendations for users by estimating a user’s interest through explicit
ratings already provided by a user for a variety of products [5,6]. RSs are beneficial both for
the end users and the sellers [7,8]. RSs are also used to capture captivating news content [9]
for clients. Additionally, to increase provider transactions, RSs are developed to gain
trust and obtain extra information about clients. The applications of RSs include Yahoo
news content recommendations, Google web page recommendations, Amazon similar
products recommendations, and travel and book recommendations via e-tourism web sites
and e-library applications, respectively [10-12]. The RSs are categorized by the type of
the recommendation method used. Generally, RSs are classified into community-based,
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knowledge-based, hybrid, content-filtering-based (CB), and collaborative-filtering-based
(CF) RSs [11-18]. The most popular and widely used recommendation algorithms applied
by RS’s are CB-based algorithms [19-21] and CF-based algorithms [22-27]. CB-based
algorithms provide product recommendations which are similar to the products liked by
the same user. CB provides recommendations based on the relevant history of a user’s
preferences [28,29]. However, CF-based algorithms provide product recommendations
based on the common likes of similar users. CF captures correlations among people [30],
which provides more accuracy when compared to conventional recommendation methods.

CF-based methods are further categorized into memory-based methods [28,31] and
model-based CF [32,33] methods. Memory-based algorithms incorporate neighborhood
information to approximate missing user preferences for certain products [34]. However,
model-based CF methods follow a user’s rating scheme for the recommendations of prod-
ucts. Rating models in model-based CF are developed through different machine learning
(ML) and data mining (DM) strategies such as deep neural networks (DNN) [35], Bayesian
classifiers [36], genetic algorithms [37], and matrix factorization (MF) [38—40]. DNN strate-
gies have provided a new dimension to research on RSs by devising a mechanism that
provides latent features to standard CF-based methods [41,42]. The hierarchical structure
for addressing the problem of RSs is summarized in the Figure 1.

Recommender
System [RS)

Collaborative Content based
Filtering [CF) Filtering (CB)
1
1 1
Model based Memory based
Latent Factor Neighborhood
Methaods Methads

Matrix Deep Meural User - User Item - Item
Factorization Networks Meighbors Neighbors
(MF) (DNN) . ¢

Confidence - |
Integrated
Denoising
L Auto-encoder )

Figure 1. Hierarchical flow of the research problem.

Auto-encoder (AE) is an unsupervised, feed-forward DNN which is capable of extract-
ing latent interpretations from the input into the bottleneck layer (encoding) in such a way
that the original input is retrieved back from those obtained latent features (decoding) [43].
Another application of an AE is providing relevant recommendations to potential con-
sumers [44—46]. Recently, some variants of AEs were designed to provide missing ratings
recommendations and top-N ranking-based predictions for RSs [45,47,48]. The variants
of AE designed specifically for RSs are contractive auto-encoders, sparse AEs, variational
AEs, marginalized AEs, and denoising AEs [45,48-50].

The positive-only feedback [51] used by different matrix factorization and deep neural
network models considers only the high, positive ratings for the approximation of missing
ratings using the explicit feedback of a user. The predictions based on positive-only
feedback lack the incorporation of the information encapsulated in intermediate and low
ratings. Therefore, the inclusion of the information hidden in low rating values is required
for the provision of accurate predictions by recommender systems. The scaling of the ratings
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in the ratings set using a confidence factor is needed to provide predictions related to the
user’s taste. The confidence factor assigns some weight to the high- and low-rated values
based on the level of confidence by the users in that value. Hence, an improved, confidence-
integrated, denoising auto-encoder is proposed in this study to enhance the performance
of the standard denoising auto-encoder for solving a recommender systems problem.

1.1. Related Work

AEs are used for RSs to learn significant latent features at the bottle-neck layer via
dimensionality reduction and through predicting missing user—product interactions by
utilizing those learned features at the output layer [45]. AEs are particularly used to address
sparsity and scalability issues in RSs [46]. In the literature, several variants of AEs are
presented for solving both the ranking and rating prediction-based problems arising in RSs.

A single, hidden-layer AE variant termed “Auto-rec” [51] was suggested for rating
predictions with two modified models: (U-Auto-rec) and (I-Auto-rec). The authors of [51]
demonstrated that variation in the performance of I-Auto-rec is achieved by applying
different activation functions at both hidden and output layers. It was noted that the
performance of I-Auto-rec was greatly affected by shallow I-Auto-rec architectures rather
than deep I-Auto-rec architectures. Another Auto-rec variant known as CEN [52] utilized
a denoising scheme and involved side information at the first (Input) layer. The sparsity
and cold start issues were addressed with the involvement of side information, and a
denoising scheme enhanced robustness by extracting additional robust latent features.
Another CEN variant [53] also exploited the involvement of side information in hidden
layers. The use of side information in other layers increases the predictive correctness,
robustness, and training time of the model. CDAE [54], a ranking prediction denoising
model, addresses the top-N recommendations task. CDAE incorporates an additional input
node (user-oriented) at the input layer of a standard denoising auto-encoder (DAE). The
inclusion of this additional node provides more weights, which considerably affects the
performance of the model. CDAE also uses the negative sampling scheme to decrease the
training complexity without losing the top-N ranking capability [45,54].

An improved version of CDAE with the ability to capture the rating trends of a user
was proposed in [55]. The multi-neural architecture of a user’s rating-trend-based denoising
AE (UT-CDAE) [55] includes two additional, user-focused nodes when compared to a single
user-oriented node in the case of a standard CDAE. The activation of a single node or two
nodes out of two given nodes depends upon the rating patterns of users for a variety of
products. UT-CDAE outperforms CDAE and the standard DAE in terms of precision, recall,
and the mean average precision, etc.

In [53], a version of a variational AE (multi-VAE and multi-DAE) with a Bayesian
inference strategy was presented. Multi-VAE and multi-DAE outperformed the standard
CDAE by incorporating the inference scheme. ACF [56] is another proposed method for
solving CF using AEs. ACF further splits the input rating vectors of the rating matrix
into sparse vectors with respect to the range of the ratings provided for a specific dataset.
Increasing the sparseness eventually decreased the performance of the model in terms of
predictive accuracy. Additionally, ACF is not considered a candidate model for non-integer
ratings [54,56].

For learning significant latent representations, a hybrid model CDL was presented
in [57] to integrate the concept of probabilistic matrix factorization with the properties
of stacked denoising AE (SDAE). Another CDL-type method for integrating SDAE with
a relational information matrix to provide accurate tag recommendations was presented
in [58]. One of the variants of CDL was proposed (CVAE) [59] to substitute the multi-neural
part of CDL with a variational AE. CVAE extracts the representations of data encapsulated
in data patterns [60].

To improve and extend the concept of a standard DAE for providing accurate, top-
N recommendations, we propose a new collaborative ranking, prediction-based DAE
model for combining user confidence with the denoising property of a standard DAE.
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The proposed DAE variant has shown improved performance when compared to its
standard counterparts in terms of various ranking, prediction-based evaluation measures
such as precision, recall, normalized discounted gain, mean reciprocal rank, and mean
average precision.

1.2. Research Objectives
The vital objectives of the current study are:

e To design an intelligent, deep neural network (DNN)-based collaborative filtering
model (auto-encoder-based denoising model) with the ability to provide the most
suitable, top-N recommendation of items to the users quickly and correctly;

e  To extract the significant features encapsulated in the users’ feedback for different
products by using a confidence-aware DAE;

To validate the robustness of the proposed model for different noise variations;
To authenticate the intended efficacy of the suggested model for predicting top-N
recommendations through benchmark data sets (ML100K and ML1M).

1.3. Research Contributions

The denoising variant for solving the recommender systems problem suggested in
this paper is substantially different from collaborative filtering methods with positive-only
feedback [61,62]. The auto-encoder-based denoising techniques proposed in [54] merely
provide predictions for positive-only feedback. Hence, they ignore the importance of
the observed lower-valued ratings for providing relevant top-N recommendations to the
user. To exploit the full rating set instead of positive-only feedback for providing fast and
accurate top-N recommendations, and to describe the observed ratings set in terms of the
confidence of the user in a particular product, a confidence-aware denoising auto-encoder
has been developed,; it is called CIDAE.

Some noticeable features of the proposed study are stated as follows:

e  To characterize the observed ratings with respect to the confidence of a user in a specific
product, a confidence-integrated denoising model is proposed (CIDAE) to exploit the
actual ratings set completely for accurate and useful top-N recommendations;

e  The proposed denoising model (CIDAE) succeeds in extracting the prominent latent
features for different noise levels, which confirms the robustness of the proposed
model for providing accurate top-N recommendations;

e  The correctness of the proposed CIDAE regarding ranking predictions for top-N
recommendations is verified through two benchmark datasets: ML-1M and ML-100k;

e  The proposed CIDAE exhibits an improved performance via ranking-based evaluation
metrics (precision, recall and normalized discounted gain) in a smaller number of
epochs when compared to state-of-the-art denoising models (DAE and CDAE).

1.4. Paper Organization

The remaining portion of the paper is organized as follows: the mathematical model
of the ranking prediction for top-N recommender systems is described in Section Two.
The details, in addition to the update relations for the standard auto-encoder, denoising
auto-encoder, and the proposed confidence-aware denoising auto-encoder, are presented in
Section Three. Section Four includes a detailed simulation description in terms of figures,
tables, and a critical analysis of the results. Finally, the conclusions drawn from the study
are presented.

2. Mathematical Model of Auto-Encoders for Recommender Systems

The goal of an RS is to provide top-N relevant recommendations to users for the
feedback of missing users by approximating the feedback from actual users.

In this paper, M = {1,...,m} and N = {1,...,n} represent sets of users and items,
respectively. The observed user—item interactions set is represented by p = {u, j, p,j},
in which p,; denotes the actual feedback (non-zero) of a ut" user for a jth item, whereas
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P denotes the missing (unobserved) user—item interaction set. The set of observed and
unobserved interactions from training data for a particular user are denoted by g, and p,,,
respectively. In other words, p, contains the item sets which are to be recommended as
top-N recommendations. Due to the sizable increase in the number of users and items in
the dataset, the computational complexity is reduced by selecting a subset of unobserved
ratings, C,,;5, for a user from the set of unobserved ratings, i.e., p,. After choosing a
subset of unobserved ratings for the specific items (C,,;; = 5 is chosen during simulations),
gradients are computed merely for the chosen items from the unobserved ratings set,
ie.,, Cuis C ®,, via back-propagation instead of computing gradients for the complete
unobserved item set. C,;; is also stated as a negative item set in [54].

3. Auto-Encoder Variants for Recommender Systems

This section includes the description and update relations for the standard auto-encoder,
denoising auto-encoder and the proposed confidence-aware denoising auto-encoder.

3.1. Auto-Encoder (AE)

The architecture of an AE [52] for an RS is made up of encoding and decoding parts.
The encoding part includes an input layer and the hidden layer, which is used to extract
significant latent representations from a sparse input vector, x € R¥, of an input preference
matrix, R € R**?, to a space, (S), with reduced dimensions. The decoding part consists of a
hidden layer and the output layer. The role of the decoding part is to reconstruct the original
input from the reduced latent representations, wherein vy, € RS, is the hidden layer’s
bias and the matrix U; € R**S is the weight matrix of the input layer connected to the
hidden layer. Likewise, vy € RF signifies the output layer bias, and U, € RS* represents
the weights associated with the output layer and the hidden layer. The multi-neural
architecture of the standard AE is demonstrated in Figure 2.

e 3 BN

UserRating Input Vector
Reconstructed Input

Q00000
‘53

@0 000000

Figure 2. Multi-neural architecture of a basic auto-encoder for an RS.

To solve the reconstruction loss, parameters ¥ = {Uy, Uy, vy, vo}, including the
weights and biases of the AE, are updated using a back-propagation algorithm. The cross-
entropy loss is used for the binary inputs and the squared loss is used for regression. The
cost function of a standard AE with m users is represented as:

1 .
II1¥11’1% L;L‘(x,x) + R (Ul, Uy, vy, Uo) 1

The squared loss for the auto-encoder is represented as:

L(x,%) = [lxu — %2 @
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the cross-entropy loss for an auto-encoder is given as:

L(xy, £y) = —xy" log(%y) 3)
—(1—x,)" log(1 — 2,)

In order to obtain the reconstruction loss, back-propagation is employed to learn
(train) the parameters ¥ = {Uj, Uy, vy, vp} for the encoder. In the objective function,
R represents the regularization term with the squared norm (¢) of the parameters to be
learned, presented as:

% (Ul/ UZ 7 OH, UO)
= 5(IG1l3 + 10213 + [low 13 )
+[lvoll3)

The activation function activates and deactivates the neurons at the hidden layer and
is represented by H:

Hx) = f(Ulx +on) ©)

Different types of activation functions, f(-), can be employed for the purpose of firing
the neurons, such as relu, sigmoid, or identity [52]. For a sigmoid activation function, the
hidden layer can be written as:

H(x) = Sigmoid(U?x + vH) = U(U?t + vH) (6)

The input is recovered by applying the latent representations accumulated in the
bottleneck layer (hidden layer) to the reconstruction layer (output layer). Finally, the
Sigmoid activation function is again employed at the reconstruction layer. The recovered
estimated vector input can be provided as:

£ = g(UTH(x) + o) )
The final, estimated input vector via the Sigmoid is provided as:

£ = Sigmoid (Ug?—l(x) + vo)

= U(UEH(X) + vo) ®)

3.2. Denoising Auto-Encoder (DAE)

A DAE is another variation of a basic auto-encoder [63]. The input to a DAE is
noisy data instead of clean data. A clean input, x, is partially corrupted to ¥ through
stochastic mapping X ~ a(X|x) [63]. The corruption in the input is drawn randomly from
the conditional distribution, p(¥|x). The input corruption options may include Gaussian
noise, p(x|x) = N(x,}) (where the co-variance matrix is independent of x), or mask-out-
noise (where each input entry is randomly diffused by zero with a probability), such as
P(x=0) =aand P(x =1/(1 —a)x) = 1 — a. Mask-out corruption is used in this study
for all denoising auto-encoder algorithms. A DAE is designed to recover the input from its
corrupted form. DAEs are more robust than the basic auto-encoders due to their capability
in handling noisy data [64]. A DAE with noisy inputs is graphically demonstrated in
Figure 3.
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Figure 3. Neural network of a denoising auto-encoder for an RS.
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3.3. Confidence-Integrated Denoising Auto-Encoder (CIDAE)

The confidence-aware DAE is designed by using the complete dataset instead of only
positive feedback [51] from the users. The utilization of all the available ratings of the
dataset provides us more information for better top-N recommendations by incorporating
the negative ratings of the dataset. In a ranking-based evaluation, top-N ranking is a
common approach to recommending a set of top-N-ranked items to the users. The benefit
of modeling a rating trend for top-N recommendations is to recommend an unrated set
of items to the user by approximating the dominating preference behavior (ratings) of a
user for a rated set of items. In the top-N items ranking approach, a set of top-N-ranked
items are selected from a sorted list of N items recommended to a user. A set of items that
is recommended to the user is equal in size to the recommended list of top-N items.

We employed a cross-entropy loss function that involved the weights as the user’s
preference value, and a user’s confidence value was assigned to feedback for specific items.
The confidence-integrated loss of a DAE is represented as:

»C(xu/ J?u) = CVu,i[_PVu,i log(fu) 9)
—(1—=PV,;)log(1 — %4)]

Here, PV, ; represents the preference function that returns a 1 for positive feedback
and 0 for negative feedback, summarized as:

— 1/ lf xu,i 2 4
PVii = {0, otherwise (10)

whereas CV,, ; shows the confidence function for feedback, provided as:

B, if xyj=1or x,; =5
CVu,i=< 058 ifx,;j=2o0r x,; =4 (11)
0.18 otherwise

Here, B is a hyper-parameter, and the optimal B value is selected through a hyper-
parameter-tuning mechanism. It can be seen that the CV,, ; value reflects a higher confi-
dence value for the minimum and maximum ratings and a lower confidence value for the
intermediate ratings.

Using the Equations (4) and (9), the objective function for the proposed CIDAE is
as follows:
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1 & . . A
min— ) | CVii[=PVyi log(£u) — (1= PVy) log(1 — £u)] + §(||U1||§ + 02013 + o1z + llool3) (12)

u=1

The network architecture of the suggested CIDAE for top-N recommendations is
presented in Figure 4.

o N

€858

Confidence-Aware Noisy User Input Vector

@O0 00000V

Figure 4. Multi-neural architecture of the proposed CIDAE for an RS.
The overall flow of the proposed CIDAE for proposing top-N recommendations is

graphically shown in Figure 5. However, the step-by-step pseudo-code of the proposed
CIDAE is provided in Algorithm 1.

Algorithm 1. Pseudocode of the suggested CIDAE method

Input: confidence-aware, corrupted user-preference vectors
Output: clean user-preference vectors for top-N recommendations

(1) Initialize parameters ¥ = {Uj, Uy, vy, vp} randomly

(2)  Generate Confidence Values for Observed Ratings

(8) Convert Numerical Feedback into Binary one

(4)  Add mask-out noise to partially corrupt input user vector X, ~ p(Xy|xy)
(5) Setepoch=1

(6) While Iter < Iters do

(7) forallu € M do

8) Calculate Objective Function using Equation (12)

) Compute P@10, NDCG@10, R@5, R@10, MAP via Equations (13)-(20)
(10) Take negative samples C,,;; C

(11) forallj € p, UC,; do

(12) Update parameters ¥ = {Uy, Uy, vy, vo}

(13) end for

(14) end for

(15) Iter = Iter +1

(16) end while
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Problem Statement

Top-N Recommendations via Improved Prediction Model
A Confidence-Integrated Denoising Auto-Encoder
(CIDAE)

CIDAE
Objective Function

a
1
mgnaz L(x,X) +R (Uy, Uy, v5,v0)
u=1

L(xu: i\u) = CVu,i [_Pvu,i log(jzu) — (1 - PVu,i) log(l - 2u)]

A
R (U, Uy ,v5,v0) = §(||U1||% + 102115 + llvgell3 + lvoll5)

Work Flow

Generate Confidence Values for
Randomly Initialize parameters.

Add Noise to Users Rating Vectors

Obseved Ratings. Convert Explicit
Feedback into Implicit Feedback

Calculate CIDAE Objective Function
Via Eq (12). Compute Performance

Metrics P@10, NDCG@10, R@5, ¥ ={Uy,Uz,v3,0}

Figure 5. Graphical flow of the proposed CIDAE for top-N recommendations.

4. Simulations and Results

This section includes subsections such as data manipulation, dataset particulars, a
simulation description, simulation settings, ranking-based evaluation metrics, results and
discussion, and a detailed analysis.

4.1. Data Manipulation

The input rating matrix was divided into training and test sets with test and train
fractions of 80% and 20%, respectively. Initially, we found a confidence matrix using the
complete set of observed training examples by assigning different confidence values for
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numerical ratings in the range of 1 to 5. Later, to represent the maximum and minimum
ratings in terms of binary values, the explicit numerical ratings given in the range of 1 to 5
were converted into binary ratings (1 and 0).

4.2. Datasets Particulars

The efficiency of the proposed CIDAE with regard to precision and accuracy when
compared to the standard counterparts was confirmed through two MovieLens [65] bench-
mark datasets, i.e., ML-1M and ML-100K. MovieLens datasets are extensively used as
popular datasets for evaluating RSs through ranking-based metrics for top-N recommenda-
tions. Both datasets contain numerical feedback of 1 to 5 and the minimum ratings provided
by a user in both datasets are at least 20. The statistics of both datasets are described in
Table 1.

Table 1. Statistics of datasets.

Total Number of Number of Density (%) .
Dataset Ratings (R)  Users (U) Items 1)  RAU*D*100 M ®RUD)
ML-100K 100K 943 1682 6.30 20
ML-IM 1M 6040 3706 4.47 20

4.3. Simulation Description

A grid search was chosen as a hyper-parameters selection and tuning method, consum-
ing training examples for the evaluation of all methods. We used a 5-fold cross-validation
to choose the train and test sets randomly for 100 iterations. The average values of the
findings are reported for all techniques. Methods were assessed for multiple learning
rate values, i.e., [0.001, 0.005, 0.01, 0.05, 0.06, 0.08, and 0.1, 0.5], and the results for the
optimum initial value of the learning rate for different methods are stated. Lambda (A) is
the regularization parameter for the penalty term involved in the objective function of the
recommender systems. It is a common practice to use a smaller A value for regularizing the
learned parameters (weights) to avoid overfitting on the observed ratings. From the deep
analysis, it was noted that the small-value lambda, A = 0.01, in the baseline models (the
CDAE and DAE) presented in [54] provided improved ranking-based predictions at the
output layer. Likewise, we have considered the same value of A = 0.01 for the regularization
of the penalty term.

Experiments were executed with a single hidden layer comprising 50 hidden nodes
(latent dimensions) in the multi-neural architecture of all methods. An Adam optimizer was
used for the weight update mechanism of all methods, with a mini batch size of 400 used
for the ML-1M dataset and a mini batch size of 100 used for ML-100K dataset. Moreover,
Adam automatically adapts the learning rate for the weight update expressions. Beta was
another hyper-parameter empirically chosen such that f < 1. It is inferred from the 8
tuning that the performance of the proposed CIDAE began degrading at 8 > 0.1, whereas
the performance for some of the ranking-based evaluation measures improved slightly
for B < 0.1. Overall, the proposed CIDAE exhibited comparable performance for beta
values of § < 0.1. However, the CIDAE showed a stable and improved performance when
compared to the CDAE and DAE with respect to the ranking evaluation metrics for a beta
value of B = 0.1.

The user input vectors were corrupted through masking noise (N), and the methods
were evaluated via different ranking-based evaluation measures for two values of masking
noise (N), i.e., [0.2, 0.5]. The masking noise variations represented the percentage of noise
used (where the users’ input ratings are masked via zero considering the given noise ratio)
to corrupt the input. For example, N = 0.2 represented that 20 % of the users’ inputs were
corrupted (overwritten) randomly through zero. A summary indicating the optimal values
of the hyper-parameters used by the three methods is provided in Table 2.
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Table 2. Parameters for simulation.

Hyper-Parameters Used Notation Hypeze;:;:me ter Values Chosen for Values Chosen for Values Chosen for
CIDAE DAE CDAE
Values
Latent Features K 50 50 50 50
0.001, 0.005, 0.01,
Learning Rate u 0.05, 0.06, 0.07, 0.06 0.01 0.01
0.08,0.1,0.5

Noise N 0.2,0.5,0.8,0.10 02,05 0.2,0.5 0.2,0.5

Regularization Rate A 0.01 0.01 0.01 0.01

Confidence Value B 0.1 0.1 0.1 0.1

4.4. Simulation Settings

All experiments were accomplished on a laptop with a Core-i7-5600U-@-2.6 Giga Hertz
processor, 64-bit operating system, and 16 GB RAM. HP EliteBook 840 G2 Core-i7-5600U,
2.6 Giga Hertz processor, 64-bit operating system, and 16 GB RAM The algorithms were
implemented in Python using TensorFlow.

4.5. Ranking-Based Evaluation Metrics

In a ranking-based evaluation, top-N ranking is a common approach to recommending
a set of top-N-ranked items to users. An item set in top-N ranking is represented by £(N).
Let T denote the set of all relevant items for a single user. Ranking-based top-N evaluation
measures are mathematically represented as follows [1]:

Precision@N: £ AT
P@N = ‘ (K) 0 x 100 (13)
£(N)]
Recall@N: £(NY AT
R@N = ‘(|%|ﬂ’ x 100 (14)
Mean Average Precision:
M
MAP = M ; (AP@Hits),, (15)

AP represents the average-precision of the relevant items of a user, u, out of all hits of

a recommendation set.
1 Hits

AP@Hits = 2 P(t (16)

Here, (1) specifies the relevance of n'* item is false, (R(n) = 0), or true, (R(n) = 1).
Normalized Discounted Gain:

DCG
NDCG = TDCC (17)
DCG = (18)
uZl le% log, ( IR +1)

Here, N, denotes the item set rated by a user, u, hidden from a recommender system
before valuation and R,; shows the relevance of an item, i, for a user, u. U,,; represents the
utility of the u user for the i item, while R; denotes rank of an item, i, in a test set, N,,.

U, =2%i —1 (19)

Here, R,,; is the relevance of item i for a user u.
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Normalized Discounted Gain @N:
The discounted gain (DCG) can also be computed for a recommendation set of length
¥ (N), specified as:

peG—L§ oy Bu 0)
M u=1 ieNy ,w;<Y(N) logZ(Ri + 1)

4.6. Results and Discussion

This section includes the comparative description and demonstration of the improved
performance achieved by the proposed CIDAE over its counterparts, i.e., the DAE and
CDAE, through ranking-based evaluation indices such as P@10, NDCG@10, R@5, R@10,
MAP, and NDCG for two benchmark datasets of ML-100K and ML-1M. For a fair com-
parison, the results with respect to the evaluation measures are presented through tables,
learning curves, and bar charts.

4.6.1. Explanation with Respect to the ML-100K Dataset

The performance outcomes of the three strategies with two noise variations, i.e.,
[0.2, 0.5] for ranking-based metrics using the ML-100K dataset are represented in Table 3
and Figures 6-9. The proposed CIDAE demonstrated significant performance over the
DAE and CDAE with both noise variations, i.e., [0.2, 0.5], for all ranking-based metrics
stated in Table 3.

Table 3. Performance evaluation for noise variations using ML-100K.

N=0.2 N=05

Metric CIDAE CDAE DAE CIDAE CDAE DAE
P@10 0.1839 0.1809 0.1807 0.1987 0.1945 0.1911
R@10 0.2125 0.1955 0.1950 0.2239 0.2177 0.2058
R@5 0.1335 0.1247 0.1223 0.1425 0.1384 0.1324
MAP 0.1841 0.1763 0.1732 0.2006 0.1939 0.1878
NDCG 0.4911 0.4842 0.4799 0.5087 0.4999 0.4952
NDCG@10 0.2519 0.2497 0.2460 0.2741 0.2693 0.2618

Initially, the performance of the proposed CIDAE was assessed via MAP and NDCG,
and the numerical outcomes are listed in Table 3. The performance-based learning curves
representing the MAP and NDCG for two noise variations are shown in Figure 6. It can
be seen from the learning curves in Figure 6a—d that the CIDAE showed a substantial
improvement in performance over the DAE and CDAE for all epochs and with both noise
variations. The improvement in the performance of the CIDAE is the result of confidence
values introduced in the cross-entropy objective function for the observed users’ feedback.

The results with respect to (R@5 and R@10) are also presented in Table 3, while the
fitness curves depicting (R@5 and R@10) for different noise values, i.e., [0.2, 0.5], are given
in Figure 7. It can be seen from the learning plots given in Figure 7a—d that the proposed
CIDAE outperformed the DAE and CDAE for different noise values representing corruption
in the users’ rating vectors. It can also be seen that the CIDAE achieved the fitness, i.e.,
(R@5 and R@10), in a smaller number of iterations when compared to the fitness achieved
by its counterparts after 100 iterations. Moreover, it can be observed that the CIDAE also
attained a better steady-state performance in terms of (R@5 and R@10) after 100 iterations.
The reason for such an increase in performance is the exploitation of all observed ratings
with respect to the confidence values assigned to the ratings set for the ML-100K dataset.
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Figure 6. Performance comparison on ML-100K through MAP and NDCG metrics.

The performance of the proposed CIDAE is verified further through two more top-
N-ranking metrics, P@10 and NDCG@10. The scores for precision and the normalized
discounted gain are presented in Table 3. The P@10 and NDCG@10 curves for the assess-
ment of the algorithms with two noise variants are demonstrated in Figure 8. From the
learning curves given in Figure 8a—d, it is noted that the relative increase in performance
of the proposed CIDAE for epochs greater than 10 is significantly better than the other
two auto-encoder-based denoising variants for input corruption variations (N). Further-
more, the proposed CIDAE succeeded in attaining the comparative performance regarding
P@10 and NDCG®@10 in earlier iterations when compared to its counterparts. The CIDAE
attained such an enhanced, accurate, and speedy performance due to the presence of a
confidence-integrated, weighted-objective function, which was developed to associate the
actual ratings (low or high) with a certain confidence value.
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Figure 7. Performance comparison on ML-100K through Recall R@5 and R@10 metrics.

Figure 9 represents the bar graphs expressing the relative evaluation of the proposed
CIDAE with the two rival methods, i.e., the DAE and CDAE, in terms of the steady-state
performance for two noise variations consuming the ML-100K dataset.

Figure 9a represents the recall (R@5) scores after 100 epochs for the three methods,
i.e., the DAE, CDAE, and the proposed CIDAE with two noise levels, i.e., [0.2, 0.5]. It is
noted that CIDAE achieved substantial recall scores of (R@5 = 0.1335) and (R@5 = 0.1425)
for both N = 0.2 and N = 0.5, respectively. The recall (R@10) scores for the DAE, CDAE,
and CIDAE are shown in Figure 9b via bar-graphs with two input corruption-levels. It
can be seen that for two values of noise, i.e., N = 0.2 and N = 0.5, CIDAE demonstrated a
significant increase in recall scores of (R@10 = 0.2125) and (R@10 = 0.2239), respectively,
when compared to the DAE and CDAE.
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Figure 8. Performance comparison on ML-100K through P@10 and NDCG@10 metrics.

The steady-state performance of the three approaches, i.e., the DAE, CDAE, CIDAE, in
terms of the (P@10) and (NDCG@10) scores for two noise levels are displayed in Figure 9¢,d,
respectively. A slight increase in the performance of the CIDAE (0.1839) with respect to a
P@10 score for N = 0.2 is observed when compared to the CDAE (0.1809) and DAE (0.1807)
scores. A similar performance trend for the CIDAE (0.1987) is observed for P@10 with
N = 0.5, compared with the CDAE (0.1945) and DAE (0.1911). In contrast to the slight
improvement regarding the P@10 scores, the CIDAE accomplished a significant rise in
performance with respect to the NDCG@10 scores when compared to the CDAE and DAE
for both noise levels. The maximum NDCG@10 scores reached by the CIDAE for N = 0.2
and N = 0.5 were (0.2519) and (0.2741), respectively.

Bar graphs representing the steady-state performance of the proposed CIDAE along
with its counterparts in terms of the MAP and NDCG scores for two noise values after
100 iterations are demonstrated in Figure e f, respectively. A considerable improvement
in the steady-state performance of the CIDAE (0.1841) in comparison with the CDAE
(0.1763) and the DAE (0.1732) with respect to the MAP score is observed for N = 0.2. For
N =0.5, CIDAE also attained a huge increase in performance with a MAP score of (0.2006),
compared to the MAP scores achieved by the CDAE (0.1939) and DAE (0.1878). Similarly,
a superior performance of CIDAE with respect to the NDCG scores is noted for N = 0.2
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and N = 0.5 versus contending methods. The proposed CIDAE achieved NDCG scores of
(0.4911) and (0.5087) for N = 0.2 and N = 0.5, respectively.
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Figure 9. Comparison through R@5, R@10, P@10, NDCG@10, MAP, and NDCG metrics for ML-100K.



Mathematics 2023, 11, 761

17 of 25

0.12

0.10

0.08

R@5

0.06

0.04

0.02

0.08

R@5

0.06

0.04

0.02

4.6.2. Explanation with Respect to the ML-1M Dataset

To authenticate the performance of the proposed CIDAE with respect to ranking-based
valuation metrics over the DAE and CDAE, simulations were also performed using a larger
dataset, i.e., ML-1M, for two noise levels, i.e., [0.2, 0.5]. The results for the ranking-based

metrics are provided in Table 4 and are demonstrated in Figures 10-13.

Table 4. Performance assessment for noise variations using ML-1M.

N=0.2 N=0.5
Metrics
CIDAE CDAE DAE CIDAE CDAE DAE
P@10 0.2011 0.2048 0.1993 0.2056 0.2162 0.1960
R@10 0.1589 0.1441 0.1400 0.1608 0.1583 0.1338
R@5 0.1004 0.0904 0.0880 0.0999 0.1000 0.0837
MAP 0.1632 0.1539 0.1504 0.1629 0.1679 0.1457
NDCG 0.5001 0.4876 0.4826 0.5001 0.5042 0.4771
NDCG@10 0.2498 0.2507 0.2442 0.2574 0.2670 0.2388
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Figure 10. Performance comparison on ML-IM through Recall R@5 and R@10 metrics.
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Figure 11. Performance comparisons of ML-1M through MAP and NDCG metrics.

Figure 10 exhibits the learning curves for R@5 and R@10 for two noise variations, i.e.,
[0.2, 0.5]. The learning plots presented in Figure 10a—d show that the proposed CIDAE
performed substantially better for all epochs with two noise variations. It can also be seen
that the recall scores achieved by the DAE and CDAE after 100 iterations were achieved by
CIDAE earlier, after consuming 40 iterations. Moreover, the final recall score achieved by
the CIDAE was also higher when compared to the DAE and CDAE. The CIDAE attained
such recommendation speed due to the confidence-integrated design of the CIDAE for
top-N recommendations.

The learning plots representing the relative performance of the three methods, i.e.,
DAE, CDAE, and the proposed CIDAE, in terms of the MAP and NDCG with two noise
values are given Figure 11. It is noted from Figure 11a,b that the CIDAE achieved consider-
able progress in performance when compared to its rival methods for noise value (N = 0.2)
with respect to the MAP and NDCG scores for 100 iterations. Additionally, the CIDAE
attained the MAP and NDCG scores far earlier, i.e., at 50 iterations, when compared to the
scores achieved by the DAE and CDAE after 100 iterations. Furthermore, it is seen from
Figure 11c,d that, for N = 0.5, there was a marked rise in the performance of the CIDAE for
the MAP and NDCG over the CDAE until 75 iterations, but that CIDAE demonstrated a
comparable performance afterwards.
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Figure 12. Performance comparison of ML-1M through P@10 and NDCG@10 metrics.

However, for N = 0.5, the CIDAE outperformed the DAE with regard to the MAP
and NDCG scores for almost all iterations, as is shown in Figure 11¢,d. The improved and
competitive performance of the CIDAE over its counterparts is the outcome of the mapping
between the users’ feedback and the confidence values assigned to that feedback.

The relative performance of the proposed CIDAE over the DAE and CDAE is also
validated for two more ranking-based evaluation metrics, i.e., P@10 and NDCG@10, for
top-N recommendations. The comparative results for two noise variations are repre-
sented through learning curves in Figure 12. It can be observed from the plots given in
Figure 12a,b that for N = 0.2, the performance of the proposed CIDAE with respect to P@10
and NDCG®@10 over the DAE was noticeably raised for 100 iterations, whereas the CIDAE
achieved a great improvement in performance in terms of P@10 and NDCG@10 when
compared to the CDAE for 90 epochs and achieved similar results for P@10 and NDCG@10
after 90 epochs. In addition, it can be observed from Figure 12¢,d that the CIDAE increased
from the 5th to 70th iterations.

The CIDAE attained a superior performance for P@10 and NDCG@10 over the CDAE
for N = 0.5 and demonstrated a slightly reduced performance trend for subsequent itera-
tions. However, the CIDAE demonstrated a remarkable performance (P@10 and NDCG@10)
for N = 0.5 when compared to the DAE for all iterations.
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Figure 13. Comparison of ML-1M for R@5, R@10, P@10, NDCG@10, MAP, and NDCG metrics.
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To prove the scalability of the proposed CIDAE over its counterparts, the comparative
assessment of the proposed CIDAE with the CDAE and DAE was also performed for a
bigger MovieLens dataset i.e., ML-1M. The results of the ranking-based evaluation metrics
representing steady-state performance after 100 iterations with two noise variations are
presented in Figure 13.

The results in terms of the (R@5) score achieved by the CIDAE, CDAE and DAE after
100 epochs and with two noise values, i.e., [0.2, 0.5], are provided in Figure 13a. The
CIDAE achieved a significantly improved R@5 score (0.1004) for N = 0.2 over the CDAE
(0.0904) and DAE (0.0880). The score attained by the CIDAE (0.0999) for N = 0.5 was also
substantial over DAE (0.0837), but the CIDAE slightly lagged behind the CDAE (0.1000).
The bar graphs for (R@10) for the three methods with distinct noise values are presented in
Figure 13b. The proposed CIDAE leads the CDAE and DAE in terms of the R@10 scores
for both noise variations. The R@10 values attained by the CIDAE for N = 0.2 and 0.5 are
0.1589 and 0.1608, respectively.

The bar graphs shown in Figure 13¢ exhibit (P@10) scores for the denoising auto-
encoder variants with different noise levels, i.e., [0.2, 0.5]. It is noted from Figure 13c that
the performance of the CIDAE was improved drastically over the DAE for N = 0.2, whereas
comparable results with respect to P@10 can be observed for both the CIDAE and CDAE,
with N = 0.5. Figure 13d demonstrates the NDCG@10 scores for the contending methods,
given two noise variations. There was a slight increase in the NDCG@10 score gained by
the CIDAE over the DAE, with N = 0.2. However, the performance (NDCG@10) of the
CIDAE when compared to the CDAE was decreased marginally for N = 0.5.

The steady-state performance of the CDAE over three models was also evaluated
for the MAP score with two noise levels. It is presented in Figure 13e. For N = 0.2, the
CIDAE accomplished a noticeably improved MAP score (0.1632) after 100 iterations when
compared to the CDAE (0.1539) and DAE (0.1504). In contrast to N = 0.2, the CIDAE did
not succeed in achieving a superior MAP score for N = 0.5 when compared to the CDAE.
Therefore, the performance of both methods for N = 0.5 was comparable. Additionally,
the bar graphs representing the NDCG score for the two noise variations are shown in
Figure 13f. It can be perceived from Figure 13f that the NDCG performance trend, in terms
of NDCG demonstrated by the CIDAE over the CDAE and DAE, with two noise values
was similar to that of the performance achieved by the CIDAE with respect to the MAP.

4.7. Critical Observations
The in-depth investigation of the study is as follows:

e  The performance attained by the proposed CIDAE in fewer iterations for both noise
variations indicates the improved speed for providing the top-N recommendations;

o  The better steady-state performance, regardless of changes in noise levels, confirms
the robustness and accuracy of the proposed CIDAE over its counterparts;

e The improved performance of the proposed CIDAE for both datasets verifies the
scalability of the model when compared to the DAE and CDAE;

e A noticeable increase in performance in terms of all ranking-based measures is ob-
served with N = 0.5 compared to N = 0.2 for the proposed CIDAE, which confirms
that the CIDAE has the ability to perform better for more randomly overwritten zero
values with the probability of N = 0.5;

e  The relative progress in the performance of the proposed CIDAE for iterations greater
than 10 is considerably improved when compared to the two contending auto-encoder-
based denoising techniques for noise variations (N);

e  The CIDAE attains its enhanced, accurate, and speedy performance due to the presence
of a confidence-integrated, weighted-objective function which associates the actual
ratings (low or high) to a certain confidence value.
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4.8. Implications

e  Assigning the confidence values to the ratings highlights the importance of an explicit
feedback (either high or low) given by a user with a particular state of mind;
The prediction of missing feedback using higher (positive) and lower (negative) ratings;
The proposed model provides an opportunity to utilize a full set of observed ratings
rather than preferential ratings (positive-only feedback) to exploit the full information
hidden in low, intermediate, and high ratings;

e  The proposed confidence-aware strategy contributes as a significant addition to the
e-commerce industry for increasing the potential of DAE-based recommendation
models in term of the speed and accuracy of the recommendations.

5. Conclusions
The conclusions drawn from the study are stated as follows:

e  We have suggested a confidence-aware denoising auto-encoder model (CIDAE) that
exploits a complete set of observed ratings for an enhanced accuracy in providing top-
N recommendations to users. The proposed CIDAE showed significantly improved
results in terms of the recommendation speed over two denoising auto-encoder vari-
ants (DAE and CDAE) for smaller noise values, i.e., N = 0.2. This is because a smaller
noise value supports the maintenance of a noticeable proportion of users’ confidence
with respect to the observed ratings in the dataset, providing useful information to the
CIDAE for modeling confidence-aware top-N recommendations correctly;

o  The comparison of the developed strategy (CIDAE) with state-of-the-art denoising
auto-encoders (DAE and CDAE) with respect to standard, ranking-based evaluation
metrics indicates a relatively improved performance of the CIDAE for suggesting
top-N recommendations to the candidate users;

e  The proposed CIDAE achieved a substantial steady-state performance for both noise
levels with the ML-100K dataset, whereas the CIDAE attained improved results on the
ML-1M dataset for a low noise level (N = 0.2) and comparable results for a high noise
level (N =0.5). Such behavior confirms the robustness and scalability of the proposed
CIDAE over its counterparts.

Future research may consider investigating the application of the proposed methodol-
ogy for solving MEMS problems [60-65].
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