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Abstract: In this paper, we study a Yosida variational inclusion problem with its corresponding
Yosida resolvent equation problem. We mention some schemes to solve both the problems, but we
focus our study on discussing convergence criteria for the Yosida variational inclusion problem in
real Banach space and for the Yosida resolvent equation problem in q-uniformly smooth Banach
space. For faster convergence, we apply an inertial extrapolation scheme for both the problems. An
example is provided.
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1. Introduction

Variational inclusions are the generalized forms of variational inequalties introduced
by Hassouni and Moudafi [1]. Many interrelated and unrelated problems of basic and
applied sciences can be easily studied via variational inclusions, such as the problems
arising in elasticity, structural analysis, oceanography, image processing, physics and
engineering sciences, etc., see for example [2–8].

The concept of resolvent equations was introduced by Noor [9,10]. Resolvent equations
are generalized forms of Wiener–Hopf equations. The equivalence between the variational
inclusions and resolvent equations was shown by many authors. The resolvent operator
technique is useful to solve variational inclusion problems, as projection methods fail
to solve them. Various generalized resolvent operators involving different monotone
operators are available in the literature.

It is a fact that maximal monotone operators are fundamental objects in modern
optimization. In addition, set-valued monotone operators can be regularized into a single-
valued monotone operator by a process called Yosida approximation. Applications of
Yosida approximation operator can be found in a heat equation that describes the distribu-
tion of heat over time in a fixed region of space, an initial value problem for the linearized
equations of coupled sound and heat flow, and a wave equation in the form of second-order
partial differential equation used for the description of waves, see for example [11–15].

Many iterative algorithms were developed using generalized resolvent operators,
but it is always beneficial to use an algorithm which accelerates the fast convergence for
the sequence generated by the algorithm. Inertial extrapolation schemes are developed
by using the inertial extrapolation term {ν(xn − xn−1)} by several authors, where ν is
an extrapolating factor that speeds up the convergence rate of the method. Polyak [16]
first introduced the inertial-type iterative algorithm to deal with the heavy ball method.
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The inertial-type iterative algorithm has two steps in which the consecutive iterations are
gained by using the former two terms, see for example [17–20].

In view of the above important discussion, in this paper, we consider a Yosida vari-
ational inclusion problem with its corresponding Yosida resolvent equation problem.
We mention some schemes for solving Yosida variational inclusion as well as the Yosida
resolvent equation problem. We concentrate our study on convergence analysis of both
the problems through inertial extrapolation schemes. An example is provided through
MATLAB 2015a with a computation table and a convergence graph.

2. Fundamental Tools and Concepts

Suppose that Ẽ is a real Banach space and Ẽ∗ is its topological dual equipped with
norm ‖ · ‖ and duality pairing 〈·, ·〉 between Ẽ and Ẽ∗. By 2Ẽ, we denote the set of all
non-empty subsets of Ẽ.

For q > 1, the generalized duality mapping Jq : Ẽ→ Ẽ∗ is defined by

Jq(e) =
{

f ∈ Ẽ∗ : 〈e, f 〉 = ‖e‖q and ‖ f ‖ = ‖e‖q−1
}

, for all e ∈ Ẽ.

For q = 2, Jq becomes normalized duality mapping. Particularly, J := J2 is called
normalized duality mapping on Ẽ. It is well known that Jq(e) = ‖e‖q−2 J2(e) for e 6= 0
and Jq(e) is the subdifferential of functional (1/q)‖ · ‖q at e, see [21]. The mapping Jq is
single-valued if Ẽ is uniformly smooth.

The definition of uniformly smooth Banach space, modulus of smoothness and the
following important Lemma can be found in Xu [21].

Lemma 1. A real uniformly smooth Banach space Ẽ is q-uniformly smooth if and only if there
exists a constant Cq > 0 such that for all e, f ∈ Ẽ, the following inequality holds :

‖e + f ‖q ≤ ‖e‖q + q〈 f , Jq(e)〉+ Cq‖ f ‖q.

Before providing essential definitions for the presentation of this paper and for the
convenience of readers, we mention the following well-known definitions. For this purpose,
we take Ẽ = H, a real Hilbert space.

Definition 1. A single-valued mapping Ã : H → H is called

(i) Monotone if
〈Ã(e)− Ã( f ), e− f 〉 ≥ 0, for all e, f ∈ H;

(ii) Strongly monotone if there exists a constant δÃ > 0 such that

〈Ã(e)− Ã( f ), e− f 〉 ≥ δÃ‖e− f ‖2, for all e, f ∈ H.

Definition 2. A set-valued mapping M : H → 2H is called monotone, if

〈u− v, e− f 〉 ≥ 0, for all e, f ∈ H, u ∈ M(e), v ∈ M( f ).

Definition 3. Let Ã : H → H be a mapping. A set-valued mapping M : H → 2H is called
Ã-monotone if M is monotone and

[Ã + ξM](H) = H, ξ > 0 is a constant.

The generalizations of above Definitions 1–3 in q-uniformly smooth Banach space are
as follows, which are needed for the presentation of this paper.

Definition 4. A single-valued mapping Ã : Ẽ→ Ẽ is called



Mathematics 2023, 11, 763 3 of 19

(i) Accretive if
〈Ã(e)− Ã( f ), Jq(e− f )〉 ≥ 0, for all e, f ∈ Ẽ;

(ii) Strongly accretive if there exists a constant δÃ > 0 such that

〈Ã(e)− Ã( f ), Jq(e− f )〉 ≥ δÃ‖e− f ‖q, for all e, f ∈ Ẽ;

(iii) Lipschitz continuous if there exists a constant λ
Ã
> 0 such that

‖Ã(e)− Ã( f )‖ ≤ λ
Ã
‖e− f ‖, for all e, f ∈ Ẽ.

Definition 5. A set-valued mapping M : Ẽ→ 2Ẽ is called accretive if

〈u− v, Jq(e− f )〉 ≥ 0, for all e, f ∈ Ẽ, u ∈ M(e), v ∈ M( f ).

Definition 6. Let Ã : Ẽ → Ẽ be a mapping. The set-valued mapping M : Ẽ → 2Ẽ is called
Ã-accretive if M is accretive and[

Ã + ξM
]
(Ẽ) = Ẽ, ξ > 0 is a constant.

It is well known that all the splitting methods are based on the resolvent operator of
the form [I + ξM]−1, where M is a set-valued monotone mapping, ξ is a positive constant
and I is the identity mapping.

Definition 7. The resolvent operator R
M
I,ξ : H → H, where H is a Hilbert space, is defined as

R
M
I,ξ(e) = [I + ξM]−1(e), for all e ∈ H.

Definition 8. The Yosida approximation operator Y
M
I,ξ : H → H, where H is a Hilbert space, is

defined as

Y
M
I,ξ(e) =

1
ξ
[I − R

M
I,ξ ](e), for all e ∈ H.

The generalized forms of Definitions 7 and 8 are mentioned below.

Definition 9. Let Ã : Ẽ → Ẽ be a mapping and M : Ẽ → 2Ẽ be a set-valued mapping.

The generalized resolvent operator R
M

Ã,ξ
: Ẽ→ Ẽ associated with Ã and M is defined as:

R
M

Ã,ξ
(e) =

[
Ã + ξM

]−1
(e), for all e ∈ Ẽ and ξ > 0.

Definition 10. The generalized Yosida approximation operator Y
M

Ã,ξ
: Ẽ→ Ẽ is defined as :

Y
M

Ã,ξ
(e) =

1
ξ

[
Ã− R

M

Ã,ξ

]
(e), for all e ∈ Ẽ and ξ > 0.

Note that if A ≡ I, the identity mapping, then from Definitions 9 and 10, one can
obtain Definitions 7 and 8, respectively.
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Proposition 1. [22] Let Ã : Ẽ→ Ẽ be strongly accretive mapping with constant r and M : Ẽ→
2Ẽ be an Ã-accretive set-valued mapping. Then, the generalized resolvent operator R

M

Ã,ξ
: Ẽ→ Ẽ is

Lipschitz continuous with constant
1
r

, that is

‖R
M

Ã,ξ
(e)− R

M

Ã,ξ
( f )‖ ≤ 1

r
‖e− f ‖, for all e, f ∈ Ẽ.

Lemma 2. [23] Let {Sn} be a sequence of non-negative real numbers such that

Sn+1 ≤ (1− βn)Sn + βnσn + ξ̂n, for all n ≥ 1,

where

(i) {βn} ⊂ [0, 1],
∞
∑

n=1
βn = ∞;

(ii) lim sup σn ≤ 0;

(iii) ξ̂n ≥ 0 (n ≥ 1),
∞
∑

n=1
ξ̂n < ∞.

Then, Sn → 0, as n→ ∞.

Proposition 2. (i) If Ã : Ẽ→ Ẽ is r-strongly accretive, βÃ-expansive, λÃ-Lipschitz continuous

and generalized resolvent operator R
M

Ã,ξ
: Ẽ → Ẽ is

1
r

-Lipschitz continuous, then the

generalized Yosida approximation operator Y
M

Ã,ξ
: Ẽ→ Ẽ is θY-strongly accretive with respect

to Ã, that is
〈Y

M

Ã,ξ
(e)−Y

M

Ã,ξ
( f ), Jq

(
Ã(e)− Ã( f )

)
〉 ≥ θY‖e− f ‖q,

where θY =
β

q

Ã
r− λ

q−1

Ã
ξr

, ξr 6= 0, β
q

Ã
r > λ

q−1

Ã
, and all the constants are positive.

(ii) If Ã is λ
Ã

-Lipschitz continuous, r-strongly accretive and R
M

Ã,ξ
is

1
r

-Lipschitz continuous,
then the generalized Yosida approximation operator is λY-Lipschitz continuous, that is∥∥YM

Ã,ξ
(e)−YM

Ã,ξ
( f )
∥∥ ≤ λY‖e− f ‖,

where λY =
λ

Ã
r + 1

ξr
.

Proof. (i) Using the definition of generalized duality mapping, expansiveness and Lips-

chitz continuity of Ã and Lipschitz continuity of R
M

Ã,ξ
, we evaluate
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〈
Y

M

Ã,ξ
(e)−Y

M

Ã,ξ
( f ), Jq

(
Ã(e)− Ã( f )

)〉
=

1
ξ

〈
Ã(e)− R

M

Ã,ξ
(e)−

[
Ã( f )− R

M

Ã,ξ
( f )
]
, Jq

(
Ã(e)− Ã( f )

)〉
=

1
ξ

〈
Ã(e)− Ã( f ), Jq

(
Ã(e)− Ã( f )

)〉
− 1

ξ

〈
R

M

Ã,ξ
((e)− R

M

Ã,ξ
( f ), Jq

(
Ã(e)− Ã( f )

)〉
≥ 1

ξ
‖Ã(e)− Ã( f )‖q − 1

ξ
‖R

M

Ã,ξ
(e)− R

M

Ã,ξ
( f )‖‖Ã(e)− Ã( f )‖q−1

≥ 1
ξ

β
q

Ã
‖e− f ‖q − 1

ξ

1
r
‖e− f ‖‖Ã(e)− Ã( f )‖q−1

≥ 1
ξ

β
q

Ã
‖e− f ‖q − 1

ξr
λ

q−1

Ã
‖e− f ‖‖e− f ‖q−1

=

1
ξ

β
q

Ã
−

λ
q−1

Ã
ξr

‖e− f ‖q

= θY‖e− f ‖q.

That is,〈
Y

M

Ã,ξ
(e)−Y

M

Ã,ξ
( f ), Jq

(
Ã(e)− Ã( f )

)〉
≥ θY‖e− f ‖q.

Thus, the generalized Yosida approximation operator Y
M

Ã,ξ
is θY-strongly accretive

with respect to Ã.

(ii) Using Lipschitz continuity of Ã and R
M

Ã,ξ
, we evaluate

∥∥Y
M

Ã,ξ
(e)−Y

M

Ã,ξ
( f )
∥∥ = ‖1

ξ

(
Ã(e)− R

M

Ã,ξ
(e)
)
− 1

ξ

(
Ã( f )− R

M

Ã,ξ
( f )
)
‖

=
1
ξ
‖Ã(e)− Ã( f )−

[
R

M

Ã,ξ
(e)− R

M

Ã,ξ
( f )
]
‖

≤ 1
ξ
‖Ã(e)− Ã( f )‖+ 1

ξ
‖R

M

Ã,ξ
(e)− R

M

Ã,ξ
( f )‖

≤ 1
ξ

λ
Ã
‖e− f ‖+ 1

ξ

1
r
‖e− f ‖

=

[
λ

Ã
ξ

+
1
ξr

]
‖e− f ‖

= λY‖e− f ‖.

That is, ∥∥Y
M

Ã,ξ
(e)−Y

M

Ã,ξ
( f )
∥∥ ≤ λY‖e− f ‖.

Thus, the genearlized Yosida approximation operator Y
M

Ã,ξ
is λY-Lipschitz continuous.



Mathematics 2023, 11, 763 6 of 19

3. Yosida Variational Inclusion Problem and Yosida Resolvent Equation Problem

Let Ã : Ẽ→ Ẽ be single-valued mapping and M : Ẽ→ 2Ẽ be set-valued mapping. Let

Y
M

Ã,ξ
be a generalized Yosida approximation operator. We consider the following Yosida

variational inclusion problem.
Find e ∈ Ẽ such that

0 ∈ Y
M

Ã,ξ
(e) + M(e). (1)

If Y
M

Ã,ξ
(e) = 0, then problem (1) reduces to the problem of finding e ∈ Ẽ such that

0 ∈ M(e),

which is a fundamental problem of analysis that has been considered by Rockafellar [24].

Lemma 3. The Yosida variational inclusion problem (1) has a solution e ∈ Ẽ if and only if the
following equation is satisfied :

e = R
M

Ã,ξ

[
Ã(e)− ξY

M

Ã,ξ
(e)
]
. (2)

Proof. One can prove it easily by using the definition of generalized resolvent operator R
M

Ã,ξ
.

Based on Lemma 3, we mention an iterative scheme as well as an inertial extrapolation
scheme for solving Yosida variational inclusion problem (1).

Iterative Scheme 1. For any e0 ∈ Ẽ, compute the sequence {en} by the following scheme:

en+1 = R
M

Ã,ξ

[
Ã(en)− ξY

M

Ã,ξ
(en)

]
, where n = 0, 1, 2, · · · (3)

and ξ > 0 is a constant.

Equation (2) can also be written as

e = R
M

Ã,ξ

[
Ã(e) + Ã(e)

2
− ξY

M

Ã,ξ
(e)

]
. (4)

Based on (4), we suggest the following iterative scheme.

Iterative Scheme 2. For any e0 ∈ Ẽ, compute en+1 by the recurrance relation,

en+1 = (1− αn)en + αnR
M

Ã,ξ

[
Ã(en) + Ã(en+1)

2
− ξY

M

Ã,ξ
(en+1)

]
, where n = 0, 1, 2, · · · , (5)

αn ∈ [0, 1] and ξ > 0 is a constant.

We mention the following inertial extrapolation scheme using the predictor–corrector ap-
proach.
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Iterative Scheme 3. For any e0 ∈ Ẽ, compute en+1 by the recurrance relation,

wn = en + νn(en − en−1), (6)

en+1 = (1− αn)en+αnR
M

Ã,ξ

[
Ã(en) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]
, (7)

where αn, νn ∈ [0, 1], νn is the extrapolating term for all n ≥ 1 and ξ > 0 is a constant.

Note that one can use the above-mentioned schemes 1 and 2 to obtain the existence and
convergence result for Yosida variational inclusion problem (1). Using inertial extrapolation
scheme 3, we prove a convergence result for Yosida variational inclusion problem (1) in
the sequel.

In connection with Yosida variational inclusion problem (1), we state the following
Yosida resolvent equation problem.

Find e, ẑ ∈ Ẽ, such that

Y
M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ ) = 0, (8)

where T
M

Ã,ξ
(ẑ ) =

[
I − Ã

(
R

M

Ã,ξ

)]
(ẑ ) and Ã

[
R

M

Ã,ξ
(ẑ )
]
=
[

Ã
(

R
M

Ã,ξ

)]
(ẑ ).

The following Lemma ensures that Yosida variational inclusion problem (1) is equiva-
lent to Yosida resolvent equation problem (8).

Lemma 4. The Yosida variational inclusion problem (1) has a solution e ∈ Ẽ if and only if Yosida
resolvent equation problem (8) has a solution e, ẑ ∈ Ẽ, provided Ã is one-one and

e = R
M

Ã,ξ
(ẑ ), (9)

ẑ = Ã(e)− ξY
M

Ã,ξ
(e), (10)

where ξ > 0 is a constant.

Proof. Let e ∈ Ẽ be a solution of Yosida variational inclusion problem (1). Then, by
Lemma 3, it satisfies the equation:

e = R
M

Ã,ξ

[
Ã(e)− ξY

M

Ã,ξ
(e)
]
.

e = R
M

Ã,ξ
(ẑ ), since ẑ = Ã(e)− ξY

M

Ã,ξ
(e).

Using (9), (10) becomes

ẑ =Ã
(

R
M

Ã,ξ
(ẑ )
)
− ξY

M

Ã,ξ
(e),

ẑ−Ã
(

R
M

Ã,ξ
(ẑ )
)
= −ξY

M

Ã,ξ
(e),

ẑ−
[

Ã
(

R
M

Ã,ξ

)]
(ẑ ) = −ξY

M

Ã,ξ
(e),[

I−
[

Ã
(

R
M

Ã,ξ

)]]
(ẑ ) = −ξY

M

Ã,ξ
(e),

T
M

Ã,ξ
(ẑ ) = −ξY

M

Ã,ξ
(e), since I − Ã

(
R

M

Ã,ξ

)
= T

M

Ã,ξ
.
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Thus, we have

Y
M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ ) = 0,

which is required for Yosida resolvent equation problem (8).
Conversely, let e, ẑ be the solution of Yosida resolvent equation problem (8).

Then, we have

ξY
M

Ã,ξ
(e) = −T

M

Ã,ξ
(ẑ )

= −
[

I − Ã
(

R
M

Ã,ξ

)]
(ẑ )

=
[

Ã
(

R
M

Ã,ξ

)]
(ẑ )− ẑ

= Ã
[

R
M

Ã,ξ
(ẑ )
]
− ẑ

= Ã
[

R
M

Ã,ξ

(
Ã(e)− ξY

M

Ã,ξ
(e)
)]
−
[

Ã(e)− ξY
M

Ã,ξ
(e)
]
,

which implies that

Ã(e) = Ã
[

R
M

Ã,ξ

(
Ã(e)− ξY

M

Ã,ξ
(e)
)]

.

Since Ã is one–one, we have

e = R
M

Ã,ξ

(
Ã(e)− ξY

M

Ã,ξ
(e)
)

.

By Lemma 3, it follows that e ∈ Ẽ is the solution of Yosida variational inclusion
problem (1).

Alternative Proof. Let
ẑ = Ã(e)− ξY

M

Ã,ξ
(e).

Using (9), we have

ẑ = Ã
(

R
M

Ã,ξ
(ẑ )
)
− ξY

M

Ã,ξ
(e),

which implies that

Y
M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ ) = 0,

the required Yosida resolvent equation problem (8).

Based on Lemma 4, we state the following scheme for solving Yosida resolvent equa-
tion problem (8).

Iterative Scheme 4. For any e0, ẑ0 ∈ Ẽ, compute the sequences {en} and {zn} by the follow-
ing scheme:

en = R
M

Ã,ξ
(ẑn), (11)

ẑn+1 = Ã(en)− ξY
M

Ã,ξ
(en), (12)

where n = 0, 1, 2, · · · and ξ > 0 is a constant.

The Yosida resolvent equation problem (8) can be restated as:

ẑ = Ã(e)−Y
M

Ã,ξ
(e) + (I − ξ

−1
)T

M

Ã,ξ
(ẑ ). (13)
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Verification. Using (9)

ẑ = Ã
(

R
M

Ã,ξ
(ẑ )
)
−Y

M

Ã,ξ
(e) + T

M

Ã,ξ
(ẑ )− ξ

−1
T

M

Ã,ξ
(ẑ )[

I − Ã
(

R
M

Ã,ξ

)]
(ẑ ) = −Y

M

Ã,ξ
(e) + T

M

Ã,ξ
(ẑ )− ξ

−1
T

M

Ã,ξ
(ẑ ).

Since
[

I − Ã
(

R
M

Ã,ξ

)]
= T

M

Ã,ξ
, we have

T
M

Ã,ξ
(ẑ ) = −Y

M

Ã,ξ
(e) + T

M

Ã,ξ
(ẑ )− ξ

−1
T

M

Ã,ξ
(ẑ ).

It follows that
Y

M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ ) = 0.

Using fixed point formulation (13), we suggest the following iterative scheme.

Iterative Scheme 5. For given e0, ẑ0 ∈ Ẽ, compute the sequences {en} and {zn} by the following
scheme:

en = R
M

Ã,ξ
(ẑn),

ẑn+1 = Ã(en)−Y
M

Ã,ξ
(en) + (I − ξ

−1
)T

M

Ã,ξ
(ẑn),

where n = 0, 1, 2, · · · and ξ > 0 is a constant.

For positive step size δ, the Yosida resolvent equation problem (8) can also be writ-
ten as:

e = e− δ
[
ẑ− Ã

(
R

M

Ã,ξ
(ẑ )
)
+ ξY

M

Ã,ξ
(e)
]
. (14)

Verification.

e = e− δ
[[

I − Ã
(

R
M

Ã,ξ

)]
(ẑ ) + ξY

M

Ã,ξ
(e)
]
,

e = e− δ
[

T
M

Ã,ξ
(ẑ ) + ξY

M

Ã,ξ
(e)
]

e = e− δ

[
Y

M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ )
]

,

which gives

Y
M

Ã,ξ
(e) + ξ

−1
T

M

Ã,ξ
(ẑ ) = 0.

The fixed point formulation (14) enables us to suggest the following iterative scheme.

Iterative Scheme 6. For e0, ẑ0 ∈ Ẽ, compute the sequences {en} and {ẑn} by the follow-
ing scheme:

en+1 = en − δ
[
ẑn − Ã

(
R

M

Ã,ξ
(ẑn)

)
+ ξY

M

Ã,ξ
(en)

]
,

where ξ, δ > 0 are constants and n = 0, 1, 2, · · · .

One can apply schemes 4–6 to obtain existence and convergence results for Yosida
resolvent equation problem (8).
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In order to accelerate the convergence rate, we suggest the following inertial extrapo-
lation scheme for solving Yosida resolvent equation problem (8).

Equation (10) can also be written as

ẑ =
Ã(e) + Ã(e)

2
− ξY

M

Ã,ξ
(e). (15)

Based on (15), we establish the following implicit scheme for solving Yosida resolvent
equation problem (8).

Iterative Scheme 7. For e0 ∈ Ẽ, compute the sequences {en} and {ẑn} by the recurrance relation

en = R
M

Ã,ξ
(ẑn),

ẑn+1 = (1− αn)ẑn + αn

[
Ã(en) + Ã(en+1)

2
− ξY

M

Ã,ξ
(en+1)

]
,

where n = 0, 1, 2, · · · and αn ∈ [0, 1].

We design the following inertial extrapolation scheme for solving Yosida resolvent
equation problem (8) applying the predictor–corrector technique.

Iterative Scheme 8. For e0, ẑ0 ∈ Ẽ, compute sequences {en} and {zn} by the recurrance relation:

wn = ẑn + νn(ẑn − ẑn−1), (16)

ẑn+1 = (1− αn)ẑn + αn

[
Ã(ẑn) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]
, (17)

where ξ > 0 is a constant, αn, νn ∈ [0, 1] such that
∞
∑

n=1
αn = ∞ and νn is an extrapolating term for

all n ≥ 1.

4. Convergence Analysis

First, we discuss the convergence of scheme 3 for Yosida variational inclusion prob-
lem (1) in real Banach space. Thenceforth, we demonstrate convergence of scheme 8 for
Yosida resolvent equation problem (8) in real q-uniformly smooth Banach space.

Theorem 1. Let Ẽ be real Banach space and Ã : Ẽ → Ẽ be single-valued mapping such that
Ã is r-strongly accretive and λ

Ã
-Lipschitz continuous. Let M : Ẽ→ 2Ẽ be Ã-accretive set-valued

mapping. Suppose that R
M

Ã,ξ
: Ẽ → Ẽ is a generalized resolvent operator such that R

M

Ã,ξ
is

1
r

-

Lipschitz continuous and Y
M

Ã,ξ
: Ẽ→ Ẽ is a generalized Yosida approximation operator such that

Y
M

Ã,ξ
is λY-Lipschitz continuous. Suppose that the following conditions are satisfied:

∣∣∣∣r− 3λÃ
4

∣∣∣∣ >
√

9λ
2

Ã
+ 16

4
, (18)

∣∣r− λÃ

∣∣ > √λ
2

Ã
+ 1, (19)

λÃ < r + ξλY, (20)
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where λY =
λ

Ã
r + 1

ξr
, r 6= 0, ξr 6= 0.

Let αn, νn ∈ [0, 1], for all n ≥ 1 such that

∞

∑
n=1

αn = ∞ as well as
∞

∑
n=1

νn(en − en−1) < ∞, (21)

where all contants are positive and νn is an extrapolating term.
Then, sequence {en} generated by the scheme 3 strongly converges to the unique solution

e∗ ∈ Ẽ of Yosida variational inclusion problem (1).

Proof. Let e ∈ Ẽ be the solution of Yosida variational inclusion problem (1). Using (4),
we have

e∗ = (1− αn)e∗ + αnR
M

Ã,ξ

[
Ã(e∗) + Ã(e∗)

2
− ξY

M

Ã,ξ
(e∗)

]
, (22)

where αn ∈ [0, 1], for all n ≥ 1. Using (7) and (22), we evaluate

‖en+1 − e∗‖ =
∥∥∥∥(1− αn)en + αnR

M

Ã,ξ

[
Ã(en) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]

− (1− αn)e∗ + αnR
M

Ã,ξ

[
Ã(e∗) + Ã(e∗)

2
− ξY

M

Ã,ξ
(e∗)

]∥∥∥∥
=

∥∥∥∥(1− αn)(en − e∗) + αn

R
M

Ã,ξ

[
Ã(en) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]
(23)

− R
M

Ã,ξ

[
Ã(e∗) + Ã(e∗)

2
− ξY

M

Ã,ξ
(e∗)

]∥∥∥∥
≤ (1− αn)‖en − e∗‖+ αn

∥∥∥∥R
M

Ã,ξ

[
Ã(en) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]

− R
M

Ã,ξ

[
Ã(e∗) + Ã(e∗)

2
− ξY

M

Ã,ξ
(e∗)

]∥∥∥∥.
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Applying the Lipschitz continuity of generalized resolvent operator R
M

Ã,ξ
, Ã and gen-

eralized Yosida approximation operator Y
M

Ã,ξ
, from (23), we obtain

‖en+1 − e∗‖ ≤ (1− αn)‖en − e∗‖+ αn

r

∥∥∥∥∥
[

Ã(en) + Ã(wn)

2

]
−
[

Ã(e∗)− Ã(e∗)
2

]

− ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(e∗)

]∥∥∥∥∥
≤ (1− αn)‖en − e∗‖+ αn

2r
∥∥Ã(en)− Ã(e∗)

∥∥+ αn

2r
∥∥Ã(wn)− Ã(e∗)

∥∥
+

αn

r
ξ
∥∥∥Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(e∗)

∥∥∥ (24)

≤ (1− αn)‖en − e∗‖+ αn

2r
λ

Ã
‖en − e∗‖+ αn

2r
λ

Ã

∥∥wn − e∗
∥∥

+
αn

r
ξ
∥∥∥Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(e∗)

∥∥∥
≤ (1− αn)‖en − e∗‖+ αn

2r
λ

Ã
‖en − e∗‖+ αn

2r
λ

Ã
‖wn − e∗‖

+
αn

r
ξλY‖wn − e∗‖

=
[
(1− αn) +

αn

2r
λ

Ã

]
‖en − e∗‖+

[αn

2r
λ

Ã
+

αn

r
ξλY

]
‖wn − e∗‖.

From (6), we have

‖wn − e∗‖ = ‖en − e∗ + νn(en − en−1)‖
≤ ‖en − e∗‖+ νn‖en − en−1‖. (25)

Combining (24) and (25), we obtain

‖en+1 − e∗‖ ≤
[
(1− αn) +

αnλ
Ã

2r

]
‖en − e∗‖+

αn(λÃ
+ 2ξλY)

2r
‖en − e∗‖

+
αn(λÃ

+ 2ξλY)

2r
νn‖en − en−1‖.

Thus, we have

‖en+1 − e∗‖ ≤
[
(1− αn) + αnP1 + αnP2

]
‖en − e∗‖+ αnP2νn‖en − en−1‖

= [(1− αn)(1− (P1 + P2))]‖en − e∗‖+ νn‖en − en−1‖, (26)

where P1 =
λ

Ã
2r

,

P2 =
λ

Ã
+ 2ξλY

2r
< 1, (By condition (18))

P1 + P2 =
λ

Ã
r

+
ξλY

r
.

Letting P = P1 + P2, P < 1 from condition (19). By condition (21), we have
∞
∑

n=1
αn = ∞

and
∞
∑

n=1
νn‖en − en−1‖ < ∞. Setting σn = 0 and ξ̃n =

∞
∑

n=1
νn‖en − en−1‖ < ∞. Then, by

Lemma 2 and (26), we have en → e∗, as n → ∞. Thus, the sequence {en} generated by
scheme 3 strongly converges to the unique solution e∗ ∈ Ẽ of Yosida variational inclusion
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problem (1). Furthermore, we show that the solution of Yosida variational inclusion
problem (1) is unique.

Let e, e∗ ∈ Ẽ be the two solutions of Yosida variational inclusion problem (1). Then, by
Lemma 3, we have

e = R
M

Ã,ξ

[
Ã(e)− ξY

M

Ã,ξ
(e)
]

and e∗ = R
M

Ã,ξ

[
Ã(e∗)− ξY

M

Ã,ξ
(e∗)

]
.

Using the Lipschitz continuity of the generalized resolvent operator R
M

Ã,ξ
, generalized

Yosida approximation operator Y
M

Ã,ξ
and mapping Ã, we evaluate

‖e− e∗‖ =
∥∥∥R

M

Ã,ξ

[
Ã(e)− ξY

M

Ã,ξ
(e)
]
− R

M

Ã,ξ

[
Ã(e∗)− ξY

M

Ã,ξ
(e∗)

]∥∥∥
≤ 1

r

∥∥∥Ã(e)− Ã(e∗)− ξ
[
Y

M

Ã,ξ
(e)−Y

M

Ã,ξ
(e∗)

]∥∥∥
≤ 1

r
λ

Ã
‖e− e∗‖+

ξλY
r
‖e− e∗‖ (27)

=

(
λ

Ã
r
−

ξλY
r

)
‖e− e∗‖

= A(θ)‖e− e∗‖,

where A(θ) =

(
λÃ
r
− ξλY

r

)
, λY =

(
λ

Ã
r + 1

ξ r

)
. It follows from condition (20) that

0 < A(θ) < 1. Thus, from (27), we have e = e∗. That is, e∗ is the unique solution of
Yosida variational inclusion problem (1).

Now, we study the convergence analysis of scheme 8 for Yosida resolvent equation
problem (8) in the setting of q-uniformly smooth Banach space. Note that by Lemma 4, Yosida
variational inclusion problem (1) is equivalent to Yosida resolvent equation problem (8).
As Yosida variational inclusion problem (1) admits a unique solution, Yosida resolvent
equation problem (8) also admits a unique solution.

Theorem 2. Let Ẽ be q-uniformly smooth Banach space and Ã : Ẽ→ Ẽ be single-valued mapping
such that Ã is one–one, λ

Ã
-Lipschitz continuous, β

Ã
-expansive and r-strongly accretive.

Let M : Ẽ → Ẽ be Ã-accretive set-valued mapping and R
M

Ã,ξ
: Ẽ → Ẽ be a generalized resolvent

operator such that R
M

Ã,ξ
is

1
r

-Lipschitz continuous. Let Y
M

Ã,ξ
: Ẽ → Ẽ be a generalized Yosida

approximation operator such that Y
M

Ã,ξ
is θY-strongly accretive with respect to Ã and λY-Lipschitz

continuous. Let T
M

Ã,ξ
(ẑ ) =

[
I − Ã

(
R

M

Ã,ξ

)]
(ẑ ), where Ã

(
R

M

Ã,ξ
(ẑ )
)
=
[

Ã
(

R
M

Ã,ξ

)]
(ẑ ), ẑ ∈ Ẽ.

Suppose that the following conditions are satisfied.(
λ

q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y

)
< 2q, (28)

λÃ < 2. (29)

Let αn, νn ∈ [0, 1], for all n ≥ 1 such that

∞

∑
n=1

αn = ∞ and
∞

∑
n=1

(
‖z̃n − w∗‖+ νn‖ẑn − ẑn−1‖

)
< ∞, (30)
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where ξ > 0 is a constant, Cq is the same as in Lemma 1, θY =
β

q

Ã
r− λ

q−1

Ã
ξr

and λY =

λ
Ã

r + 1

ξr
, ξr 6= 0, r 6= 0, β

q

Ã
r > λ

q−1

Ã
, and all the constants are positive.

Then, sequences {en} and {ẑn} generated by scheme 8 strongly converge to the unique solution
e∗ and z∗ of Yosida resolvent equation problem (8).

Proof. Applying (17) of scheme 8 and Lipschitz continuity of Ã, we evaluate

‖ẑn+1 − ẑ∗‖ =
∥∥∥∥∥(1− αn)ẑn + αn

[
Ã(ẑn) + Ã(wn)

2
− ξY

M

Ã,ξ
(wn)

]

−
[
(1− αn)z∗ + αn

[
Ã(ẑ∗) + Ã(w∗)

2
− ξY

M

Ã,ξ
(w∗)

]]∥∥∥∥∥
=

∥∥∥∥∥(1− αn)(ẑn − ẑ∗) + αn

[
Ã(ẑn)− Ã(ẑ∗)

2
+

Ã(wn)− Ã(w∗)
2

− ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗)

]]∥∥∥∥∥ (31)

≤ (1− αn)‖ẑn − ẑ∗‖+ αn

2

∥∥∥Ã(ẑn)− Ã(ẑ∗)
∥∥∥

+
αn

2

∥∥∥Ã(wn)− Ã(w∗)− 2ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗)

]∥∥∥
≤ (1− αn)‖ẑn − ẑ∗‖+ αn

2
λ

Ã
‖ẑn − ẑ∗‖

+
αn

2

∥∥∥Ã(wn)− Ã(w∗)− 2ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗)

]∥∥∥.

Using Lemma 1, Lipschitz continuity of Ã, strong accretiveness of Y
M

Ã,ξ
with respect to

Ã and Lipschitz continuity of Y
M

Ã,ξ
, we have

∥∥∥Ã(wn)− Ã(w∗)−2ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗)

]∥∥∥q

≤ ‖Ã(wn)− Ã(w∗)‖q − q2ξ
〈
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗), Jq(Ã(wn)− Ã(w∗)

〉
+ 2

q
ξ

q
Cq

∥∥∥Y
M

Ã,ξ
(wn)−Y

M

Ã,ξ
(w∗)

∥∥∥q
(32)

≤ λ
q

Ã
‖wn − w∗‖q − 2qξθY‖wn − w∗‖q + 2

q
ξ

q
Cqλ

q
Y‖wn − w∗‖q

≤
[
λ

q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y

]
‖wn − w∗‖q,

where θY =
β

q

Ã
r− λ

q−1

Ã
ξr

, ξr 6= 0, λY =
λ

Ã
r + 1

ξr
and λ

Ã
+ 2

q
ξ

q
Cqλ

q
Y > 2qξθY.

It follows from (32) that

∥∥Ã(wn)− Ã(w∗)− 2ξ
[
Y

M

Ã,ξ
(wn)−Y

M

Ã,ξ
x(w∗)

]∥∥ ≤ q

√
λ

q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y‖wn − w∗‖. (33)

Combining (31) and (33), we obtain
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‖ẑn+1 − ẑ∗‖ ≤ (1− αn)‖ẑn − ẑ∗‖+ αn

2
λ

Ã
‖ẑn − ẑ∗‖+ αn

2
q

√
λ

q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y‖wn − w∗‖. (34)

Applying (16) of scheme 8, we have

‖wn − w∗‖ = ‖ẑn − w∗ + νn(ẑn − ẑn−1‖
≤ ‖ẑn − w∗‖+ νn‖ẑn − ẑn−1‖. (35)

Combining (34) with (35), we have

‖ẑn+1 − ẑ∗‖ ≤ (1− αn)‖ẑn − ẑ∗‖+ αn

2
λ

Ã
‖ẑn − ẑ∗‖

+
αn

2
q

√
λ

q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y

[
‖ẑn − w∗‖+ νn‖ẑn − ẑn−1‖

]
,

that is

‖ẑn+1 − ẑ∗‖ ≤
[
(1− αn(1− Π̂1)

]
‖ẑn − ẑ∗‖+ αnΠ2

[
‖ẑn − w∗‖+ νn‖ẑn − ẑn−1‖

]
≤
[
1− αn(1− Π̂1)

]
‖ẑn − ẑ∗‖+ αn

[
‖ẑn − w∗‖+ νn‖ẑn − ẑn−1‖

]
, (36)

where Π̂1 =
λ

Ã
2

and Π̂2 =

q
√

λ
q

Ã
− 2qξθY + 2

q
ξ

q
Cqλ

q
Y

2
. By condition (28), Π̂2 < 1 and by

condition (29), Π̂2 < 1.

Applying condition (30), we have
∞
∑

n=1
αn = ∞ and

∞
∑

n=1

(
‖ẑn−w∗‖+ νn‖ẑn− ẑn−1‖

)
< ∞.

We set σn = 0 and ξ̂n =
∞
∑

n=1

(
‖ẑn − w∗‖+ νn‖ẑn − ẑn−1‖

)
< ∞. Applying Lemma 2 and (36),

we have ẑn → ẑ∗, as n→ ∞.
In addition,

‖en − e∗‖ = ‖R
M

Ã,ξ
(ẑn)− R

M

Ã,ξ
(ẑ∗)‖ ≤ 1

r
‖ẑn − ẑ∗‖. (37)

Since ẑn → ẑ∗ ∈ Ẽ, it follows from (37) that en → e∗ ∈ Ẽ. Hence, the sequences {ẑn}
and {en} generated by scheme 8 converge strongly to ẑ∗ and e∗, providing the unique
solution of Yosida resolvent equation problem (8).

5. Numerical Experiment

In support of Theorem 1, construct the following numerical example using MATLAB
2015a with a computation table and convergence graph.

Example 1. Let Ẽ = R with usual inner product and norm, Ã : Ẽ→ Ẽ be single-valued mapping
and M : Ẽ→ 2Ẽ be set-valued mapping such that

A(e) =
6
5

e,

and M(e) = { 1
10

e}, for all e ∈ Ẽ.

(i) Ã is r-strongly accretive and λÃ-Lipschtiz continuous.
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〈Ã(e)− Ã( f ), e− f 〉 =

〈
6
5

e− 6
5

f , e− f
〉

=
6
5
‖e− f ‖2 ≥ 11

10
‖e− f ‖2.

Thus, Ã is r = 11
10 -strongly accretive mapping.

In addition,

‖Ã(e)− Ã( f )‖ =

∥∥∥∥6
5

e− 6
5

f
∥∥∥∥

=
6
5
‖e− f ‖ ≤ 13

10
‖e− f ‖.

Thus, Ã is λÃ = 13
10 -Lipschitz continuous mapping.

(ii) M is Ã-accretive.

‖M(e)−M( f )‖ =

∥∥∥∥ 1
10

e− 1
10

f
∥∥∥∥

=
1

10
‖e− f ‖ ≥ 0.

That is, M is accretive and also for ξ = 1, it is easy to verify that

[Ã + ξM](Ẽ) = Ẽ.

Thus, M is Ã-accretive mapping.

(iii) For ξ = 1, we define a generalized resolvent operator

RM
Ã,ξ

(e) = [Ã + ξM]−1(e) =
10
13

e, for all e ∈ Ẽ.

In addition,

‖RM
Ã,ξ(e)− RM

Ã,ξ( f )‖ =

∥∥∥∥10
13

e− 10
13

f
∥∥∥∥

=
10
13
‖e− f ‖ ≤ 1

(11/10)
‖e− f ‖.

Thus, the generalized resolvent operator RM
Ã,ξ

is 1
r = 1

(11/10) -Lipschitz continuous.

(iv) Based on step (iii), we calculate the generalized Yosida approximation operator

YM
Ã,ξ(e) =

1
ξ
[Ã− RM

Ã,ξ ](e) =
28
65

e, for all e ∈ Ẽ.

In addition,

‖YM
Ã,ξ(e)−YM

Ã,ξ( f )‖ =

∥∥∥∥28
65

e− 28
65

f
∥∥∥∥

=
28
65
‖e− f ‖ ≤ 243

110
‖e− f ‖,

Thus, the generalized Yosida approximation operator YM
Ã,ξ

is λY =
λÃr+1

ξr = 243
110 -Lipschitz

continuous.
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(v) In view of constants calculated above, the conditions (18)–(20) of Theorem 1 are fulfilled.

(vi) For αn = 5
n+1 and νn = 1

n , inertial extrapolation scheme 8 has the following model:

wn = en + νn(en − en−1)

en+1 = (1− αn)en + αnRM
Ã,ξ

[
Ã(en) + Ã(wn)

2
− ξYM

Ã,ξ
(wn)

]

= (1− αn)en + αnRM
Ã,ξ

[
3
5

en +
11
65

wn

]

= (1− αn)en + αn

[
6

13
en +

110
845

wn

]
.

It is shown through a computation table (Table 1) and convergence graph (Figure 1) that for
different initial values e0 = 1,−5.0, 5.0, the sequence {en} converges to e∗ = 0, which is the
solution of Yosida variational inclusion problem (1). For the composition of a computation table and
convergence graph, we use the tools of MATLAB 2015a.

No. of Iterations for the initial value e
0
= -5.0, 1.0, 5.0

0 5 10 15 20 25 30

e
n
+

1

-5

-4

-3

-2

-1

0

1

2

3

4

5

e
0
=1.0

e
0
=5.0

e
0
=-5.0

Figure 1. Graphical representation of convergence of sequence {en} with different initial values
e0 = 1,−5.0 and 5.0.
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Table 1. Computation outputs for different initial values e0 = 1,−5.0 and 5.0.

No. of e0 = 1.0 No. of e0 = −5.0 No. of e0 = 5.0
Iterations en Iterations en Iterations en

1 0.5917 1 −2.9586 1 2.9586

2 0.1448 2 −0.7239 2 0.7239

3 0.0466 3 −0.2332 3 0.2332

4 0.0244 4 −0.1220 4 0.1220

5 0.0156 5 −0.0781 5 0.0781

15 0.0018 15 0.0000 15 0.0000

20 0.0010 20 0.0000 20 0.0000

25 6.4947×10−04 25 0.0000 25 0.0000

26 6.0032×10−04 26 0.0000 26 0.0000

27 5.5651×10−04 27 0.0000 27 0.0000

28 5.1730×10−04 28 0.0000 28 0.0000

29 4.8207×10−04 29 0.0000 29 0.0000

30 4.1327×10−04 30 0.0000 30 0.0000

6. Conclusions

In this paper, we have considered and studied a Yosida variational inclusion problem
with its corresponding Yosida resolvent equation problem. Using the resolvent operator
technique, it is shown that both the problems are equivalent under appropriate conditions.
We mention the number of iterative schemes for solving both the problems. We concen-
trate our study on the convergence analysis of both the problems applying an inertial
extrapolation scheme. For illustration, an example is constructed.

One can extend our results in higher-dimensional spaces. Engineers, physicists and
other scientists may use our result for their practical purposes.
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