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Abstract: Highly efficient designs and uniform designs are widely applied in many fields because of
their good properties. The purpose of this paper is to study the issue of design efficiency for asym-
metric minimum projection uniform designs. Based on the centered L, discrepancy, the uniformity
of the designs with mixed levels is defined, which is used to measure the projection uniformity of
the designs. The analytical relationship between the uniformity pattern and the design efficiency
is established for mixed-level orthogonal arrays with a strength of two. Moreover, a tight lower
bound of the uniformity pattern is presented. The research is relevant in the field of experimental
design by providing a theoretical basis for constructing the minimum number of projection uniform
designs with a high design efficiency under a certain condition. These conclusions are verified by
some numerical examples, which illustrate the theoretical results obtained in this paper.
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1. Introduction

The uniform designs proposed in [1,2] have been widely used in physical and com-
puter experiments. It requires design points that are uniformly scattered over the experi-
mental domain. Generally, the overall uniformity of the design is often considered, and
the projection uniformity of the design in low dimensions is ignored. By the effect sparsity
principle, the number of relatively important factors is small in an experiment, so it is
necessary to study the projection uniformity of the designs. The authors of [3] first defined
the projection discrepancy pattern to measure the projection uniformity of designs based
on discrete discrepancy. The authors of [4] proposed the minimum projection uniformity
criterion under the centered L, discrepancy to measure the projection uniformity of de-
signs with two levels and established the relationship between the generalized minimum
aberration criterion [5] and the orthogonality criterion [6]. Similar conclusions are obtained
for multi-level and mixed-level ones [7-10]. These theoretical results show that the mini-
mum projection uniformity criterion is equivalent to some other design screening criteria,
which provides a theoretical basis for the statistical rationality of the projection uniformity
of designs.

According to the maximum estimation capacity of the designs, the design efficiency
criterion is proposed, which concerns models included the general mean, i.e., all of the
main effects and a selection of two-factor interactions (for more information, one can refer
to [11]). Design efficiency criterion are closely associated with minimum aberration or
generalized minimum aberration criteria [11-13]. The authors of [14] studied the design
efficiency of minimum projection uniform designs with two levels, which shows that the
minimum projection uniformity criterion is equivalent to the design efficiency criterion
under a certain condition. The authors of [15] transformed the designs in [14] into g-
level designs.
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This paper aims at transforming the designs in [15] into mixed-level designs. The
relationship between the uniformity pattern, generalized wordlength pattern and design ef-
ficiency is established, and the design efficiency of the minimum projection uniform designs
are discussed. This paper is organized as follows: Section 2 presents some basic concepts
and notations. Section 3 discusses the design efficiency of mixed-level minimum projec-
tion uniform designs. Section 4 provides a tight, lower bound uniformity pattern. Some
illustrate examples are presented in Section 5. Section 6 presents some concluding remarks.

2. Notations and Preliminaries

Let U (n;q7" % q3°) be a set of n-run, s(= s1 + s5)-factor U-type designs with g, levels
from {0,1,...,q, — 1}, p = 1,2. For any design of d € U (n;4}! x q3?), design d is called an
orthogonal array with the strength ¢ if all of the possible level combinations of any t columns
in a design d occur an equal number of times, denoted as OA (n; ;' x ¢32,t). The U-type
designs are an orthogonal array with a strength of one. A typical treatment combination

of a design d is defined by z = (z(1),z(?)), where z(P) = (zgp), .. ,zgf)) ,0< z](.p) <gp-1,
1<j<sp. Let F(), F2) and F, respectively, be the sets of all the (1) = qil,f(z) = g;? and
f = 43" x g3 treatment combinations that are lexicographically ordered.

2.1. Generalized Minimum Aberration Criterion

For any design of d € U(n;q}' x g2), v1 = 0,...,51, v2 = 0,...,5), the distance
distribution of 4 is defined by

Coyo, (d) :%|{(i,k) Ay (i, kW) = 01, dy (i, k@) = 0y,
i=(M,i?), k= kY, k?) are two rows of d}|, 1)

where dp (i, k) is the Hamming distance between the i-th and k-th rows (the number of
places where they differ), and |{(7, k) }| is the cardinality of the set {(i,k)}. 0 = s — dp (i, k)
is the coincidence number between two rows i and k.

The MacWilliams transforms of the distance distribution are

1 51 52

Ajjp(d) = . Yo Y Py (v1551,91) Py (02:52,92) Copo, (), 2)

01 =0 02:0

for0 < j1 <spand 0 < jp < sp, where P (vp;5p,qp) = Z]rio(_l)r(‘h) - 1)J'p*r(;{;,)(s};p—_z;p)
is the Krawtchouk polynomial, p = 1,2. For 0 < j < 51 + sp, it is defined as

Aj(d) = 2 'Afl]'z(d)r 3)
nt+p=j

the vector (A1(d),..., As,+s,(d)) is called the generalized wordlength pattern (GWLP).
For two designs, di and d, € U(n;q;" X q3*), let r be the smallest integer that makes
Ar(dr) < Ai(dy), 1 <r <s1+sp and A]-(dl) = A]-(dz) forj=1,...,r — 1, this shows that
design d; has fewer aberrations than design d, has. In any design at the same scale, no
design has fewer aberrations than d; has; design d; has a generalized minimum aberration
(GMA) (for more information, one can refer to [5]).

2.2. Orthogonality Criterion

For z € F, let y4(z) be number of treatment combinations z ind € U (n; 47" % 43*). For
zM e FW), let y;(zM) be a f?) x 1 vector with elements 4(z(1), z(2)) for all of the elements
z(?) ¢ F@ arranged in lexicographic order. Let y; be a f x 1 vector with elements y,(z)
arranged in lexicographic order.

We denote 1, as a v x 1 vector with all of the elements in unity and I, as a v X v iden-
tity matrix, J, = 1,1}, while the s-fold Kronecker products of 1y, I, and J, are denoted by
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18, 1 and ], respectively. For p = 1,2, EP)(0) = q; ', EP(1) = I, — g,y
L) =17, 1P (1) = I, let OF) = {x?) = ("), xD), 6P € 0,1}, =1,....5,},
WP (xP)) = E(p)(xgp)) ® - ® E(P)(ng,’)), HP) (xP)) = L(p)(xY’)) ® - ® L(p)(xgg)),
where ® is the Kronecker product. Let Q) = {x = (xM,x@) . M) € ), x2) ¢ Q(Z)}

and the members of Q) be lexicographically ordered, and the size of Q is 2(1+52), For
j1=0,...,51,j2=0,...,8,let O; ;, be the subset of () consisting of those binary (s1 + s2)-
tuples, which has j; ones in x(!) and j, ones in x(2). We define the f x f matrix as
W(x) = W (xM) @ W@ (x2)). For j, + j, = j, we define it as

Bi,jp(d) = Y. yiW(x)ya, 0 <j1 <s1,0 < jo <3, (j1,j2) # (0,0), 4)
xeQy j,
= ), Bip(), j=1. (5)
hti=j

In [6], the vector (B1(d),..., Bs(d)) is called the B vector. The difference between d
and the orthogonal array with strength ¢ can be measured by Z§:1 B;(d). The orthogonality
criterion is to sequentially minimize (B;(d), ..., Bs(d)).

2.3. Projection-Centered Ly Discrepancy

Forg =1,...,s,wedefineitas J, = {(g1,82) : 81 =0,...,51,82=0,...,52,81 + & = &}
Forany (81,82) € Jg,5 = s1+ 52, let Ig o = {(u1,u2) sy € {1,...,51},up € {s1+1,...,5},
lur| = g1, |ua| = g2}, Iy = U(g1,82) €] Lsrgo- For any design of d € U (n; 47! x q;2), we define
itas u = {(u3 Uuy),|u| = |ui| + |uz| = g} and let d,, denote the projection designs of d
onto u. In [16], the projection-centered L, discrepancy of design d onto u is denoted by
CD,(d), whose square value can be computed by

o (1B 2 2 L At g () )
(CDu(d)] :(12 nZHHzx( N+ 5L YT A), ©
i=1p=1j=1 i=1k=1p=1j=1
here ) — ZH fived i and alx®) — 14 1x® 1] _ 1] _1]?
where x;;" = W or any fixed i an oc(x ) = 1+4;|x; —jl—jxij -3l
() (p) (p)
:B(xijp’xk?> 1+%x ’+2‘xk] _7’_% ij _xk] ’

2.4. Design Efficiency Criterion

For any design of d € U (n;4}' x q32), under the effect sparsity principle, the three-
or more factor interactions are ignored, and only the main effects and some two-factor
interactions are considered. Let C(h) be the collection of all of the sets of h two-factor

interactions, 1 < h < H, H = S(Sz_ U Forcec (h), M(c) denotes the model composed
of only the general mean, all of the main effects and the / two-factor interactions in
¢; X(c) is the model matrix under M(c). The D-criterion aims at maximizing the deter-
minant of the matrix{X'(c)X(c)} (i.e., det{X'(c)X(c)}). If one wishes to include h two-
factor interactions in the model, but they have no prior knowledge on which / should
be included, then it makes sense to consider the average of det{X'(c)X(c)} over all of
c € C(h). However, it is difficult to handle the D-criterion algebraically, and the minimiza-

tion of trace of {X’(C)X(c)}2 (i-e., tr[{X(c)’X(c)}z]) is a good surrogate for the maximiza-
tion of det{X'(c)X(c)}. In [11], it is defined as

1
B=(y) I olxoxop

ceC(h)
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the design efficiency criterion aims at studying designs that keep Ej, small for each h, espe-
cially for smaller values of /i, which are more relevant under the effect sparsity principle.

3. Design Efficiency of Mixed g1- and g2-Level Minimum Projection Uniform Designs

In this section, the design efficiency of mixed g;- and gz-level minimum projection
uniform designs is discussed under the centered L, discrepancy.

For any design of d € U (n;q}' x ¢3*), when all of the possible permutations for
each factor of a design d are considered, we can obtain (g1!)* X (g2!)*? combinatorially
isomorphic designs, and the set of these designs is denoted as F(d). Similarly, we denote
F(dy) as the set of the projection designs d,, of (41!)°! X (g2!)"2 combinatorially isomorphic
designs. The average-centered L, discrepancy value of all of the designs in F(d,,) is denoted
by [CDy(d)]?, which is

1

[CDU(DP? = o775
CD)F = e e dy, €T (d)

[CDw(d)]?. @)
The relationship between [CD,(d)]? and the distance distribution Cj, ;, (d,) is presented
in the following lemma.

Lemma 1. Forany designd € U(n;qy' x q32), u € Iy, 1 < g(= g1+ §2) < s. Then
(i) when g is odd, g, is even,

g 2 81 2 82 2 81 0
DM@ :(13> 1341 269, +1\" 1 (1541 —3 (5>
12 1242 2443 n\ 1242 4

1 & 13512 — 21 — 3>h 13g, — 2 J2
DI ( ) Cij (), ®)
j1=0 12—0< 1541 -3 154 e

(ii) when qq and qy are odd,

_ g 132 —1\* (132 =1\ % 1502 — 3\ (1542 — 3\ ¥
[CD,(d)]2 :(13) _9 q1 . 3q5 . + 1 q1 . 595 . 3
12 1242 1242 n\ 1242 1242

iR 13q%—2q1—3)]l<13q§—2q2—3>]2
X Cii (du)/ (9)
jgo on( 1547 -3 1543 -3 "

(iii) when gy and g, are even,
—— (13\8 (2682 +1\" (262 +1\" 1/5\¢
CD,(d))2=(—=) -2 1 2 ()
[CDu(d) <12> < 2442 ) 2443 Tu\a

81 &2 13q1 — 2>f1 (13172 _ z)fz
X Ci i, (dy). (10)
j§0j§o< 15q: 1542 e ()
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Proof of Lemma 1. Similar to the proof of Theorem 3.1 in [17], is found (i) when ¢; is odd
and g, is even, and we have

TN (132 =1\ (262 1)
Y. [CDu(d)]? =(q11)8" x (g2!)8 [(12) _2< 15q% ) < 2211% )

dy, € F(dy)
(@9 x (g2 (133 — 29, - 3) ¥ <1sqz —z>g2 5
n? 1242 124, =

1

2 5! 52
% 15q1 -3 ( 15q2 ) ik
1342 —2¢; — 3 13q, -2/

Combined with the definitions of 5};, Co, 0, (dy) and (7), (8) proves (ii) and (iii), which
are are similar to (i). O

When design d is an OA(n; 4] x g53,t), foru € Iyand 1 < g(= g1+ g2) < t, all

of the possible g§' x g3’-level combinations of the projection design d, occur equally,

often in any of the g columns. With row i, = (il(ll), il(lz)) € d,, it is easy to obtain that

i) = d (i K) = 00, d33 (1, k) = 2,k € d}| = (§) () MU 222

(% qfl qu
(i) when g7 is odd, g3 is even, and the third term of (8) can be expressed as

1542 — & &2 81 8 (1342 — 24, — h _ 2
1( 503 23> <Z) § Z( 31— 20 3) (13;;; 2) C, ()
n\  12q3 i=0j=0\ 15913 q2
_ 1<15q%—3>g1<5)g2 3 <1sq%—2q1—3>“<13q2—2>f2
n\ 1242 4) =i 1543 —3 1542
" (81) (82> (g1 — 1) (g2 — 1)"
) \p2 9i'a5

(13 -1\* (133 +2\*
C\ 12q g3 )"

so, (8) can be abbreviated as

——— (13\¢ (13 -1\" (2653 +1\¥ (132 -1\ (1353 +2)\*
[CDu(d)]2 = () _ o b7 . ‘Iszf L (D _ ‘72J2f ' (11)
12 124 2442 1243 1242
Similarly for (ii), when g1 and g, are odd, (9) can be abbreviated as
—— 13\¢ (13 -1\ (1383 -1\¥ | (1353 -1\* (133 -1\*
COuDE={1;) 2| T2p 124 g 123 ) (12
71 12 71 12
(ii) when g7 and g, are even, (10) can be abbreviated as
——— (13\¢ (262 +1\*" (2653 +1\* (132 +2\* (1353 +2)\*
[CDu(d)]> = () —2 7 2 L]z‘; - i 2 qz—; : (13)
12 242 2442 1243 1242

The following definition provides the uniformity pattern of design 4 under the cen-
tered L, discrepancy.
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Definition 1. For any designd € U (n;q7' x q2), u € I, 1 < g(= g1+ g2) <5,
(1) when g is odd, q; is even,

- - ¢ ' g1 2 82
MIg(d) = ) [CDu(d)]? — } l(g)g_2<l3$q§ 1) (26;2%1)

u€ly 81=0
L (1341 g +2\%
g ) (g ) |
(ii) when qq and q; are odd,
—_— & [\ (g -1\ (133 -1\"
MIg@) = Y [CD () - . [(12> —z< 1 ) 2
u€ly g1=0 q1 92
(131 g -1\"
12q7 1293 '
(iii) while when qq and g are even,

- s 8 2 ¢ 5 v
MIg(d) =}, [CDu(d)]> = }_ l(i) _2<26§iq?> (265217;1)

uGIg g1:0

L (1343 +2 g +2\%
og ) \Tug ) |
The vector (MI1(d), ..., MIs(d)) is called the uniformity pattern of design d.

According to Definition 1 and (11), (12) and (13), the following theorem can be ob-
tained.

Theorem 1. For a design d € U (n;q7" % q3*), if and only if MI,(d) = 0 forv =1,...,t, and

MI;41(d) > 0, design d is an OA(n; g} x g2, t).

Theorem 1 indicates that there is a close relationship between MI,(d) of design d
and an orthogonal array with a strength of ¢, which is to say that the closer MI;(d) is to 0,
then the closer the projection design is to the orthogonal arrays with a strength of ¢. It is
shown that when the average-centered L, discrepancy of the projection designs is small,
the orthogonality of the projection designs is also good. From the projection uniformity
point of view, the uniformity pattern MI,(d) may be used as a measure used to evaluate
and compare the designs.

The definition of the minimum projection uniformity criterion is given below.

S1

Definition 2. For two designs dy and dy in U (n; q7' x q32), let R be the smallest integer that
makes MIg (d1) # MIg(d2), and MI¢(dy) = MlIg(dp) for g = 1,..., R — 1, and then dy has
better projection uniformity than dp dies if MIg(d1) < MIg(dy). In any design of the same
scale, no other design = has better projection uniformity than design dy does; design dy is called the
minimum projection uniform design.

The following theorem builds a relationship between MI¢(d) and Aj,;, (d).
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Theorem 2. For any designd € U (n;q x q3), u € I, 1 < g(= g1+ g2) < 's. Then
(1) when g is odd, q; is even,

h (d):i 1322 -1\ (132 + 2\ ¥ y (22 "o +2\"
8 S\ 1242 1243 GTen \ 1303 = 1) \ 1343 +2

st—h\(S2—J2
X A (d), 14
(Sl —81) (Sz —gz> ]1]2( ) (19
A(d) = i 133 -1\* [ 13342\ y (- g \"( g \
§ g\ 21 +2 22+2 ) =g\ 1B -1 1343 42
st—=h\[(S2—R\w 3
) <51 - 31) (Sz - 82) Mz @ 1)

(ii) when qq and g, are odd,

ML) = i 132 -1\ (132 =1\ ¥ y (202 " og42\?
8 ~\ 1242 1243 GuTen \ 1307 1) \ 1343 —1

s1—J1\ (%2 )2
o S B a
AL(d) = i (_13q{—1>g1 <_13q§—1>g2 y <_ 122 )h <_ 1242 )h
§ g\ 21 +2 2242 ) S\ 131 -1 13¢5 -1
st=h\[(S2—R\w
- (Sl - 81) (sz - gz) My (@), 17

(iii) while when g and g are even,

I (d)—i 1372 +2\* (1353 +2\* y (22 "2 42)"
g oS\ 1243 1243 o Ten \ 1307 +2 1363 +2

1.72)

: (: - §1> <522 - 2) A (@) (18)
-y <—136’%+2>g1 (_13¢1§+2>g2 3 (_ 1243 )h (_ 1243 )jZ
g0\ 22 2242 ) Sen\ 1341 +2 1343 +2

: (ssll - éﬁ) <§22 - QMI“(‘” 19)

where. N = {(ji,j2):1=0,...,8,2=0,...,8,(1,2) # (0,0)}, MIL(d) =

Y Ml (d).
1tj2=j
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Proof of Theorem 2. (i) when g1 is odd, g is even,

X ' g1 2 82
@ - pieoar- £ F |(3) -2(%h) (%5

uelg g1:OuEIglg2
81 82
N 1342 -1 1343 +2
12q7 1243
B i > [ <13q§1)gl<13q§+2>g2+1<15q§3>gl<5>gz % %
g1=0 uelglg2 12"7% 12‘7% n 12"7% 4 v1=00,=0
132 —2q1 -3\ [13g0 — 2\ ©
X( 1542 -3 ) ( 150 ) Cvlz’Z(d”)]

81
if we combine Cy, o, (dy) = n(qll)gl (%)gz ZO 20 Py, (j1;81,91) Po, (j2; §2,92) A jija (dy) with
1=072

)3 Afljz (du) = (:::éll)(:zziézz)Ajlfz(d)/

”618182
VLT = i y [ (13q{—1>g1<13q§+2>82+(13q%—1>g1<13q§+2>g2
g GoucT 1243 1243 1243 1243
182 (2142 4 2q +2 &
x Z Z 13 2 -1 13 2+2 A]l]z(d”)
j1=0jp=0 q1 q3
B i (13>q%—1>g1 (13q§+2>82 > < 241 +2 )“ < 245 +2 )’2
oo\ 1243 1243 (men \ 1347 — 1 1343 +2
st—=ji\(S2—J2\ ,
) (51 - gl) (52 - 82) Am(d)’

(14) remains the same and (15) can be obtained using simple algebra from (14) and mathe-
matical induction; the proofs of (ii) and (iii) are similar to (i), so Theorem 2 is proved. [J

When g1 = g2 = ¢ in Theorem 2, the following corollary is obtained, which is
consistent with the conclusion in [15].

Corollary 1. For any designd € U(n;q°), u € I, 1 < g <'s. Then

when q is odd,
132 -1\* &/ 29+2 s—i
Mig(d) = ( 12¢2 ) 1_21<13q —1> (s—g Aild),

- () ) (e

i=1

when q is even,

(B2 & 2g42 \ (s—i)
@ - (S ) Llwers) (o)
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L 1P +2\EE 122 \'[s—i\r
w0 =(-377) Bl meta) (i@

In order to discuss the design efficiency of minimum projection uniform designs, the

relationship between MIy(d) and B;,j, (d) is firstly presented in the following lemma.

Lemma 2. Forany designd € U(n;q3' X q3), u € Io, 1 < g(= g1+ g2) < s. Then
(1) when g1 is odd, q; is even,

g 8 j
Mjg(d):qsilxq;z i <13‘ﬁ—1> ]<134%+2> i <ZQ1+2>1
7 7 7 )y 7
mog=o\ 1201 25 ) en \ 130~ 1

200 +2 \ (s1—j1\ (52—
2 1= /1 27— )2

B . (d), 20
) (13f1%+2> (Sl—gl) <Sz—g2) (@) @0)

2 g 1342 — 1 81 1302 &2 82 2 1
Be(d) = ). (_ th 2) _ 23qz +2 v (- 1%41
ql X qz glzo ql + q2 + (j]/j2)EN 13q1 — 1

121]2 2 S1 — jl Sy — jz —_—
A rr— ( B ) ( B )Mlhjz(d), (21)
13g5 +2 51— 81/ \52 — &2

(ii) when qq and qy are odd,

g & (132 -1\ (133 -1\ 27 +2 )"
Ml (d) = 2 )y 2 2 D 2 _
n 1247 1245 (i 137 —1

§1=0 1.j2)EN
&2 . .
297 +2 51—]1)<52—]2>
B (d), 22
g (13’7%—1> (Sl—gl 52— %2 1 () 22)
L (_13q%—1>g1<_13q§—1>g2 3 22 \"
¢ gy x g5 a0\ 2q1+2 24242 ()N 133 -1
122 J2 o i o N
o[- 2‘72 ( 1_ ]1)( 2_ ]2>M1j1j2(d)/ 23
13q5 -1 s1—81) \S2 — &

(iii) while when qq and g are even,

8 8 j
W:tﬁxq? i(mﬁu) 1(13q§+2> ’ 5 <2q1—|—2>1
n* A=\ 1247 1243 (LeN 1343 +2

Zq +2 &2 6 i 6 i
o 22 ( 1_]1)( 2_]2>Bj1j2(d), 4
1395 +2 51— 81/ \82 — &2

B = 3 ( 13q§+2>g1< 13q§+2>g2 > < 124 )h
) ="y (- _ _
X437 =\ 20 +2 2242 ) asen\ 1341 +2
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12 2 2 PN 5y — i -
O i ( 1 h)( 2 JZ)MIjljz(d). (25)
13q5 +2 51— 81/ \52 — &2
Proof of Lemma 2. In [18], B;,(d) = LA]1 j»(d), and if we combine it with Theorem

q1 X4z
2, Lemma 2 is proved. [

When design d is an OA (n; qy' x g32,2), foranyh =1,...,H, H = 5(52_1), 1<j<k<
I < s, we have the relationships between design efficiency E; and B3(d), B4(d) in the B
vector and the related quantities B(jkI) in [11].

Ba(d >+f;11(34<d>—233<d>+§ D (qj+qk+qz>B<jkz>)], (26)

FKIEA(3)

E; =c"+6f

where c* is a constant that may depend on 1, s, 41,42 and h. g;, g, and g, are the levels of
the jth, kth and Ith factors in design d, respectively. f = g} x 3%, B3(d) = Ljiea(s) B(jkI),
B(jkl) = y W (x(jkl))y4, x(jkl) is the binary s-tuple that has ones in the jth, kth and Ith
levels and zeros elsewhere, while A(3) is the set of all of the ordered triplets j, k and I.

The following theorem builds a relationship between Ej;, B(jkl) and MI; ;, MI; ; (d), where
j1+j2 =34

Theorem 3. Let design d be an OA (n; q7' x q32,2). Then
(1) when g1 is odd, q; is even,
h—1

- h—1 h—1 ,
Ep=c +6n2[(1—2H_1>z1+ H_122:| +2fH7_jkIEZA(3)(qj—l—qk—l-ql)B(]kl), (27)

(i) when qq and g, are odd,

E;:c*+6n2[(121};_

h—1 h—1 )
et pra| F ey T ek a) Bk, @8)

JKIEA(3)
(iii) while when gy and g are even,
L h—1 h—1 h—1 ,
Ej =c* +6n° [(1 — 25— 1>z5 + g 126} +2f g L. (4 +a+a)B(K), (29)
jkleA(3)
where
21695 ——— 2164745 MTold)
3 Mlos(d) + My (d)

Z1 = 2Z3 = 2Z5 =

(q2+1)3 (g1 +1)(q2 +1)?
216’71’72 16‘11
1P, 71 M@ + 7 T M@,
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129695 ——— 129645 ——— 12964395  ———— 12964143
7y =2 Mgy (d) + — 2 MIyo(d) + —— 2 MIj3(d) + ——— A2
R T T ) i R TR Ve
S 12964893  ———— [ 140445 + 21645 14044245 — 10845
X M (d) 4+ ——— 1112 Ay — /2 T~ 2, gy 1112 TR
20 G " T Tyt T Gy
— [ 14044345 + 2164%q% 140444 4% — 1084243 S
MIna(d) — 112 112 ) 112 112 1) | ML, (d
@ ( D 1p 22 g e 1D M@

14044143 + 2164143 14044743 — 108493 =
- < Gt D@12 2 )T g ey o) M)

14044542 + 2164° 140448 — 1084° -
_ q1q23+ q] S ql - ql (Sl _ 3) MI3O(d)/
(1 +1)3(q2+1) (1 +1)
129695 ——— 129645 — —— 12964345 12964143
24 =——2 Mgy (d) + ——L MIy(d) + ————112 ML (d)+ ——— 12
= g1y () g e MI() 1y e MBs) ag, w1y
N 12964%¢5  ———— 140448 — 10849 14044245 — 10845
X MIpp(d) + —— 22— My (d) — | — 22— 2(5p-3)+ — 22—
2O G P 0 T Tt T G @
— (14044245 — 1084243 14044443 — 1084243 —
Mgz (d) — 112 112 (5, — 2 112 112 50 —1) | MIn(d
(@) <<%+1mn+n3(2 g+ Vg 12 1) MBa(@)

140441435 — 1084143 14044543 — 1084143 —
- 2 2 (52 - 1) 3 (sl - 2) Ml (d)
(1 +1)%(q2+1) (1 +1)3(q2+1)

B (1404q§q§ — 10845 140445 — 1084° (51— 3))1\/1130@1)

G+ )2 (g 1)

129605 ——— 129648 — 12964395 ——— 129643143
26 =——2:Mlpg(d) + —— - Mlyg(d) + ———— 2 Mh3(d) + —— 52—
© =g+ pp D M@ G g MR G g 1
I 12964543 140445 + 21645 14044245 + 21645
X My (d) + ————= 12 My (d) — | —2—2(sp —3) + — L2 -~ T2
20 G T Tyt T G
— (14044345 + 2164245 14044145 + 2164245 S
Mlps(d) — -2)+ —1) | M (d
(@ ( D 1p 272 g ez 1D M@

14044143 + 21647143 14044543 + 216443 -
@01 2T g ey Y ) M@

- <1404q§q§ +21645 140445 + 21645 (51— 3)> MIg(d).

G+ +)2 T (1)

Proof of Theorem 3. The proof of Theorem 3 is obtained by combining Lemma 2 and
(26). O

Theorem 3 shows that the design efficiency of an orthogonal array with a strength
of two depends on MI; ,(d), where ji +j» = 3,4. In particular, when design d is an
OA(n;q7' x q32,3),

Ml ;,(d) = 0, for j1 + jo = 3, we can obtain the following corollary.

Corollary 2. Let design d be an OA(n; 3! x q32,3). Then
(1) when qq is odd, q; is even,

h_
Zy

EZ:C*+67’12|:H_1 >k:|/
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n
)y
i=1

n

k(£i)=1

(ii) when qq and gy are odd,

h—
Ef = c*+6n2{H_1ZZ},
(iii) while when g and g are even,

h—1
E;—c*+6n2{H_1zg},

where z3, z and z; are zp, z4 and z¢, which satisfy M1; ;,(d) = 0 (j1 + jo = 3) in Theorem 3.

Corollary 2 indicates that for an orthogonal array with a strength of three, the MPU
criterion is completely equivalent to the design efficiency criterion.

4. A Lower Bound of Uniformity Pattern

This section gives a lower bound of the uniformity pattern in Definition 1; the lower
bound provides a basis for measuring the uniformity of the projection designs. Two lemmas
are given below, which are important to obtain the lower bound of the uniformity pattern.

Lemma 3. For any designd € U (n;q7' x q3), u € Ip, 1 < g(= g1+ g2) < s, we have
(i) when g is odd, q; is even,

Yoy = Mras gy e 28
i ’ i 4

i=1 k(#0)=1 1 i=1 k(#0)=1 12

n n 1502 — _ _

I I B R P L
i=1 k(£1)=1 1391 =241 -3 M 13q2 — 2 q2

(ii) when qq and q are odd,

15¢% — 3 — 15q3 — —
)y <Pf;<=1n< d )n(n ql)g1+ln< o —3 )n(n q2)g2éVii,

1392 —2q1 — 3 7 1393 — 2q, — 3 72

(iii) while when qq and g, are even,

nooon 1541 ) n(n—q1)g1 < 154, ) n(n—q2)g2 a
i; k(g:1 Pik 1391 —2 71 13g, — 2 7 iii

Lemma 3 is obvious, so the proof is omitted.

Lemma 4 ([19]). Let ay,az,...,a4, b1, by, ..., by be two sets of non-negative real numbers
and satisfy Y ya; = r1, Y1 bj = rp. Fori = 1,2,...,n, let I; = Aa; + Bb;, and ¢’ =
Ar1 + Bry, where A > 0,B > 0. Denote F(l),. . 1"(1») as the ordered arrangements of the distinct
possible values of I', ..., Ty, where 1 < i < n. For any integer v,

M-

F;', 2 PF;(’U) + Qr'(‘v+1)’

i=1

where v is the largest integer, such that T () < ¢'/n < T (,.q), P and Q are non-negative integers,
such that P+ Q = n and PT () + QT (,4q) = ¢'.

A lower bound of the uniformity pattern MIg(d) of design d is given in the
following lemma.
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Lemma 5. For any designd € U(n;q7' x q3*), u € Iy, 1 < g(= g1+ g2) < s, we have
M (d) > LBy (Mlg(d)>,
(i) when g1 is odd, q; is even,

1362 —2q1 —3\*' /13g, — 2\ &
LBl(MIg ) n2 Z L ( 1243 ( 124, )

81= =0 “61?182

x [Pl 4 Queftun | 4, (30)

where my is the largest integer, such that 4)'(‘ S % < 4)'(‘ 1) Py and Q, are non-
negative real numbers, such that P, + Q, = n(n — 1) and Pugpyy + Quiliy, 11y = Vi

2
—ye [1(103 gl(g)gzi 13021\ (13342 \*?] .
i 1=0 | n \ 1242 4 1243 123 ’

(ii) when qq and qy are odd,

1302 — 291 — 3\ 5" (1302 — 20, — 3\ ¥
(V@) = Y ¥ (B0 o r
12g3 12q;

Q9= Ouelglg2

. [Pueq)(’"“) + Quetp’(m”“)] + ciif (31)

where my is the largest integer, such that 4)’(‘ S % < 4)'(‘ 1) Py and Q, are non-
negative real numbers, such that P, + Q, = n(n —1) and Puqb + Quq) (ma+1) = Vi

=y |1 1523\ (15235 (1321 \® [13¢2-1\**].
" §1=0 | n\ 1242 1243 1242 1243 ’

(iii) when qq and q; are even,

131 — 2\ & (13q, — 2\ ®
LBl<MIg ) 2 Z Z < 124 ) ( 129, >

1= 014EI§,1(2

X {Pue(l)(”l“) + Qufﬁ'l"ﬂ)} + ciiis (32)

negative real numbers, such that P, + Q, = n(n —1) and Pu(p )+ Qucp (mat1) = Viiis

i =18 [1(3)5 - 13242\ & (138342 \ %
m g1=0| n\4 1243 1243 ‘

Proof of Lemma 5. (i) when g7 is odd, ¢, is even, and from Definition 1 and Lemma 3,

g 13 132 -1\ (2692 +1\*
MI,(d) = Y [CD,(d)]? — l( ) 2( L 2

¢ ugg ! glzzo ue% % 12 12‘7% 24q%
(131 B 13g2 42\ F

1207% 1293
13q§—2q1—3)gl<13q22)g2 noom
it Y ¥ y oy o

" zgl Ouelglg2< 121]% 124, i

132 —2q1 —3\¥ (13g, —2\2 L L [ & (on)!
=+ 22 Z( lqu%l ) < 15112 ) Z Z 2 t]!< ’

§1=0u€lpq,

where my, is the largest integer, such that 4)” < % < (])“m +1)y P, and Q, are non-
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and by Lemma 4,

S 1 & 1342 — 2, —3\*' /134, — 2\ &2 o
> 04— (mu) mu 1)
Mlg(d) > ¢+ — ) ( o ( 120, > [Pu + Quellmi+ }

g1=0u€lg ¢,
The proofs of (ii) and (iii) are similar to (i), so Lemma 5 is proved. [

Next, another lower bound of the uniformity pattern MI¢(d) is obtained.
Lemma 6. For any designd € U (n;q7" x q3), u € Ip, 1 < g(= g1+ g2) < s, we have

MIg(d) > LBy (MI(d)),

(1) when g is odd, q; is even,

— &1 (g 2q -3\ 1B -2\® & & ) (g
LBy(MI(d)) = =l ( > <1><>
2(MlIg(d)) Z—:o[’ﬂ( 12,1% 124, ]-on;o 1/ \J2

81

[ 2at 2 4 < 2g, +2 )]‘294 (133 -1\ (133 +2)\* )
1343 — 291 — 3 1Bgp—2) 2 1242 1243 ’
(ii) when qq and qy are odd,
&1 (12 —3\* (13229, -3\ & & g1
g1=0 q1 q2 j1=0j,=0 ]2
o Zq% +2q1 n 2q% + 24 ]20 o 13q% -1 & 13q% —1 & (34)
1343 — 291 — 3 13g3 —2q, -3 ) 2 1242 1243 ’

(iii) while when qq and q are even,
g 1 (13g; -2 81 13g, — 2 82 81 &2 g1 9
o) - £ ()" (%5) EEC) ()
) glzzo A\ 120 1202 jlgo jzgo nJ\n
y 2q1 +2 1 2q 42 ]’29' o 1311%4-2 &1 13q%+2 82 5
13q1 — 2 13gp—2) 12 1242 1243 ’

where 6}1]2 = n)\hjz + Hirj (1+Aj1]'2)' Hjrjn = ql quz/\h]z/ /\]'1j2 = \‘n/(qjllq]Zz)J is the

largest integer that is less than or equal to n/ (q]ll q]22>

Proof of Lemma 6. (i) when g7 is odd, g7 is even, let

X1 X - Xig Yiu Yo o Y,
Dél): X1 X -0 Xog ,Déz): You Yo oo Yo ,

thl X‘112 X‘h‘h Yqzl Ythz Yqzqz



Mathematics 2023, 11, 765 15 of 20

(2) . . 1543

. . (1) 5 .
where the diagonal elements in D’ and D,”" are 27 and 7 respectively, and the rest of

134120, -3 1392 - R
T d 125, respectively. ~ We denote D¢’ = ®]-1:1 Dy,

®]2 1 0 ,where

them are
(2

Dy

13171 2q1 — 3L 1
2
1247 641

@ _ 1392721 2) 0y1@0) - 2H 1121y 1@

DV —

Let D = DY) @ DY, so

(1341 - 291 -3 g1(13q2_2)g2 Yoy 243 + 241 L%
1243 124 Lenm xolcne \ 1391 — 241 =3

2)

2q0 +2 \ &Y,
(13q2 - 2) H(x)H(x), (36)

Dy = 138 —21m =3 o (13q22>g2 § §° (220 h
1243 12, a0\ 1371 — 201 -3

2 +2\" ey
(7255) ( Y viH <x>H<x>yd), @)

er] i

for any Yxeqy ), the elements of (q]11 q]22) x 1 vector H(x)y, are non-negative integers with

a sum of n. So, from [18], we have

2
y&H’(X)H(x)yd > A ]1]2 (qjlquZ2 Vflfz) + (/\]'1]2 + 1) Hirja
= nAjljZ + Hjij ()‘fljz + 1)' (38)

So

!

— 3 1 (138 —20 -3\ " (13, — 2\ & o [ 152 -3\
ML(d)=13}, ). 2 1242 124, L)Y 2 3

§1=0u€lgq i1 \ 1891 — 201 —
x( 159 )533— 133 -1\ (1353 +2)*
13g, — 2 1242 1243
_2 LR 132 —1\* (132 +2\¥
P nz 1242 1243

if we combine (37) and (38), (i) is proved, and the proofs of (ii) and (iii) are similar to
(i), so Lemma 6 is proved. [

By combining Lemmas 5 and 6, we can give a more general lower bound of the
uniformity pattern MI,(d) for any design d € U (n; 43 x q32), as follows.
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Theorem 4. For any designd € U (n; g7 x q32), u € Ig, 1 < g(= g1+ g2) < s, we have

Mlg(d) > LB(MIy(d)),

where

LB(MI,(d)) = max{LB1 (Mlg(d)),LBQ(MIg(d))}.

Theorem 4 gives a lower bound of the uniformity pattern of a design d. The lower
bound can be used to measure the uniformity of the projection designs.

5. Numerical Examples

In this section, some numerical examples are provided to illustrate our theoretical
results.

Example 1. Consider the two designs dy and dy, which are OA(18;3° x 2,2) as follows. By
calculating the degrees of freedom, when the model contains four or more two-factor interactions,
the matrix X(c)'X(c) is singular. Hence, we consider E;, h = 1,2,3. Using (3), (5), (27) and
Definition 1, the GWLP, the B vector, the design efficiency and the uniformity pattern of di and dy
are obtained, and specific numerical results are listed in Table 1.

dy =

O O O O OO
O R = = OO
SN PPk O RO
O NNDNDNO -
O RLr NODNRF
OO R, NN -
S OPNRFR LN
S, O N, DN
ONO R, DNDN
R ODNDNRF~RO
NN~ DNO
_ = O NDNO
[ o R o RS S, R Y
R NO O
e e
_ R, N ON
R N = DNONRN
— O, ONDN

@
\
[es R en Bl eo Bl v Bl o B @]
O R PR R ==
OSONNDNDNDNDN
ON R R, OO
OO DNDN R =
O, OO NN
OSONDNO -, O
OO O R, DN -
O, P, NODN
—_ O = NN O
el ==
P NO R, PN
—__ O N RO
—_ N = O N
—_ ON R, ODN
—_ = N =) NO
— NONO =
RO, OFRN

From Table 1, it is shown that d; is better than d; in terms of the GMA, orthogonality,
design efficiency and MPU criteria.

Table 1. Numerical results of Example 1.

dq
Ag (dl) 0 0 8.50000 12 3 2.50000
Bg (dq) 0 0 5.66700 8 2 1.66700
Mlg(dl) 0 0 0.00401 0.01358 0.01531 0.00574
E;; 16,524.97000 19,278.83000 22,032.69000
d>
Ag (d2) 0 0 9 10.50000 4.50000 2
Bg (da) 0 0 6 7.50000 3 1.33300
Mlg(dz) 0 0 0.00478 0.01587 0.01759 0.00650
E;; 17,496 20,122.71000 22,749.43000

Example 2. Considerthe two designs ds and dy, which are orthogonal arrays OA(81;9 x 3%,2)
from http://pietereendebak.nl/oapage/ (accessed on 10 December 2022). Using (3), (5), (28) and
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Definition 1, the GWLP, the B vector, the design efficiency and the uniformity pattern of d3 and dy
are obtained, and specific numerical results are listed in Table 2.

Table 2. Numerical results of Example 2.

d3
Ag(ds) 0 0 4 2 2
By (d3) 0 0 36 18 18
Mlg(d3) 0 0 0.00104 0.00225 0.00122
E; 157,464 201,204 244 944 288,684
dy
Ag(dy) 0 0 8 0 0
Bq(dy) 0 0 72 0 0
Mlg(d4) 0 0 0.00325 0.00701 0.00378
E Z 314,928 349,920 384,912 419,904

From Table 2, it is shown that d3 is better than d, in terms of the GMA, orthogonality,
design efficiency and MPU criteria.

Example 3. Consider the two designs, ds and de, which are OA(16;4 x 2°,2) as follows. Using
(3), (5), (29) and Definition 1, the GWLP, the B vector, the design efficiency and the uniformity
pattern of ds and dg are obtained, and specific numerical results are listed in Table 3 .

-/

0 0 001 11 122222323233
00110011001 10O011
ge — 0011001111001 1TO00
>lo1010101010710101]|"
011 010O0T1TO0T11TT1TTO0OT1TTG0TGO0OT1
L0 110011001 1O0O0T1TT1 0]
00 0011112227233 337
00110011001 1TO0O0T1T1
g = 0011001111001 1TO00
¢ ~“101010101010101°01
0101010110101 O0T1T0O0
10110011001 1O0O0T1TT1 0]
Table 3. Numerical results of Example 3.
ds
Ag(ds) 0 0 3 3 1 0
B (ds) 0 0 6 6 2 0
Ml (ds) 0 0 0.00358 0.01232 0.01416 0.00542
E; 4608 4864
dg
Ag(ds) 0 0 4 3 0 0
Bg (de) 0 0 8 6 0 0
Ml (dg) 0 0 0.00553 0.01900 0.02174 0.00828
E; 6144 6180.57100

From Table 3, it is shown that d5 is better than d¢ in terms of the GMA, orthogonality,
design efficiency and MPU criteria.
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Example 4. Considerthe following designs d; € U (18;3? x 6) and dg € U (20;5 x 23).

/

o
—_
N
o
—_

20
2
1

—_
N
o
[
N
o
—_
N
o
—_
N

dy7 =

o
—_
N
o
—_
—_
N
o
—_
N
o
N
o
—_
N
o
—_

(@)
o
o
[
—_
N
N
N
(O8]
W
6y}
B
i~
i~
a1
6)]
6]

dg =

o O O O
—_ -0 O
—_ = O
O R P -
SO ODN
—_ = 0N
—_ 0 = N
O~ = N
_ 0 O W
o= O W
OO = W
—_ =
— O O
O = O
O O = o
—_ e = s

1
1
0
1

—_ o = O
O = = O
S O O -

By Definition 1 and Theorem 4, the uniformity patterns and lower bounds of d; and
dg are listed in Table 4.

Table 4. Numerical results of Example 4.

g 1 2 3 4
MI, (d7) 0 0 0.00036
LB(MlI,(d7)) 0 0 0.00036
Ml (dg) 0 0 0 0.00016
LB(MI,(ds)) 0 0 0 0.00016

From Table 4, it is obvious that MI(d7) = LB(MIg(dy)) for 1 < g < 3; Ml(dg) =

LB(MI,(dg)), while for 1 < ¢ < 4. Designs d7 and dg are the minimum projection uniform
designs under the centered L, discrepancy.

Example 5. Consider the following designs do € U (9;9 x 3%) and d1g € U (27;9 x 3?).

/

01 23 45 6 7 8

dg=101 201201 2],

01 2220112F£0
000111222333 444555¢6¢6¢67 7788287
dop=|/012012012012012012012012¢012
01212020101212020101212¢0201

By Definition 1 and Theorem 4, the uniformity patterns and their lower bounds of dg
and dj are listed in Table 5.

Table 5. Numerical results of Example 5.

g 1 2 3
M, (dy) 0 0.00609663 0.00699984
LB(MIy(dy)) 0 0.00609663 0.00699984
M, (dyp) 0 0 0.00022580
LB(MIg(dyo)) 0 0 0.00022580

From Table 5, it is obvious that MI(dg) = LB(MIg(ds)), MI(d19) = LB(MIg(d1))
for 1 < g < 3. Designs dg and dyg are the minimum projection uniform designs under the
centered L, discrepancy.
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Example 6. Considerthe following designs di1 € U (8;2% x 4) and dyp € U (12;2% x 6).

!/

o
—_
o
—_
o
—_
o
—_

din =

o O
S =
_ O
—_ =
N =
N O
W =
W o

o o O
[ Ry
o O
—_ =
o O
—_ =
W = O
O =
_ O
O =
g1 = O
g1 O =

d12 =

—_
—_
N
N
w
S~
S~

By Definition 1 and Theorem 4, the uniformity patterns and their lower bounds of dy;
and dq, are listed in Table 6.

Table 6. Numerical results of Example 6.

g 1 2 3
MIg(d11) 0 0 0.0008138
LB(MIg(dq1)) 0 0 0.0008138
MIg(d1p) 0 0 0.0005064
LB(MI;(d12)) 0 0 0.0005064

Table 6 shows that Mlg(dn) =1LB (Mlg(dll)), MIg(dlz) = LB(MIg(dlz)), 1< g <3.
It shows that designs dq1 and dj, are the minimum projection uniform designs under the
centered L, discrepancy.

6. Conclusions

In this paper, the relationship between the projection uniformity and design efficiency
of mixed ¢q1- and g»-level designs is explored under the centered L, discrepancy. The results
show that when the design is an orthogonal array with a strength of three, the projection
uniformity is equivalent to the design efficiency. Furthermore, a tight lower bound of the
uniformity pattern is also obtained, which can serve as a benchmark for measuring the
minimum projection uniform designs.
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