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Abstract: Intent classification is a central component of a Natural Language Understanding (NLU)
pipeline for conversational agents. The quality of such a component depends on the quality of
the training data, however, for many conversational scenarios, the data might be scarce; in these
scenarios, data augmentation techniques are used. Having general data augmentation methods that
can generalize to many datasets is highly desirable. The work presented in this paper is centered
around two main components. First, we explore the influence of various feature vectors on the task of
intent classification using RASA’s text classification capabilities. The second part of this work consists
of a generic method for efficiently augmenting textual corpora using large datasets of unlabeled
data. The proposed method is able to efficiently mine for examples similar to the ones that are
already present in standard, natural language corpora. The experimental results show that using
our corpus augmentation methods enables an increase in text classification accuracy in few-shot
settings. Particularly, the gains in accuracy raise up to 16% when the number of labeled examples is
very low (e.g., two examples). We believe that our method is important for any Natural Language
Processing (NLP) or NLU task in which labeled training data are scarce or expensive to obtain. Lastly,
we give some insights into future work, which aims at combining our proposed method with a
semi-supervised learning approach.

Keywords: intent classification; chatbot; few-shot learning; data augmentation; online clustering;
data projection

MSC: 68T50

1. Introduction

In the present day, conversational agents (or chatbots) are a core component of many
applications, ranging from online reservations to customer support. The quality of the
chatbot replies depends on its ability to accurately understand the user query. To ensure
that, the user intention must be understood. Thus, the chatbot designer has to provide
multiple alternatives on how the user may formulate a query. This is often performed by
specialists and it is a time-consuming task. Automating this process will highly benefit
chatbot designers, reducing iteration time.

In order to obtain chatbot training examples in a semi or fully automated manner,
one could leverage large volumes of unlabeled data available in various online corpora
(e.g., movie subtitles, translation datasets, etc.). The only impediment is that the unlabeled
corpora are usually large enough such that a simple search for semantically similar exam-
ples within them becomes unpractical. As a result, efficient retrieval of similar examples is
highly desirable.

Driven by such motivation, we propose a novel pipeline for efficiently analyzing large,
unlabeled corpora and extracting examples similar to a user-supplied query. We aim to
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minimize the retrieval time while maintaining a high similarity between the query and
the retrieved example. Moreover, we examine how the proposed example retrieval system
improves the intent classification accuracy in several few-shot learning scenarios, where
intent examples are scarce.

As the results of this research will show, our proposed method is highly beneficial in
the few-shot intent classification scenario. In such a setup, the number of labeled examples
is very small (e.g., 2, 3, 5, or 10 examples per class). Using our similar example retrieval
pipeline, we expand the number of examples per class, while increasing the classification
accuracy with significant rates, up to 16%. To our knowledge, at the time of writing this
article, there is no open-source service that can be used to augment textual datasets based
on online clustering of movie conversations. Our method allows relatively quick and cheap
dataset augmentation, making use of only open-source components.

The research questions that guide our research can be summarized as follows:

(Q1)How do existing chatbots perform in terms of intent classification?
(Q2)How can we use unlabeled data to improve the intent detection phase of conversational

agents?
(Q3)How can we efficiently extract meaningful examples from large, unlabeled corpora?
(Q4)To what extent does the proposed system benefit in a few-shot learning scenario?

Our objectives can be stated as follows:

(O1)Analyze current intent classification performance for existing systems to address Q1;
(O2)Process large, unlabeled corpora such that they become suitable for our similarity-

based example retrieval system to address Q2;
(O3)Achieve low example retrieval duration to address Q3;
(O4)Evaluate our example retrieval system in few-shot learning scenarios to address Q4.

The contributions of this work can be summarized as follows:

(C1) An analysis of standard intent detection systems and their performance;
(C2) An efficient, similarity-based retrieval system that is used for augmenting intent

classification datasets;
(C3) An extensive experimental performance analysis of our proposed system in few-shot

learning scenarios using real-world datasets.

The rest of this paper is structured as follows. Section 2 presents previous work done
with respect to intent classification, in both standard and few-shot scenarios. Section 3
shows the general structure of a RASA-based conversational agent. Section 4 describes
the experiments performed on the RASA NLU component, for analyzing Transformer
models’ accuracy in intent classification. Section 5 provides details on the work done for
retrieving similar examples in a large corpus. Section 6 presents the evaluation methods
and the results obtained for corpus clustering. Section 7 discusses our findings and their
implications. Lastly, Section 8 summarizes and concludes our work and hints at possible
future directions.

2. Related Work

The first component of our contribution consists of an analysis of existing Transformer
embedders in the context of intent classification. Balakrishnan et al. [1] provided a similar
analysis for disaster classification in tweets. As their results show, using Transformer-based
embedders is beneficial and increases the accuracy, compared to other embedding options,
e.g., bag-of-words, Word2Vec, GloVe, etc.

As already mentioned, one of the crucial aspects regarding the quality of a chatbot is
related to the datasets that it uses. Related to this, Larson et al. [2] and Casanueva et al. [3]
introduced two datasets for intent classification, namely CLINC150 and BANKING77.
CLINC150 is designed for benchmarking models meant to distinguish in-domain queries
from out-of-domain queries, thus its structure is more complex compared to BANKING77.
CLINC150 queries span 150 intents over 10 different domains, while BANKING77 queries
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span 77 intents over a single domain, namely banking-related operations. In this paper, we
use these two datasets to evaluate the performance of our models.

Another important aspect of a chatbot is the framework used for its development. In
this sense, Liu et al. [4] presented an analysis of several conversational agents designing
frameworks, including RASA. Their study focuses on a dataset created by the authors,
which includes queries belonging to 21 domains, with 64 intents and 54 annotated entity
types. The queries belonging to the mentioned dataset contain tasks that can be given to a
house-cleaning robot. Compared to this dataset, the ones used in this paper contain more
intents, namely 77 for BANKING77 and 150 for CLINC150.

Most of the current literature is centered around two axes: intent identification and
data augmentation. Regarding intent identification, Ahmadvand et al. [5] performed
dialogue act classification in the context of open-domain conversational agents. Unlike
our subject, open-domain dialogue cannot divide the intents into well-defined classes
simply by looking at the current utterance. Consequently, the authors tackled the problem
by incorporating dialogue history information. The information is encoded by including
features from the lexical, syntactic, and system state information layers. The information
is captured through pre-trained Word2Vec embedding vectors. The training procedure is
split across two distinct phases: (1) the dialogue act system is trained on human-to-human
conversations, and (2) the human-to-machine conversations are fine-tuned. Their results,
evaluated on Switchboard data and Alexa Prize data, show that the proposed Context-
aware Dialogue Act Classification system outperforms state-of-the-art models trained on
each dataset.

Zhan et al. [6] designed an out-of-scope (OOS) intent detection method, modeling
the distribution of out-of-scope intents. Their work splits OOS intents into (1) ‘hard’ OOS
intents that are close to the decision boundary, and (2) ‘easy’ intents that are distant from
the in-scope intents. Their research is focused on a rather binary classification task, namely
separating in-scope from out-of-scope intents. Nonetheless, the datasets used for carrying
out the research include BANKING77 and CLINC150, the same as our work does. The
authors tested their models by using only 25%, 50% or 75% of the classes (in three different
setups), while leaving the rest of the classes unseen. The models are subsequently used to
predict whether an example is in-scope or out-of-scope. The best results are obtained in
the 75% seen–25% unseen classes setup, with 88.08% accuracy for CLINC150 and 81.07%
accuracy for BANKING77.

In intent classification, out-of-scope intents can be further divided into two classes [7]:
(1) in-distribution out-of-scope examples (ID-OOS), and (2) out-of-distribution out-of-scope
examples (OOD-OOS). Zhang et al. [7] showed that pre-trained Transformer models (e.g.,
BERT, RoBERTa, etc.) are vulnerable to mispredicting OOD-OOS examples. However,
existing intent classification datasets, such as CLINC150 and BANKING77 do not contain
any ID-OOS data. Particularly, CLINC150 contains an OOS class, but most of the examples
are easily distinguishable from the in-domain ones, thus OOD. Besides the performance
analysis of pre-trained Transformer based models on the OOD-OOS examples, the authors
contributed with two datasets for OOS intent detection. These datasets feature both ID-OOS
and OOD-OOS data.

Liu et al. [8] tackled the problem of intent classification when the number of available
examples per intent is limited. They reconstructed capsule network models (such as
IntentCapsNet [9]) in order to include information regarding the possible polysemy of the
words which contribute to the features of the semantic capsules. Moreover, their proposed
method, IntentCapsNet-ZS, behaves better than previous models with respect to unseen
intents, in the zero-shot setting.

Yan et al. [10] designed a Gaussian Mixture Model (GMM) method for out-of-domain
intent detection. Their research shows that previous intent outlier detection methods project
sentence embeddings into a latent space in which the class (intent) label is the centroid
and all examples are scattered across a long and narrow domain. In such representation,
detecting out-of-scope intents is error-prone. Their proposed method alleviates this problem
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by regularizing the projection space such that the class label remains the centroid, but the
examples are distributed more evenly around it. The output of such a scenario can be paired
with an anomaly detection algorithm in order to separate in-domain intents from unknown
out-of-domain intents. Moreover, the authors demonstrated that their method (SEG—
Semantic-Enhanced Gaussian Mixture Model) can be paired with previously developed
zero-shot intent classification methods (i.e., ReCapsNet [11]), in order to improve their
performance.

In terms of data augmentation, Chatterjee and Sengupta [12] performed a corpus
clustering operation, with the goal of grouping together similar sentences in a corpus, for
manual intent annotation. With their technique, the resulting corpus may be used for manu-
ally augmenting the dataset of any intent classification task. Their intent discovery pipeline
comprises 4 main steps: (1) the extraction of conversation utterances using a pre-trained
dialogue act classifier, (2) grouping together similar utterances, (3) manual labeling of the
clusters, and (4) re-classifying utterances that have not been previously assigned to any
cluster. The experimental results show that a clustering algorithm such as ITER-DBSCAN
performs better than previous methods when it comes to intent coverage. Unlike their work,
our proposed corpus augmentation method does not require any manual intervention of
the designer of the conversational agent. Similarly, Kuchlous and Kadaba [13] performed
intent classification in the context of a therapy and mental wellness-oriented chatbot. Their
dataset is of rather limited size, containing only 4 classes (intents), with approximately
400 examples in total. The authors used this dataset to benchmark several non-neural based
models: Multinomial Naïve Bayes, Logistic Regression, SVM, and Random Forest. Due to
the limited dataset, the authors resorted to several processing steps, i.e., artificially aug-
menting the training set and building a custom English stop words list. By applying these
steps, the accuracy of the classification is increased. Unlike their work, in our experiments,
we use a standard English language stop words list.

Sahu et al. [14] designed a method of augmenting datasets for intent classification
that employs large language models (such as GPT-3 [15]) for generating artificial training
examples, given a context containing the original intents for a specific class. However,
their method requires the execution of two expensive stages in the pipeline: (1) using a
large language model for performing inference on all the available examples, and (2) the
possibility of including a manual verification stage, in order to filter out unrelated, retrieved
examples. Furthermore, the authors investigated the effect of their corpus augmentation
method in few-shot learning scenarios. Compared to their method, our experiments do not
require large language models to augment the corpus and the post-processing filtering is
performed automatically.

3. RASA Components for Building Conversational Agents

RASA [16] is one of the most successful frameworks for building conversational agents.
Its architecture is composed of several interconnected modules, which can function both
independently or as a whole.

A powerful feature of RASA is the possibility to integrate state-of-the-art, pre-trained
Transformer models, via the Huggingface library [17] (https://huggingface.co/ (last ac-
cessed on 7 November 2022)). These Transformers can increase the intent prediction
accuracy, in the NLU phase, by providing their own embedding vectors for the supplied
tokens, at the cost of a larger memory footprint.

In the context of task-oriented dialogue, RASA emerged as the preferred solution, due
to its ability to handle both simple (query-answer) and complex (multiple turns needed to
obtain the required information) conversational scenarios. Its structure is composed of two
loosely coupled sub-systems: the natural language understanding (NLU) component and
the dialogue management component.

The NLU component is responsible for extracting information at a single dialogue
turn, e.g., the intent associated with the turn and possible entities in the sentence. This
process is divided throughout a pipeline consisting of several stages: (1) a tokenizer (which

https://huggingface.co/
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splits the raw input text into tokens), (2) one or several featurizers (which encode and
extract meaningful information from the tokens), and (3) a classification method, which
produces the final intent and entities associated with the input sentence. One of the more
important stages in the pipeline is the featurizer stage where multiple methods of encoding
the tokens are available. The encoding mechanism can employ either ‘standard’ text-based
metrics (TF-IDF scores) or embedding vectors obtained through neural models (e.g., word
embeddings, Transformer-based models, etc.).

Furthermore, the dialogue management component dictates how the conversation
evolves. This component utilizes three main policies which choose the next agent action,
given the dialogue context:

(1) Rule policy. If the current user input matches one of the agent’s known rules, the
corresponding action is executed immediately, without taking into consideration the
conversation history or the known scenarios.

(2) Memorization policy. Unless the current turn matches any rule, the agent tries to fit it
inside one of the conversational scenarios. A scenario consists of several exchanges
between the user and the agent.

(3) TED policy (Transformer Embedding Dialogue policy) [18]. When the input text does not
match any of the predefined rules or scenarios, the agent attempts to choose the most
probable of the known actions, given the context. This is achieved by (i) generating the
embedding of the input text using a Transformer encoder, (ii) computing the similarity
between the resulting embedding vector and known actions embeddings, and (iii)
extracting any possible entities in the user text through a Conditional Random Field
(CRF) layer.

4. RASA NLU Intent Classification

In RASA, the NLU and dialogue management components are loosely coupled—the
RASA NLU component can function independently of the latter one. As a result, the intent
classification experiments are conducted using only the NLU stage.

4.1. Datasets Used

There are many public datasets (https://github.com/clinc/nlu-datasets (last accessed
on 7 November 2022)) available online for benchmarking the intent classification task. For
our experiments, we use both CLINC150 and BANKING77 datasets.

CLINC150 [2] is a dataset proposed for evaluating the performance of out-of-scope
classification systems. The main version of the dataset (full) contains 150 in-domain classes
and one class for out-of-domain examples. Each of the 150 domain classes contains 100 train-
ing examples, 20 validation examples, and 30 test examples. The out-of-domain class is
split into 100 training examples, 100 validation examples, and 1000 test examples.

Besides the full dataset, Larson et al. [2] proposed 3 more datasets as sub-samples of
the original large one. The small version of CLINC150 follows the same class distribution.
However, it contains fewer examples for training, i.e., 50 examples per class. The imbalanced
version of the dataset poses additional challenges since training examples are no longer
equally distributed across classes. Thus, intents have either 25, 50, 75, or 100 training
examples. The plus version features more training examples per class, i.e, 250.

BANKING77 [3] is another dataset introduced for benchmarking text classification
methods. However, this dataset contains only queries from the banking domain. These
banking queries are divided across 77 in-scope classes. It is a balanced set, as all intents
contain the same number of examples.

4.2. Intent Classification

Within the RASA framework, accurately classifying the intent encoded inside a user
query is critical for a correct dialogue flow. Consequently, RASA provides numerous
options for analyzing the input text and extracting meaningful features, which ultimately
determine the intent.

https://github.com/clinc/nlu-datasets
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While most of the RASA pipeline components are customizable, the used featurizers
deserve more attention as choosing one type of featurizer may have implications beyond
classification accuracy. The memory footprint of the featurizer and the overall response
time of the system are also metrics to consider.

One of the simpler featurizers tested is the CountVectorsFeaturizer (https://rasa.com/
docs/rasa/components/#countvectorsfeaturizer (last accessed on 7 November 2022)),
which analyzes the user text and creates a bag-of-words representation based on it. The
result is a sparse representation of the input sequence, which disregards token sequentiality.
In the case of a task such as intent classification, sequentiality might not prove to be as
important as for other NLP/NLU tasks (i.e., machine translation, named entity recognition,
part of speech tagging), as in many cases the intent of a sentence is determined by a keyword
irrespective to the position it is located. Sparse tokenizers are able to extract features at
multiple n-gram granularity (standard n values range between 1 and 4), working either at
word or character level. For evaluation, we featurize the text based on character n-grams
with sizes between 2 and 4 characters. Note that n-gram extraction is performed on each
word’s lemma rather than on the original word.

In order to better capture semantic similarities between words, several types of dense
featurizers can be used, e.g., featurizers that produce embedding vectors based on the
user utterance. We test the following dense featurizers: (1) SpacyFeaturizer, and (2) mul-
tiple LanguageModelFeaturizers. In the case of SpacyFeaturizer, the intent classifier used
is SklearnIntentClassifier (implemented through Scikit-learn [19]). SklearnIntentClassifier is
based on a linear SVM classification algorithm for which the parameters are determined
via GridSearchCV. The LanguageModelFeaturizers component allows embedding integration
mechanisms from state-of-the-art Transformer-based language models. To this extent,
our experiments employ 6 models: (1) BERT [20], (2) ConveRT [21], a Transformer-based
encoder designed for conversations, (3) RoBERTa [22], (4) GPT [23], (5) GPT-2 [24], and
(6) XLNet [25]. For all the language model featurizers, the extracted features are used as
input for DIETClassifier [18], a multi-task model for intent classification and entity extrac-
tion. DIETClassifier uses a single Transformer model for both intent detection and entity
extraction and it produces entities by processing a Transformer’s output layer with a CRF
layer.

For both CLINC150 and BANKING77, we use the training subset to fine-tune the
models. The test subset is used to compute the accuracy metrics. In all our experiments, the
models are fine-tuned for 50 epochs using the training set, except for the SpaCy embeddings
setup where fine-tuning is performed for 100 epochs.

The results are presented separately, depending on the used classifier. For this set
of experiments, we use the following hardware configuration: a system with an Intel(R)
Core(TM) i7-9850H CPU @ 2.60GHz processor, 32 GB RAM, and a NVIDIA Quadro T1000
GPU with 4 GB VRAM. The results from Table 1 are obtained without using the Transformer
architecture (SklearnIntentClassifier and MitieClassifier). For all the scores in Table 2, the
DIETClassifier was used.

Table 1. Intent classification accuracy obtained through non-Transformer-based methods. Best
performing models for each dataset have their results in bold.

CLINC150 BANKING77

SpaCy Embeddings 0.8271 0.8867
CountVectorsFeaturizer 0.7418 0.9026

https://rasa.com/docs/rasa/components/#countvectorsfeaturizer
https://rasa.com/docs/rasa/components/#countvectorsfeaturizer
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Table 2. Intent classification accuracy obtained by using different language model features extracted
from the user input text. Best performing models for each dataset have their results in bold.

CLINC150 BANKING77

BERT Embeddings 0.8104 0.9282
ConveRT Embeddings 0.8242 0.9237
RoBERTa Embeddings 0.7651 0.9192

GPT Embeddings 0.7956 0.9081
GPT-2 Embeddings 0.7656 0.9019
XLNet Embeddings 0.7627 0.9006

The accuracy rates obtained by the featurizer based on word counts are slightly lower
than those obtained by the featurizers that use neural models pre-trained on English texts
(both SpaCy and language model based featurizers).

To better understand classification accuracy and which types of examples are misclassi-
fied, we computed the precision, recall, and macro-F1 scores for the language model-based
methods. The scores were computed for both individual intent classes and globally for
all classes. Table 3 presents the average scores by metric for RASA NLU intent classifica-
tion. A sample plot of the resulting scores obtained by using the BERT featurizer for the
BANKING77 set is presented in Figure A1 in Appendix A.

Table 3. Recall, precision, and F1 classification scores obtained using different types of language
model featurizers (LMF). Best performing models, in terms of macro-F1 average score, have their
results in bold.

LMF

CLINC150 BANKING77

Recall Precision Macro-F1
(avg.) Recall Precision Macro-F1

(avg.)

BERT 0.9455 0.8236 0.8735 0.9282 0.9317 0.9283
ConveRT 0.9475 0.8369 0.8816 0.9237 0.9277 0.9241
RoBERTa 0.9107 0.7856 0.8349 0.9191 0.9220 0.9192

GPT 0.9311 0.8169 0.8614 0.9081 0.9122 0.9084
GPT-2 0.9066 0.7868 0.8332 0.9019 0.9056 0.9018
XLNet 0.8986 0.7813 0.8272 0.9006 0.9052 0.9003

Similar to the accuracy scores presented in Table 2, the highest F1 scores are obtained
by using the ConveRT (for CLINC150) and BERT (for BANKING77) language model
featurizers. To check which intents are specifically mistaken for other intents, we plot
the confusion matrix of the test set for the BANKING77 dataset when using the ConveRT
featurizer (Figure 1). The full confusion matrix is presented in Figure A2 in Appendix B.

The confusion matrix reveals that some of the incorrectly classified examples, i.e.,
the light-purple hue, denote semantically similar intent labels, which in turn contain
semantically similar examples in the training set. In this sense, some examples of similar
intents are:

• card_arrival vs. order_physical_card;
• pending_top_up vs. top_up_reverted;
• declined_transfer vs. declined_card_payment;
• balance_not_updated_after_bank_transfer vs. transfer_timing;
• virtual_card_not_working vs. card_not_working.
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Figure 1. Selected section of the confusion matrix obtained for classifying BANKING77 test instances,
with a model using the ConveRT language model featurizer. The yellow-green hue represents
correctly classified test instances and it represents the main diagonal of the full matrix.

We do not include the confusion matrix for the CLINC150 test set, as the corresponding
plot is not easily readable. However, it is plotted and interpreted with the help of a tool
that renders it inside a scrollable webpage. Unlike BANKING77, where all test set classes
contain exactly 40 instances, for CLINC150, the test set is unbalanced. There are many more
OOS (out-of-scope) intents compared to the other ones (1000 vs. 30 for each other intent).
As a result, most of the misclassifications occur when classifying an OOS example.

5. Corpus Clustering

As stated before, a standard RASA conversational agent relies on two distinct pipeline
stages in order to converse with a user: (1) the NLU component and (2) the dialogue
management component. At both levels, the chatbot designer has to provide multiple
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learning examples in terms of intents and conversational scenarios and, in order to obtain
a robust agent, the examples must be as diverse and numerous as possible. Even though
RASA automates to some extent the process of capturing training data through the RASA
interactive mode, obtaining an adequate list of examples still remains a tedious and time-
consuming task.

On the other hand, there exist many datasets containing conversations that could be
used for acquiring the necessary data (e.g., Cornell Movie-Dialogs Corpus (https://www.cs.
cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html (last accessed on 7 November
2022)) [26], OpenSubtitles (https://opus.nlpl.eu/OpenSubtitles-v2018.php (last accessed
on 7 November 2022)) [27], etc.). Being able to process them in order to query for simi-
lar examples, given a designer’s chosen example, would drastically reduce the chatbot
design time.

The similarity could be exploited either at local level (utterance level) or at global level
(conversation level), with the latter option being more difficult to tackle. Moreover, standard
text similarity metrics (such as cosine distance) could be used to retrieve similar examples.
The current impediment is given by the size of each such dataset, which makes a linear
search prohibitively slow even for a single example. A possibility for an efficient example
retrieval system would rely on pre-computations and searches performed within a subset
of the complete dataset. Thus, offloading the intensive computations to a preprocessing
step would ensure a smaller retrieval time for a single example.

5.1. Method Description

Our method can be regarded as a pipeline which processes raw transcripts, embeds
individual sentences in order to obtain dense feature representations, and clusters them in
order to shorten similar sentence retrieval time.

5.1.1. Data Preprocessing

The proposed system uses the subset of English subtitles from the OpenSubtitles [27]
corpus as the training set. The subtitles are encoded as XML files. Each subtitle contains
additional markdown data necessary for displaying specific parts of the subtitle at the
correct moment. For this set of experiments, we only use the raw text of the subtitles. The
timestamps are not necessary and, therefore, are discarded.

The initial set, including time annotations, contains 123 GB of data split across ap-
proximately 446,000 subtitle files. The first stage consists of aggregating the text of several
files into larger ‘record’ files to ensure that dataset loading times are minimized. After
this step, the dataset’s size is reduced to approximately 11 GB of raw subtitles text split
across 105 record files, each holding 100 MB of data. The total number of utterances in
the resulting corpus is approximately 381 million and each file holds between 3.4 and
3.9 million examples. After manual examination, it was noticed that some movies contain
multiple versions of the same transcript, which are most of the time identical. After filtering
out duplicate subtitles, the final corpus is reduced to only 140,000 subtitle files, or 4 GB
of raw text, split into 37 record files, approximately 100 MB of data each. The number of
sentences per record remains unchanged. However, the total number of examples available
is lowered to 131 million. The process of creating the record files considers that transcript
lines being part of the same movie scene in the initial dataset to not be split across different
record files.

5.1.2. Embedding, Clustering, and Data Projection

Local level similarity can be computed based on either sparse or dense features of
the text. Following the success of the Transformer architecture in numerous NLP tasks,
several types of embedding vectors obtained through the encoder modules of different
Transformer models may be used. Two such options might be:

• A BERT [20] model from Huggingface (bert-base-uncased);
• An SBERT (Sentence BERT) [28] model (all-mpnet-base-v2).

https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://www.cs.cornell.edu/~cristian/Cornell_Movie-Dialogs_Corpus.html
https://opus.nlpl.eu/OpenSubtitles-v2018.php
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The BERT model is used by Devlin et al. [20] to demonstrate that for a Named Entity
Recognition (NER) task, state-of-the-art accuracy in terms of F1 score is obtained without
fully fine-tuning a pre-trained BERT model on the training set at hand. However, the
authors extracted contextual embeddings from several hidden layers and used them as
input to two BiLSTM layers before applying the final classification layer. The results
show that using embedding vectors obtained by concatenating the last four hidden layers
produces the best results.

SBERT [28] is based on a pre-trained MPNet language understanding model [29] and
fine-tuned on 1 billion pairs of sentences. The objective of pre-training is to predict to
which pair a randomly given sentence belongs. In this case, the computed sentence-level
embedding vectors have a lower dimensionality of 768 units compared to the solution
offered by Devlin et al. [20]. This makes SBERT the preferred alternative when the dataset
used is large, as in the case of OpenSubtitles, because precomputed embeddings would
require at least four times less storage.

Given an input sentence x, retrieving semantically similar instances from a learning
set D of N instances can be achieved by retrieving the sentence y, yielding the maximum
cosine similarity between the corresponding embedding vectors:

y = argmax
t∈D

embx · embt

‖embx‖ · ‖embt‖
(1)

From Equation (1), we observe that embx is compared against each instance in the
dataset D, which becomes unfeasible as the size N of D increases. In order to speed up the
linear search by a constant factor K, the current approach proposes to divide all the N learn-
ing instances into K disjoint groups. Separation is performed based on embedding vectors
embt of each sentence in D. For small sizes of N, any standard clustering algorithm may
be used to aggregate similar embedding vectors into the same cluster [30]. This becomes,
however, impractical as N grows, due to large memory requirements in the clustering
method. For instance, standard K-means clustering requires to have all data which are to be
fitted in memory at once which, in turn, slows the algorithm performance [31]. Considering
the dimensions of the gathered dataset, K-means would require 131× 106 × 768× 4 ≈ 375
GB of memory (4 represents the size in bytes for a standard float).

Instead, online clustering algorithms could be used to cluster sentences. One such
example is mini-batch K-means [32]. Similar to standard K-means, it optimizes the same
non-convex objective function, while iteratively processing batches of the input data X.
Equation (2) presents the mini-batch K-means optimization function, where X contains the
embeddings of the instances in D and ct represents the embedding of the centroid of the
cluster where t is assigned.

L = ∑
t∈X
‖t− ct‖2 (2)

Even though processing data in batches allows to construct and process of large
amounts of embedding vectors, in a streaming manner, it might also have the disadvantage
of possibly invalidating previous cluster assignments, e.g., t assigned to cluster ct at
timestep T might need to be reassigned to a different cluster after processing the next batch
at timestep T + 1 since ct might suffer significant modifications. However, depending on
the sampled subset of instances, t might incorrectly remain assigned to the same cluster ct.
In practice, both standard K-means and mini-batch K-means converge to similar cluster
assignments. During the cluster center update step, mini-batch K-means attempts to
move the cluster centers as little as possible away from the previous cluster centers, by
considering them as well in the update equation.

In the current implementation, fitting the data through mini-batch K-means is done for
a fixed number of steps rather than until a given convergence criterion is met. After fitting
the current examples, the embedding vectors and corresponding cluster labels are stored on
the disk, to allow the processing of the next batch of embedding vectors. Furthermore, the
fitted K-means object is also stored. Fitting the next batch of data must consider previously
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fitted data and the K-means object must also be persisted for later usage in the inference
phase.

Having the instances from the learning set embedded and clustered, performing
inference for a given test instance q consists of the steps described in Algorithm 1:

• Obtain the embedding vector embq for q based on the embedder E used for performing
clustering (Line 1).

• Identify the closest cluster center cq (bin) to embq, as computed through mini-batch
K-means, i.e., compute the cosine similarity against all K clusters and return the most
similar cluster center (bin) (Line 2).

• Identify the closest embedding vector to embq, in the current cluster cq (bin), i.e.,
compute the cosine similarity against all learning examples assigned to cluster cq
(bin), and return the most similar example (Line 3). Note that the comparison is
performed only within a restricted number of subsets of the initial data as we assume
roughly uniform splitting of the initial N examples across the K clusters. Thus, the
computations involve only N

K cosine similarity computations.
• Lookup in the original corpus and retrieve p the natural language sentence paired

with the index based on the embedding vector index (Lines 4 and 5).

Algorithm 1 Inference steps for a given test example q
Input: E embedder, q inference sentence
Output: p the <sentence, index> pair

1: embq ← E(q) . Obtain the embedding vector
2: cq ← closest cluster to embq . Identify the closest cluster
3: mq ← closest example to embq in cq
4: p← index(mq) . Index in the original corpus
5: Return p

Due to the online nature of the clustering algorithm and to counteract the possibility
of early learning instances being assigned to a wrong bin, the second and third steps
above can check more than one bin and example. This idea is inspired by Beam Search, a
greedy decoding algorithm used in other NLP tasks (e.g., dialogue generation, machine
translation, etc.), where multiple candidates in an implicit graph structure are explored in
a breadth-first search manner. This might prove useful for detecting embedding vectors
falling under a very similar bin, which might rank just below the closest bin in terms of
cosine similarity to the inference embedding vector.

It is certain that not all of the sentences retrieved through the method described above
would positively impact the quality of the corpus which is to be augmented. However,
given a limited set of hand-chosen learning examples, one can train a weak classifier with
the initial set of examples. The additional examples retrieved by the system can be filtered
based on the classifier class output probabilities, i.e., if an example is assigned to a specific
class with a probability greater than a threshold, then the example will be further considered
for augmenting the corpus; otherwise, the low probability will lead to the dismissal of the
example.

This initial technique of example filtering might not drastically improve classification
accuracy, i.e., for high values of the confidence threshold (e.g., 0.9), the model might choose
only examples which do not bring any additional information. A different approach would
be to filter examples according to a semi-supervised approach, treating the initial learning
set as labeled, and the set of retrieved examples as unlabeled. This idea is inspired by
FixMatch, a method initially developed and applied for computer vision tasks [33].

While storing precomputed sentence embedding vectors decreases the lookup time,
storage requirements are particularly high; i.e, the entire set of 131 million, 768-dimensional
vectors requires approximately 390 GB of storage space. In order to reduce the amount of
storage needed, dimensionality reduction algorithms can be used in order to downsample
the embedding vectors. A different approach could be to use a different embedder, which
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produces lower dimensional embeddings. However, the main issue remains, as we do not
know any embedder that might output vectors of only 32 or 64 dimensions, so we do not
follow this path of experiments.

Similar to the clustering algorithm limitations, one requirement for the dimensionality
reduction algorithm is that it must be able to process the data iteratively since they would
not fit into the memory all at once. As a result, IPCA (Incremental PCA) is successfully
used to downsample the set of vectors to 64 and 32 dimensions, while preserving semantic
similarity [34]. The resulting sets take only 76 GB and 43 GB of storage, respectively.

5.2. Few-Shot Learning

A natural use case of this similar example retrieval system is the few-shot training
scenario. Such a setup examines the performance of a model trained with a limited,
small number of examples. Models may either make use of transfer learning or corpus
augmentation techniques in order to increase the desired performance metric.

Considering a learning set D with C classes, each class has nC examples. The augmen-
tation process consists of retrieving K× L additional examples for each of the nC examples,
with K being the number of clusters to check and L being the ‘beam’ size in each cluster.
The retrieved examples may be subject to further filtering or post-processing step, in order
to minimize the noise introduced in the dataset. In our experiments, we test two different
methods for filtering:

(1) Use a model trained on the initial data to classify the retrieved examples. The examples
classified with confidence exceeding a fixed threshold (i.e., 0.8 or 0.9) are kept, while
the others are discarded.

(2) Remove stop words from both the initial examples and the retrieved examples. Then,
compute the set intersection over the tokens of a candidate sentence and the complete
set of tokens of the initial examples. Only examples producing an intersection size
over a given threshold (i.e., 1 or 2) are kept. Intuitively, this method forces to some
extent the retrieved examples to be lexically similar to the initial examples.

6. Evaluation and Results

To evaluate the proposed similar sentence retrieval system, we use it to augment
the intent classification training sets and, then, we evaluated the models trained with
the augmented data on the unmodified test sets, using RASA’s DIETClassifier. The first
scenario aimed to verify to what extent does the number of clusters impact the classification
accuracy. Thus, we experiment with 512 and 1024 clusters. In both setups, the complete
training sets of BANKING77 and CLINC150 are used to train initial DIETClassifier models.
These classifiers are subsequently used for classifying the additionally extracted examples.
Only examples classified with at least 0.9 confidence are used for augmenting the training
sets. For this set of experiments, we use the same hardware configuration as for the intent
classification experiments (Section 4.2). For result reproducibility, we will make the code
publicly available on GitHub, in the following repository: https://github.com/Gabriel-
Bercaru/CorpusClustering.

For each example in the initial training sets, the top K = 1 cluster is inspected,
retrieving the L = 1 similar example. In each setup, the initial training set sizes were
10,080 examples for BANKING77 and 15,251 examples for CLINC150. For augmentation,
in the first phase 10,080 and 15,251 examples are retrieved. Out of these, only 3% and,
respectively, 20% of them are classified with a confidence of at least 0.9 (294 for BANKING77
and 3043 for CLINC150), resulting in augmented set sizes of 10,374 and 18,294 examples.
For each setup, 30 DIETClassifier models with different randomly initialized parameters
are trained on the initial and augmented datasets. We measure the mean accuracy and the
standard deviation for each setup (Table 4). We should note that for each setup, the BERT
featurizer is kept fixed throughout all the experiments. Figure 2 presents the clustering
results.

https://github.com/Gabriel-Bercaru/CorpusClustering
https://github.com/Gabriel-Bercaru/CorpusClustering
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Table 4. Mean accuracy and standard deviation for the first augmentation method, in which a pre-
trained classifier is used for classifying additional examples. Bold text denotes the best performing
model.

CLINC150 BANKING77

Original data 0.8037 ± 0.0039 0.9305 ± 0.0031
Augmented data—1024

clusters 0.8036 ± 0.0046 0.9296 ± 0.0027

Augmented data—512
clusters 0.8058 ± 0.0052 0.9305 ± 0.0022

Figure 2. Box and whisker plots obtained when training an ensemble of 30 models for each combi-
nation of dataset and augmentation method. Augmented training sets do not improve the mean
accuracy on the test set, but reduce variance across models. Whiskers extend from the lower to the
upper quartile of the data.

As expected, the results are approximately the same because, firstly, the retrieved
examples are selected to be as similar as possible to the ones already in the dataset and
secondly, at least in the case of BANKING77, the number of retrieved examples is rather
small. As already mentioned, a semi-supervised approach might help in future research to
extract more meaningful examples out of the ‘unlabeled’ automatically retrieved set.

The second set of experiments is conducted to evaluate the sentence retrieval system
in a few-shot scenario. In this setup, the training sets of BANKING77 and CLINC150 are
sequentially restricted to only k ∈ {2, 3, 5, 10} examples per class. The corpus clustering
method is then used to artificially increase the number of examples available, based on
the initial, limited number of examples. For each initial example xi, a similar sentence yi is
retrieved. In the end, all retrieved yi are aggregated and combined with the initial learning
set and the duplicates are removed.

To minimize the number of noisy examples which are added to the learning set, the
following heuristic is tested. When attempting to add a retrieved candidate yi to a class
C, first compute its set of unique tokens. Stop words are removed before set computation.
Next, perform a set intersection with the set of tokens corresponding to all initial examples
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xi in the class C. Only add the example if the set intersection size exceeds a given threshold
t ∈ {0, 1, 2}. This heuristic attempts to include only examples which are somewhat similar
to the initial ones. During testing without the heuristic filtering, we observed that some
unrelated examples are added to the learning set and, thus, we introduce this heuristic to
avoid this issue. Evaluation of the few-shot setups is performed by training an ensemble
of 10 different DIETClassifier models in each configuration. Table 5 presents the mean
accuracy and its standard deviation.

Table 5. Mean accuracy and standard deviation obtained for the corpus augmentation method in
the few-shot scenario. In each augmentation setup, t denotes the stop word (SW) filtering threshold.
Note: bold marks the model with the highest mean accuracy.

Few-Shot-Scenario Filtering CLINC150 BANKING77

k = 2

no augmentation 0.2127 ± 0.0150 0.1983 ± 0.0205
augmentation, t = 0 0.3734 ± 0.0087 0.3336 ± 0.0169
augmentation, t = 1 0.2302 ± 0.0107 0.2618 ± 0.0216
augmentation, t = 2 0.2347 ± 0.0123 0.2379 ± 0.0162

k = 3

no augmentation 0.3941 ± 0.0098 0.3875 ± 0.0155
augmentation, t = 0 0.4793 ± 0.0128 0.4562 ± 0.0157
augmentation, t = 1 0.4575 ± 0.0106 0.4371 ± 0.0115
augmentation, t = 2 0.3850 ± 0.0236 0.4204 ± 0.0159

k = 5

no augmentation 0.5273 ± 0.0144 0.6007 ± 0.0145
augmentation, t = 0 0.5617 ± 0.0088 0.6199 ± 0.0130
augmentation, t = 1 0.5572 ± 0.0088 0.6140 ± 0.0117
augmentation, t = 2 0.5491 ± 0.0094 0.6028 ± 0.0158

k = 10

no augmentation 0.6622 ± 0.0125 0.7667 ± 0.0074
augmentation, t = 0 0.6570 ± 0.0063 0.7544 ± 0.0062
augmentation, t = 1 0.6657 ± 0.0077 0.7648 ± 0.0059
augmentation, t = 2 0.6681 ± 0.0058 0.7669 ± 0.0086

7. Discussion

Regarding the first set of experiments, in which we test different featurizers, it can
be observed that embeddings provided by Transformer neural models help improve the
intent classification accuracy, with BERT and ConveRT embeddings performing the best
for both BANKING77 and CLINC150 datasets.

For the corpus clustering part, two sets of experiments are conducted. The first
one consists in analyzing whether augmenting the training sets of BANKING77 and
CLINC150 helps improve intent classification accuracy. As the results in Table 4 show, the
method brings minor improvements in terms of classification mean accuracy, also with a
reduction in variance. Moreover, the number of clusters used for grouping together similar
examples seems to bring little influence, as in both cases, the classification means accuracy
is approximately equal, with a small improvement when using 512 clusters.

For the second set of experiments regarding the few-shot scenario, we restrict the
training sets of BANKING77 and CLINC150 to only 2, 3, 5, or 10 examples per intent.
The corpus clustering method is then used to artificially increase the training set sizes. In
the best-case scenario, the sizes are doubled. However, in most cases, duplicate similar
examples are retrieved and, therefore, they are removed. Moreover, additional examples
are removed according to the heuristic described in Section 6. In this setup, we observe that
the proposed corpus clustering method helps improve the classification accuracy, in the
best case leading to 16% accuracy increase for CLINC150 when k = 2 (Table 5) and a 14%
accuracy increase for BANKING77 when k = 2 (Table 5). As more of the original training
examples become available, the proposed method still increases the mean classification
accuracy, but to a smaller extent. Including additional original training data will most likely
result in even smaller improvements and will ultimately produce results similar to those
presented in Table 4.
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When interpreting the results, one should consider that they reflect the scores obtained
when clustering based on reduced versions of the sentence embedding vectors, i.e., 32 di-
mensions, are used. The used sentence embedder (SBERT) produces 768-dimensional
vectors. We hypothesize that using the full embedding vectors, with no dimensionality
reduction applied, would lead to the retrieval of more meaningful examples, increasing the
reported accuracy values. However, the retrieval time per example increases as well. In the
32-dimensional embedding vectors setup, the retrieval time per example is approximately
0.2–0.3 s, while for the 768-dimensional embeddings, the retrieval time is approximately
0.6 s. The exploration of this hypothesis is left as part of a future investigation.

8. Conclusions

In this work, we examine the problem of intent classification as part of a conversa-
tional agent pipeline. First, we discuss how existing systems perform in terms of intent
classification—answering (Q1) and achieving objective (O1). Then, we define a method for
clustering large corpora, to efficiently retrieve examples that are similar to a user-supplied
query. Our method consists of several preprocessing stages, such as embedding movie
transcripts, online clustering, and data projection. By making use of precomputations and
data partitioning into clusters, we achieve low inference duration—answering (Q2) and
achieving objective (O2). We automatically process 123 GB of raw movie subtitles data,
available as part of the OpenSubtitles dataset—answering (Q3) and achieving objective
(O3). The corpus clustering method is shown to bring minor improvements in terms of
classification accuracy when the full training sets are available. Moreover, we also examine
to what extent the method helps improve the accuracy when a limited number of examples
are available. Our results have shown that the intent classification accuracy is raised by
up to 16%, in the most favorable case, where only two labeled examples per class are
available. Our proposed method achieves retrieval times as low as 0.2–0.3 s per example
and is shown to bring statistically relevant improvements in intent classification scenarios
in which training data are scarce—answering (Q4) and achieving objective (O4).

For tasks in which large datasets are available, our method does not introduce sig-
nificant improvements; this is due to the fact that large datasets expose a high degree of
example diversity and additional retrieved examples might not bring in additional useful
information. However, for small datasets, our method helps improve the diversity of the
examples, leading to larger accuracy scores, as shown by our research.

In future work, we plan to expand the corpus clustering method in order to further
reduce the retrieval time per example. One such possibility would be to move to a hierar-
chical clustering approach. During the experiments, it was observed that some clusters are
considerably larger than others; the loading time for such clusters becomes a bottleneck.
A solution would be to identify the large clusters and further group their elements into
smaller sub-clusters, in order to minimize the cluster loading time during the example
retrieval phase.

Another possible direction that we will investigate is to use a semi-supervised learning
approach in order to filter retrieved examples. In this work, we investigated the effect of
filtering all the retrieved examples based on a pre-trained classifier confidence threshold.
However, as the results show, this does not lead to major improvements in classification
accuracy. Using a semi-supervised approach, in which the full set of retrieved examples is
regarded as unlabeled, would possibly lead to better choices when filtering the examples,
yielding more meaningful augmentations.

As a possible future application, we plan to evaluate how our proposed pipeline
performs in augmenting real-world conversational scenarios. We plan to implement a
conversational agent focused on the interaction during interviews. Its learning set is an
ideal candidate for evaluating our data augmentation method. Since our method mainly
deals with dataset augmentation, there is currently no plan to use it in a real-time scenario.
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Appendix A. Intent Classification: Recall, Precision, and F1 Scores

Figure A1. Recall, precision, and F1 scores obtained for intent classification on the BANKING77 test
set using the BERT model as a language featurizer.
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Appendix B. Intent Classification: Confusion Matrix

Figure A2. Full confusion matrix obtained for classifying BANKING77 test instances, with a model
using the ConveRT language model featurizer. The yellow-green hue represents correctly classified
test instances and it represents the main diagonal of the full matrix.
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