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Abstract: In order to obtain the numerical results of 3D convection-diffusion-reaction problems
with variable coefficients efficiently, we select the improved element-free Galerkin (IEFG) method
instead of the traditional element-free Galerkin (EFG) method by using the improved moving least-
squares (MLS) approximation to obtain the shape function. For the governing equation of 3D
convection-diffusion-reaction problems, we can derive the corresponding equivalent functional; then,
the essential boundary conditions are imposed by applying the penalty method; thus, the equivalent
integral weak form is obtained. By introducing the IMLS approximation, we can derive the final
solved linear equations of the convection-diffusion-reaction problem. In numerical examples, the
scale parameter and the penalty factor of the IEFG method for such problems are discussed, the
convergence is proved numerically, and the calculation efficiency of the IEFG method are verified by
four numerical examples.
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1. Introduction

The convection-diffusion-reaction equation has been widely used in economics, chem-
istry, physics, and fluid mechanics fields. Because of the complexity of some problems
with various coefficients, exact solutions are usually limited to only a few simplified cases.
Therefore, how to obtain the numerical solutions of 3D convection-diffusion-reaction prob-
lems [1–4] with higher computational accuracy and computational speed is an important
direction in the research of numerical methods.

As an important numerical method, the finite element method has been widely applied
in many science and engineering fields, but the mesh distortion is not avoided when solving
large deformation and crack propagation problems. As we know, meshless methods [5–10]
are based on the scattered point approximation, which can avoid the mesh reconstruction,
and, thus, a higher accuracy of the numerical solutions can be obtained.

In recent years, several meshless methods have been used to analyze convection-
diffusion-reaction problems, such as the Galerkin and least squares method [11], variational
multiscale element-free Galerkin methods [12–14], meshfree local Petrov Galerkin meth-
ods [15,16], Hermite method [17], and local knot method [18].

As an important meshless method, the element-free Galerkin (EFG) method [19] was
invented by Belytschko et al., which uses the moving least-squares (MLS) approxima-
tion [20] to construct the shape function. This approximation is based on the ordinary
least-squares method, which is the best approximation in mathematics [21], and it has
been applied in engineering fields widely [22–24]. However, the singular function cannot
be avoided and the calculation speed is slower. Afterward, the IMLS approximation [25]
was proposed to improve the calculation speed of the MLS approximation by using the
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orthogonal basis function. Thus, the IEFG method [26–30] was presented for some partial
differential equations and mechanics problems, and the higher computational efficiency of
the IEFG method was proved.

Generally, we use the penalty method or the Lagrange multiplier method to impose
the essential boundary conditions when studying the EFG and the IEFG methods. In order
to impose the essential boundary conditions directly, the interpolating MLS approximation
based on the singular weight function was inverted [20]. Afterward, the improved interpo-
lating MLS approximation [31] and the improved interpolating EFG method [32–35] were
proposed. Qin et al. [36] studied the interpolating smoothed particle method.

Wang et al. [37] proposed another interpolating MLS method by employing the non-
singular weight function instead of the singular weight function; thus, the corresponding
interpolating EFG method [8] was presented by using this improved approximate func-
tion. Liu et al. used this interpolating EFG method to solve some large deformation
problems [38–40].

Combining the complex theory with the MLS approximation, Cheng et al. [41] stud-
ied the complex variable moving least-squares (CVMLS) approximation. Based on the
conjugate basis function, Bai et al. [42] proposed the improved complex variable moving
least-squares (ICVMLS) approximation to obtain the shape functions, which can enhance
the efficiency of the MLS approximation. Using the ICVMLS approximation to construct the
shape function, the improved complex variable element-free Galerkin (ICVEFG) method
was presented for elasticity [42] and wave propagation [43] problems. However, the
ICVEFG method cannot be applied to 3D problems, due to the complication of the complex
variable shape function.

In this paper, the IEFG method is selected to solve 3D convection-diffusion-reaction
problems with variable coefficients. For the governing equation of such problems, we can
derive the corresponding equivalent functional; then, the essential boundary conditions
are imposed by applying the penalty method; thus, the equivalent integral weak form is
obtained. By introducing the IMLS approximation, we can derive the final solved linear
equations of convection-diffusion-reaction problems.

In numerical examples, the influence of the scale parameter, penalty factor, and the
nodes distribution on numerical accuracy are discussed, the convergence is demonstrated
numerically, and the correctness and the efficiency of the IEFG method are verified by four
numerical examples. Additionally, it can avoid singular matrices that often exist in the
EFG method.

2. The IMLS Approximation

The approximation of a function u(x) is

uh(x) =
m

∑
i=1

pi(x) · ai(x) = pT(x) · a(x), (x ∈ Ω), (1)

where pT(x) is the basis function vector, m is the basis function number, and

aT(x) = (a1(x), a2(x), · · · , am(x)) (2)

is the coefficient vector of pT(x).
In general,

pT(x) = (1, x1, x2, x3), (3)

pT(x) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x1x3). (4)

The local approximation is

uh(x, x̂) =
m

∑
i=1

pi(x̂) · ai(x) = pT(x̂) · a(x). (5)
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Define

J =
n

∑
I=1

w(x− xI)[uh(x, xI)− uI ]
2
=

n

∑
I=1

w(x− xI)

[
m

∑
i=1

pi(xI) · ai(x)− uI

]2

, (6)

where w(x − xI) is a weighting function, and xI (I = 1, 2, · · · , n) are the nodes with
influence domains covering the point x.

Equation (6) can be written as

J = (Pa− u)TW(x)(Pa− u), (7)

where
uT = (u1, u2, · · · , un), (8)

P =


p1(x1) p2(x1) · · · pm(x1)
p1(x2) p2(x2) · · · pm(x2)

...
...

. . .
...

p1(xn) p2(xn) · · · pm(xn)

, (9)

and

W(x) =


w(x− x1) 0 · · · 0

0 w(x− x2) · · · 0
...

...
. . .

...
0 0 · · · w(x− xn)

. (10)

From
∂J
∂a

= A(x)a(x)− B(x)u = 0, (11)

we have
A(x)a(x) = B(x)u, (12)

where
A(x) = PTW(x)P, (13)

B(x) = PTW(x). (14)

Equation (12) sometimes forms a singular or ill-conditional matrix. In order to make
up for this deficiency, for basis functions

q = (qi) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x3x1, · · · ), (15)

using the Gram–Schmidt process, we can obtain

pi = qi −
i−1

∑
k=1

(qi, pk)

(pk, pk)
pk, (i = 1, 2, 3, · · · ), (16)

and
(pi, pj) = 0, (i 6= j). (17)

Then, from Equation (12), a(x) can be obtained as

a(x) = A∗(x)B(x)u, (18)



Mathematics 2023, 11, 770 4 of 19

where

A∗(x) =


1

(p1,p1)
0 · · · 0

0 1
(p2,p2)

0 0
...

...
. . .

...
0 0 · · · 1

(pn ,pn)

. (19)

Substituting Equation (18) into Equation (5), we have

uh(x) =
n

∑
I=1

Φ̃I(x)uI = Φ̃(x)u, (20)

where
Φ̃(x) = (Φ̃1(x), Φ̃2(x), · · · , Φ̃n(x)) = pT(x)A∗(x)B(x) (21)

is the shape function.
This is the IMLS approximation [25], in which the shape function can be obtained

more easily than the MLS approximation. Moreover, the IMLS approximation can also
avoid the singular matrix. Thus, it can enhance the computational efficiency of the MLS
approximation.

3. The IEFG Method for 3D Steady Convection-Diffusion-Reaction Problems

The equation of 3D steady convection-diffusion-reaction problems is considered as
follows:

v1(x) ∂u
∂x1

+ v2(x) ∂u
∂x2

+ v3(x) ∂u
∂x3
−
(

k1(x) ∂2u
∂x2

1
+ k2(x) ∂2u

∂x2
2
+ k3(x) ∂2u

∂x2
3

)
+su = f (x), (x = (x1, x2, x3) ∈ Ω);

(22)

the boundary conditions are
u(x) = u, (x ∈ Γu), (23)

q(x) = k1(x)
∂u
∂x1

n1 + k2(x)
∂u
∂x2

n2 + k3(x)
∂u
∂x3

n3 = q,
(
x ∈ Γq

)
; (24)

where u(x) and q(x) are the given values; f (x) is the source term; Γ = Γu ∪ Γq, Γu ∩ Γq = ∅;
vi(x) is the convection velocity in direction xi; ki(x) is the diffusion efficient in the direction
xi; s is the reaction coefficient; ni is the unit outward normal to boundary Γ in the direction
xi.

For 3D convection-diffusion-reaction equations, the equivalent functional is

Π =
∫

Ω

[
u
(

1
2 su− f

)]
dΩ +

∫
Ω u
(

v1
∂u
∂x1

+ v2
∂u
∂x2

+ v3
∂u
∂x3

)
dΩ

+
∫

Ω
1
2

[(√
k1

∂u
∂x1

)2
+
(√

k2
∂u
∂x2

)2
+
(√

k3
∂u
∂x3

)2
]

dΩ−
∫

Γq
uqdΓ.

(25)

The penalty method is selected to impose the essential boundary conditions, using α
to refer to the penalty factor; thus, the modified functional is

Π∗ = Π +
α

2

∫
Γu

(u− u)(u− u)dΓ. (26)

Let
δΠ∗ = 0, (27)

and the equivalent integral weak form is∫
Ω δu · sudΩ +

∫
Ω δ(Lu)T · (Lu)dΩ +

∫
Ω δu · v1

∂u
∂x1

dΩ +
∫

Ω δu · v2
∂u
∂x2

dΩ
+
∫

Ω δu · v3
∂u
∂x3

dΩ−
∫

Ω δu · f dΩ−
∫

Γq
δu · qdΓ + α

∫
Γu

δu · udΓ− α
∫

Γu
δu · udΓ = 0,

(28)
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where

L(·) =


√

k1 · ∂
∂x1√

k2 · ∂
∂x2√

k3 · ∂
∂x3

(·). (29)

We select M nodes xI in the 3D domain Ω; therefore, the corresponding function value
is

u(xI) = uI . (30)

From Section 2, we have

u(x) = Φ̃(x)u =
n

∑
I=1

Φ̃I(x)uI , (31)

the form of vector u is
u = (u1, u2, · · · , un)

T. (32)

Thus, we have

Lu(x) =
n

∑
I=1


√

k1 · ∂
∂x1√

k2 · ∂
∂x2√

k3 · ∂
∂x3

Φ̃I(x)uI =
n

∑
I=1

BI(x)uI =B(x)u, (33)

where
B(x) = (B1(x), B2(x), · · · , Bn(x)), (34)

BI(x) =


√

k1 · Φ̃I,1(x)√
k2 · Φ̃I,2(x)√
k3 · Φ̃I,3(x)

. (35)

Substituting Equations (31) and (33) into Equation (28), we have

s
∫

Ω δ[Φ̃(x)u]
T · [Φ̃(x)u]dΩ +

∫
Ω δ[B(x)u]T · [B(x)u]dΩ+

v1
∫

Ω δ[Φ̃(x)u]
T · ∂

∂x1
[Φ̃(x)u]dΩ + v2

∫
Ω δ[Φ̃(x)u]

T · ∂
∂x2

[Φ̃(x)u]dΩ+

v3
∫

Ω δ[Φ̃(x)u]
T · ∂

∂x3
[Φ̃(x)u]dΩ−

∫
Ω δ[Φ̃(x)u]

T · f dΩ−
∫

Γq
δ[Φ̃(x)u]

T · qdΓ

+α
∫

Γu
δ[Φ̃(x)u]

T · [Φ̃(x)u]dΓ− α
∫

Γu
δ[Φ̃(x)u]

T · udΓ = 0.

(36)

All integral terms of Equation (36) are analyzed as follows:

s
∫

Ω
δ[Φ̃(x)u]

T · [Φ̃(x)u]dΩ = δuT · [s
∫

Ω
Φ̃T(x)Φ̃(x)dΩ] · u = δuT · Cs · u, (37)

∫
Ω

δ[B(x)u]T · [B(x)u]dΩ = δuT · [
∫

Ω
BT(x)B(x)dΩ] · u = δuT ·K · u, (38)

v1
∫

Ω δ[Φ̃(x)u]
T · ∂

∂x1
[Φ̃(x)u]dΩ = δuT · v1[

∫
Ω Φ̃T(x) · ∂

∂x1
Φ̃(x)dΩ] · u

= δuT ·G1 · u,
(39)

v2

∫
Ω

δ[Φ̃(x)u]
T · ∂

∂x2
[Φ̃(x)u]dΩ = δuT · v2[

∫
Ω

Φ̃T(x) · ∂

∂x2
Φ̃(x)dΩ] · u= δuT ·G2 · u (40)

v3
∫

Ω δ[Φ̃(x)u]
T · ∂

∂x3
[Φ̃(x)u]dΩ = δuT · v3[

∫
Ω Φ̃T(x) · ∂

∂x3
Φ̃(x)dΩ] · u

= δuT ·G3 · u,
(41)

∫
Ω

δ[Φ̃(x)u]
T · f dΩ =δuT · [

∫
Ω(k)

Φ̃T(x) f dΩ] = δuT · F1, (42)∫
Γq

δ[Φ̃(x)u]
T · qdΓ = δuT · [

∫
Γq

Φ̃T(x)qdΓ] = δuT · Fq, (43)
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α
∫

Γu
δ[Φ̃(x)u]

T · [Φ̃(x)u]dΓ = δuT · α[
∫

Γu
Φ̃T(x)Φ̃(x)dΓ] · u = δuT ·Kα · u, (44)

α
∫

Γu
δ[Φ̃(x)u]

T · udΓ = δuT · α[
∫

Γu
Φ̃T(x)udΓ] = δuT · Fα, (45)

where
Cs = s

∫
Ω

Φ̃T(x)Φ̃(x)dΩ, (46)

K =
∫

Ω
BT(x)B(x)dΩ, (47)

Kα = α
∫

Γu
Φ̃T(x)Φ̃(x)dΓ, (48)

G1 = v1

∫
Ω

Φ̃T(x)
∂

∂x1
Φ̃(x)dΩ, (49)

G2 = v2

∫
Ω

Φ̃T(x)
∂

∂x2
Φ̃(x)dΩ, (50)

G3 = v3

∫
Ω

Φ̃T(x)
∂

∂x3
Φ̃(x)dΩ, (51)

F1 =
∫

Ω
Φ̃T(x) f dΩ, (52)

Fq =
∫

Γq
Φ̃T(x)qdΓ, (53)

Fα = α
∫

Γu
Φ̃T(x)udΓ. (54)

Substituting Equations (37)–(45) into Equation (36), we have

δuT · (Csu + Ku + Kαu + G1u + G2u + G3u− F1 − Fq − Fα) = 0. (55)

Let
K̂ = Cs + K + Kα + G1 + G2 + G3, (56)

F̂ = F1 + Fq + Fα. (57)

Because δuT is arbitrary, Equation (55) can be transformed as

K̂u = F̂. (58)

This is the IEFG method for 3D convection-diffusion-reaction problems.

4. Numerical Examples

We compute the relative error of the IEFG method for 3D convection-diffusion-reaction
problems; thus, the formula is given as

‖u− uh‖rel
L2(Ω) =

(∫
Ω (u− uh)

2
dΩ
)1/2

‖u‖L2(Ω)
. (59)

The IEFG and the EFG methods are used to solve these numerical examples. We select
regularly distributed nodes, 3 × 3 × 3 Gaussian points are selected in each integral cell,
and the linear basis function is selected. The relative error and calculation efficiency of the
IEFG and the EFG methods are compared.
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The first example is

(1 + cos x1)
∂u
∂x1

+ (1 + cos x2)
∂u
∂x2

+ (1 + cos x3)
∂u
∂x3

+

(1 + x4
1)

∂2u
∂x2

1
+ (1 + x4

2)
∂2u
∂x2

2
+ (1 + x4

3)
∂2u
∂x2

3
− u = f (x),

(60)

and the problem domain is Ω = [0,0.5] × [0,0.5] × [0,0.5].
The boundary conditions are

u
∣∣x1=0 = 1 + cosh(x2) + cosh(x3), (61)

u
∣∣x1=0.5 = cosh(0.5) + cosh(x2) + cosh(x3), (62)

u
∣∣x2=0 = cosh(x1) + 1 + cosh(x3), (63)

u
∣∣x2=0.5 = cosh(x1) + cosh(0.5) + cosh(x3), (64)

u
∣∣x3=0 = cosh(x1) + cosh(x2) + 1, (65)

u
∣∣x3=0.5 = cosh(x1) + cosh(x3) + cosh(0.5). (66)

The theoretical result is

u = cosh(x1) + cosh(x2) + cosh(x3). (67)

In this paper, we should discuss the scale parameter, penalty factor, and convergence.
First, different values of dmax will influence the relative error of the numerical solution.

In addition, 11 × 11 × 11 regular nodes, 10 × 10 × 10 integral cells, and the cubic spline
function are used, and α = 7.0 × 103. Figure 1 shows the relationship between dmax and the
relative error. We can see that if dmax = 1.4~1.5, the relative error is smaller.
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Secondly, different values of α will influence the relative error of the numerical solution.
In addition, 11 × 11 × 11 regular nodes, 10 × 10 × 10 integral cells, and the cubic spline
function are used, and dmax = 1.44. Figure 2 shows the relationship between α and the
relative error. We can see that when α = 5.0 × 103~1.0 × 104, the relative error is smaller.
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In order to demonstrate the convergence of the IEFG method, the distribution of nodes
must be discussed. dmax = 1.44, α = 7.0 × 103, and the cubic spline function is used. Table 1
shows the relationship between the node distribution and the relative errors. It is easy to
see that with increase in nodes, the relative error shows a decreasing trend. Figure 3 shows
the contour plot of nodes, numerical solutions, and the relative errors.

Table 1. The relative errors and CPU times of the IEFG and the EFG methods with the increase in
node distribution.

Nodes
Relative Error Time (s)

IEFG EFG IEFG EFG

3 × 3 × 3 0.36176% 0.36176% 0.47 0.50
5 × 5 × 5 0.09398% 0.09398% 3.61 3.80
7 × 7 × 7 0.03752% 0.03752% 12.2 13.0
9 × 9 × 9 0.01865% 0.01865% 30.6 32.5

11 × 11 × 11 0.01352% 0.01352% 61.7 64.7
13 × 13 × 13 0.01388% 0.01388% 122.1 126.2
15 × 15 × 15 0.01539% 0.01539% 229.0 236.6
17 × 17 × 17 0.01682% 0.01682% 371.6 396.9
19 × 19 × 19 0.01798% 0.01798% 609.3 643.7
21 × 21 × 21 0.01889% 0.01889% 955.7 1007.7

In this example, we select 11 × 11 × 11 regular nodes, 10 × 10 × 10 integral cells, and
the cubic spline function. In order to obtain the numerical results with smaller relative
errors by using the IEFG and the EFG methods, we should select the appropriate parameters
in MATLAB codes, dmax = 1.44 and α = 7.0 × 103; thus, the smaller relative errors of the
IEFG and the EFG methods are equal to 0.0135%, and the corresponding CPU times are
61.7 s and 64.7 s, respectively.

Figures 4–6 and Tables 2–4 show the comparison of the numerical solutions of two meth-
ods and the analytical ones. We can see that the numerical solutions of both methods are in
good agreement with the analytical one.
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Table 4. The exact and numerical solutions of u(2/20, 9/20, x3).

x3 Analytical IEFG EFG

0 3.10797 3.10774 3.10774

0.05 3.10922 3.1093 3.1093

0.1 3.11298 3.11321 3.11321

0.15 3.11925 3.11955 3.11955

0.2 3.12804 3.12839 3.12839

0.25 3.13939 3.13979 3.13979

0.3 3.15331 3.15376 3.15376

0.35 3.16985 3.17033 3.17033

0.4 3.18905 3.18952 3.18952

0.45 3.21094 3.21128 3.21128

0.5 3.2356 3.23545 3.23545

When using the IEFG method to solve it, calculation resources can be saved although
similar relative errors are obtained.

In addition, singular matrices can be avoided if the IEFG method is selected. When the
EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If the IEFG
method is selected, α = 7.0× 103, dmax = 1.0, and the relative error is 0.0152%. The numerical
solutions and analytical ones are compared in Figure 7. We can see that numerical solutions
are in good agreement with the analytical one.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 23 
 

 

Table 4. The exact and numerical solutions of u(2/20, 9/20, x3). 

x3 Analytical IEFG EFG 
0 3.10797 3.10774 3.10774 

0.05 3.10922 3.1093 3.1093 
0.1 3.11298 3.11321 3.11321 

0.15 3.11925 3.11955 3.11955 
0.2 3.12804 3.12839 3.12839 

0.25 3.13939 3.13979 3.13979 
0.3 3.15331 3.15376 3.15376 

0.35 3.16985 3.17033 3.17033 
0.4 3.18905 3.18952 3.18952 

0.45 3.21094 3.21128 3.21128 
0.5 3.2356 3.23545 3.23545 

When using the IEFG method to solve it, calculation resources can be saved although 
similar relative errors are obtained. 

In addition, singular matrices can be avoided if the IEFG method is selected. When 
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If the IEFG 
method is selected, α = 7.0 × 103, dmax = 1.0, and the relative error is 0.0152%. The numerical 
solutions and analytical ones are compared in Figure 7. We can see that numerical solu-
tions are in good agreement with the analytical one. 

0.0 0.1 0.2 0.3 0.4 0.5
3.00

3.02

3.04

3.06

3.08

3.10

3.12

3.14

3.16
 

 

u(
x 1,2

/2
0,

3/
20

)

x1

 Analytical
 IEFG

 
Figure 7. The comparison of numerical and exact solutions along x1-axis. 

The second example [11] is 

0]3)(10[101010 321
3

3
2

2
1

1 =+++−Δ+
∂
∂+

∂
∂+

∂
∂ uxxxu

x
ux

x
ux

x
ux , (68)

and the problem domain is Ω = [0,1] × [0,1] × [0,1]. 
The boundary conditions are 

32

1

0
0| xx

x eu ++
= = , (69)

Figure 7. The comparison of numerical and exact solutions along x1-axis.

The second example [11] is

10x1
∂u
∂x1

+ 10x2
∂u
∂x2

+ 10x3
∂u
∂x3

+ ∆u− [10(x1 + x2 + x3) + 3]u = 0, (68)

and the problem domain is Ω = [0,1] × [0,1] × [0,1].
The boundary conditions are

u
∣∣∣x1=0 = e0+x2+x3 , (69)

u
∣∣∣x1=1 = e1+x2+x3 , (70)
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u
∣∣∣x2=0 = e0+x1+x3 , (71)

u
∣∣∣x2=1 = e1+x1+x3 , (72)

u
∣∣∣x3=0 = e0+x2+x1 , (73)

u
∣∣∣x3=1 = e1+x2+x1 . (74)

The theoretical result is
u = ex1+x2+x3 . (75)

In this example, we select 11 × 11 × 11 regular nodes, 10 × 10 × 10 integral cells, and
the cubic spline function. In order to obtain the numerical results with smaller relative
errors by using the IEFG and the EFG methods, we should select the appropriate parameters
in MATLAB codes, α = 7.0 × 102, dmax = 1.21; thus, the smaller relative errors of the IEFG
and the EFG methods are equal to 0.0892%, and the corresponding CPU times are 52.8 s
and 55.8 s.

Figures 8–10 show the comparison of the numerical solutions of two methods and
the analytical ones. We can see that the numerical solutions of both methods are in good
agreement with the analytical one.
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From this example, we can see that, under the condition of similar calculation precision,
the IEFG method can solve 3D convection-diffusion-reaction problems successfully with
less calculation resources.

In addition, singular matrices can be avoided if the IEFG method is selected. When
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If
the IEFG method is selected, α = 7.0 × 102, dmax = 1.0, and the relative error is 0.0922%.
The numerical solutions and analytical ones are compared in Figure 11. We can see that
numerical solutions are in good agreement with the analytical one.
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The third example [44–46] is

λ(x)
∂u
∂x1

+ µ(x)
∂u
∂x2

+ ν(x)
∂u
∂x3

+ ∆u = f (x), (76)

where
λ(x) = Rex1(1− 2x2)(1− x3), (77)

µ(x) = Rex2(1− 2x3)(1− x1), (78)

ν(x) = Rex3(1− 2x1)(1− x2), (79)

and the problem domain is Ω = [0,0.5] × [0,0.5] × [0,0.5].
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The boundary conditions are

u
∣∣x1=0 = u

∣∣x1=0.5 = sin(πx2) + sin(πx3) + sin(3πx2) + sin(3πx3), (80)

u
∣∣x2=0 = u

∣∣x2=0.5 = sin(πx1) + sin(πx3) + sin(3πx1) + sin(3πx3), (81)

u
∣∣x3=0 = u

∣∣x3=0.5 = sin(πx1) + sin(πx2) + sin(3πx1) + sin(3πx2). (82)

The theoretical result is

u = sin(πx1) + sin(πx2) + sin(πx3) + sin(3πx1) + sin(3πx2) + sin(3πx3). (83)

In this example, we select Re = 100, 19 × 19 × 19 regular nodes, 18 × 18 × 18 integral
cells, and the cubic spline function. In order to obtain the numerical results with smaller
relative errors by using the IEFG and the EFG methods, we should select the appropriate
parameters in MATLAB codes, dmax = 1.29, α = 1.6 × 103; thus, the smaller relative errors of
the IEFG and the EFG methods are equal to 0.2646%, and the corresponding CPU times are
497.7 s and 525.8 s.

Figures 12–14 show the comparison of the numerical solutions of two methods and
the analytical ones. We can see that the numerical solutions of both methods are in good
agreement with the analytical one.
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From this example, we can see that, under the condition of similar calculation precision,
the IEFG method can solve 3D convection-diffusion-reaction problems successfully with
less calculation resources.

In addition, singular matrices can be avoided if the IEFG method is selected. When
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If
the IEFG method is selected, α = 1.6 × 103, dmax = 1.0, and the relative error is 0.2659%.
The numerical solutions and analytical ones are compared in Figure 15. We can see that
numerical solutions are in good agreement with the analytical one.
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The fourth example [46] is 
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Figure 15. The comparison of numerical and exact solutions along x3-axis.

The fourth example [46] is

1
x1

∂u
∂x1

+
∂2u
∂x2

1
+

1
x2

1

∂2u
∂x2

2
+

∂2u
∂x2

3
= f (x1, x2, x3), (84)

and the problem domain is Ω = [0,1] × [0,1] × [0,1].
The boundary conditions are

u
∣∣x1=0 = 0, (85)

u
∣∣x1=1 = cos(πx2) cos(πx3), (86)

u
∣∣∣x2=0 = x2

1 cos(πx3), (87)
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u
∣∣∣x2=1 = −x2

1 cos(πx3), (88)

u
∣∣∣x3=0 = x2

1 cos(πx2), (89)

u
∣∣∣x3=1 = −x2

1 cos(πx2). (90)

The theoretical result is

u = x2
1 cos(πx2) cos(πx3). (91)

In this example, we select 15 × 15 × 15 regular nodes, 14 × 14 × 14 integral cells, and
the cubic spline function. In order to obtain the numerical results with smaller relative
errors by using the IEFG and the EFG methods, we should select the appropriate parameters
in MATLAB codes, dmax = 1.21, α = 2.9 × 104; thus, the smaller relative errors of the IEFG
and the EFG methods are equal to 0.5147%, and the corresponding CPU times are 111.2 s
and 118.3 s.

Figures 16–18 show the comparison of the numerical solutions of the two methods
and the analytical ones. We can see that the numerical solutions of both methods are in
good agreement with the analytical one.

Mathematics 2023, 11, x FOR PEER REVIEW 19 of 23 
 

 

and the problem domain is Ω = [0,1] × [0,1] × [0,1]. 
The boundary conditions are 

0| 01
==xu , (85)

)πcos()πcos(| 3211
xxu x == , (86)

)πcos(| 3
2
102

xxu x == , (87)

)πcos(| 3
2
112

xxu x −== , (88)

)πcos(| 2
2
103

xxu x == , (89)

)πcos(| 2
2
113

xxu x −== . (90)

The theoretical result is 

)πcos()πcos( 32
2
1 xxxu = . (91)

In this example, we select 15 × 15 × 15 regular nodes, 14 × 14 × 14 integral cells, and 
the cubic spline function. In order to obtain the numerical results with smaller relative 
errors by using the IEFG and the EFG methods, we should select the appropriate param-
eters in MATLAB codes, dmax = 1.21, α = 2.9 × 104; thus, the smaller relative errors of the 
IEFG and the EFG methods are equal to 0.5147%, and the corresponding CPU times are 
111.2 s and 118.3 s. 

Figures 16–18 show the comparison of the numerical solutions of the two methods 
and the analytical ones. We can see that the numerical solutions of both methods are in 
good agreement with the analytical one. 

0.0 0.2 0.4 0.6 0.8 1.0

−0.8

−0.6

−0.4

−0.2

0.0

 

 

u(
x 1

,1
2/

14
,2

/1
4)

x1

 Analytical
 IEFG
 EFG

 
Figure 16. The comparison of numerical and exact solutions along x1-axis. Figure 16. The comparison of numerical and exact solutions along x1-axis.

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

−0.04

−0.02

0.00

0.02

0.04

 

 

u(
6/

14
,x

2,8
/1

4)

x2

 Analytical
 IEFG
 EFG

 
Figure 17. The comparison of numerical and exact solutions along x2-axis. 

0.0 0.2 0.4 0.6 0.8 1.0

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

 

u(
11

/1
4,

6/
14

,x
3)

x3

 Analytical
 IEFG
 EFG

 
Figure 18. The comparison of numerical and exact solutions along x3-axis. 

We can see that the calculation efficiency can be improved when using the IEFG 
method to analyze it. 

In addition, singular matrices can be avoided if the IEFG method is selected. When 
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If the IEFG 
method is selected, α = 2.9 × 104, dmax = 1.0, and the relative error is 0.5346%. The numerical 
solutions and analytical ones are compared in Figure 19. We can see that numerical solu-
tions are in good agreement with the analytical one. 

Figure 17. The comparison of numerical and exact solutions along x2-axis.



Mathematics 2023, 11, 770 17 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 20 of 23 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

−0.04

−0.02

0.00

0.02

0.04

 

 

u(
6/

14
,x

2,8
/1

4)

x2

 Analytical
 IEFG
 EFG

 
Figure 17. The comparison of numerical and exact solutions along x2-axis. 

0.0 0.2 0.4 0.6 0.8 1.0

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

 

u(
11

/1
4,

6/
14

,x
3)

x3

 Analytical
 IEFG
 EFG

 
Figure 18. The comparison of numerical and exact solutions along x3-axis. 

We can see that the calculation efficiency can be improved when using the IEFG 
method to analyze it. 

In addition, singular matrices can be avoided if the IEFG method is selected. When 
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If the IEFG 
method is selected, α = 2.9 × 104, dmax = 1.0, and the relative error is 0.5346%. The numerical 
solutions and analytical ones are compared in Figure 19. We can see that numerical solu-
tions are in good agreement with the analytical one. 

Figure 18. The comparison of numerical and exact solutions along x3-axis.

We can see that the calculation efficiency can be improved when using the IEFG
method to analyze it.

In addition, singular matrices can be avoided if the IEFG method is selected. When
the EFG method is used, we select dmax = 1.0; thus, the singular matrices appear. If
the IEFG method is selected, α = 2.9 × 104, dmax = 1.0, and the relative error is 0.5346%.
The numerical solutions and analytical ones are compared in Figure 19. We can see that
numerical solutions are in good agreement with the analytical one.

Mathematics 2023, 11, x FOR PEER REVIEW 21 of 23 
 

 

0.0 0.2 0.4 0.6 0.8 1.0

−0.8

−0.6

−0.4

−0.2

0.0
 

 

u(
x 1

,1
2/

14
,2

/1
4)

x1

 Analytical
 IEFG

 
Figure 19. The comparison of numerical and exact solutions along x1-axis. 

5. Conclusions 
In this paper, we select the IEFG method instead of the traditional EFG method to 

solve 3D convection-diffusion-reaction problems with variable coefficients. 
The convergence is demonstrated numerically from numerical examples, the correct-

ness of the IEFG method is verified, and we can see that the IEFG method can improve 
the calculation speed of the EFG method without losing calculation accuracy. Addition-
ally, the IEFG method can avoid singular matrices that often exist in the EFG method. 

Our study can extend the scope of application of the IEFG method in science and 
engineering fields. 

Author Contributions: Conceptualization, H.C.; methodology, H.C.; software, H.C.; writing—orig-
inal draft preparation, H.C.; writing—review and editing, Z.X. and Y.L.; visualization, Z.X.; super-
vision, H.C.; funding acquisition, H.C. All authors have read and agreed to the published version 
of the manuscript. 

Funding: This work was supported by the Natural Science Foundation of Shanxi Province (Grant 
No. 20210302124388). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Hidayat, M. Meshless finite difference method with B-splines for numerical solution of coupled advection-diffusion-reaction 
problems. Int. J. Therm. Sci. 2021, 165, 106933. 
2. Abdulle, A.; Souza, G. A local adaptive discontinuous Galerkin method for convection-diffusion-reaction equations. J. Comput. 
Phys. 2022, 451, 110894. 
3. Mesgarani, H.; Kermani, M.; Abbaszadeh, M. Application of SPD-RBF method of lines for solving nonlinear advection-diffusion-
reaction equation with variable coefficients. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 850–886. 
4. Al-Bayati, S.A.; Wrobel, L.C. Numerical modelling of convection-diffusion problems with first-order chemical reaction using the 
dual reciprocity boundary element method. Int. J. Numer. Methods Heat Fluid Flow 2022, 32, 1793–1823. 
5. Chen, L.; Cheng, Y.M. Reproducing kernel particle method with complex variables for elasticity. Acta Phys. Sin. 2008, 57, 1–10. 
6. Dai, B.D.; Cheng, Y.M. Local boundary integral equation method based on radial basis functions for potential problems. Acta 
Phys. Sin. 2007, 56, 597–603. 

Figure 19. The comparison of numerical and exact solutions along x1-axis.

5. Conclusions

In this paper, we select the IEFG method instead of the traditional EFG method to
solve 3D convection-diffusion-reaction problems with variable coefficients.

The convergence is demonstrated numerically from numerical examples, the correct-
ness of the IEFG method is verified, and we can see that the IEFG method can improve the
calculation speed of the EFG method without losing calculation accuracy. Additionally, the
IEFG method can avoid singular matrices that often exist in the EFG method.

Our study can extend the scope of application of the IEFG method in science and
engineering fields.
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