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Abstract: The label learning mechanism is challenging to integrate into the training model of the multi-
label feature space dimensionality reduction problem, making the current multi-label dimensionality
reduction methods primarily supervision modes. Many methods only focus attention on label
correlations and ignore the instance interrelations between the original feature space and low di-
mensional space. Additionally, very few techniques consider how to constrain the projection matrix
to identify specific and common features in the feature space. In this paper, we propose a new
approach of semi-supervised multi-label dimensionality reduction learning by instance and label cor-
relations (SMDR-IC, in short). Firstly, we reformulate MDDM which incorporates label correlations
as a least-squares problem so that the label propagation mechanism can be effectively embedded into
the model. Secondly, we investigate instance correlations using the k-nearest neighbor technique,
and then present the l1-norm and l2,1-norm regularization terms to identify the specific and common
features of the feature space. Experiments on the massive public multi-label data sets show that
SMDR-IC has better performance than other related multi-label dimensionality reduction methods.

Keywords: semi-supervised learning; multi-label learning; dimensionality reduction; instance
correlations; common features

MSC: 90C25; 62J05; 90C52

1. Introduction

Multi-label learning tasks are frequently accompanied by high-dimensional feature
space, as are other machine learning paradigms. When learning directly from large-scale,
high-dimensional data, algorithms usually fail to perform in classification [1]. First, the high-
dimensional space’s overabundance of redundant and irrelevant information makes it more
difficult for the model to identify the interclass structure of the data; second, the multi-
collinearity between the feature attributes of high-dimensional data results in the model’s
poor generalization ability; and third, in high-dimensional feature spaces, traditional dis-
tances (such as the Euclidean distance) do not have the ability to measure the manifold
structure between samples. In reality, Euclidean distance plays a significant role in the ma-
jority of classifiers. The term “dimensional curse” [2] is used to describe these problems.
Dimensionality reduction becomes an important preprocessing step for multi-label learning
on high-dimensional data as a result.

Contrary to the traditional single-label learning tasks, which presuppose that the labels
of instances are mutually exclusive, the labels of multi-label instances are inter-correlated.
In the multi-class classification task of photos, for instance, “desert” and “camel” coexist
frequently, although “sea” does not frequently coexist with “desert”. People are motivated
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by this fact to learn about or label samples with unknown labels using known labels
by relying on the correlations between labels. Unfortunately, it is challenging to incorporate
such a label-learning mechanism into the model to estimate the labels of unlabeled instances
due to the particularity of feature dimensionality reduction. Because of this, the majority
of multi-label dimensionality reduction techniques that have been developed recently
are supervised settings that require enough labeled instances [3–6]. These supervised
approaches, sadly, fail to take into account the fact that, in many real-world applications,
it is difficult to annotate enough unlabeled instances because of the high labeling costs.
As a consequence, labeling a sizable training dataset is typically impractical in authentic
situations [7]. Unlabeled instances, on the contrary, are typically available and plentiful.
Then, certain semi-supervised multi-label dimensionality reduction techniques have been
developed (see [8–10]), which can enhance learning performance by efficiently combining
a large number of unlabeled instances with the scarce number of labeled instances.

Most of these semi-supervised dimensionality reduction techniques start by develop-
ing various label propagation methods based on label correlations, then applying them
to the k-nearest neighbor (kNN) graph to generate soft labels for instances that are not
labeled. When expanding labeled training samples, the projection matrix from high-
dimensional space to low-dimensional space is trained on the assumption that the sample
features’ between-class distance achieves the maximum and their within-class distance
reaches the minimum. This approach, often known as MLDA (multi-label linear discrim-
inant analysis) [6], or its promotion variant, is the core of these concepts. The instance
correlations between the original feature space and low dimensional space are ignored
by the MLDA framework, despite the fact that it can integrate label correlations.

Given that the multi-label data with high-dimensional features contains a significant
amount of redundant and irrelevant information, it is necessary to selectively extract
specific and common features of the feature space for concentration, while reducing dimen-
sions, and to remove the negative effects of unimportant features. Feature extraction and
feature selection are techniques that are comparable to this. The l2,1-norm is frequently em-
ployed in multi-label feature selection because it may choose distinguishing features for all
instances with joint sparsity (each feature has a lower score for all instances or a higher
score for all instances) [11,12]. The l2,1-norm’s drawback is equally clear though—it does
not take into account the distinctive features or the redundant correlation of features [13].
To compensate for the shortcomings of the l2,1-norm and improve the projection matrix’s
ability to identify within-class features of samples, we use the l1-norm as the model regu-
larization term to learn the high sparsity specific features of the low-dimensional feature
space of samples.

In this paper, we propose a novel method, namely semi-supervised multi-label dimen-
sionality reduction learning by instance and label correlations (SMDR-IC) based on depen-
dence maximization. This method effectively utilizes the information from both labeled
and unlabeled instances, simultaneously considers the label and instance correlations, and
also concurrently incorporates specific and common features of feature space. Our major
contributions are summarized as follows.

• The Hilbert–Schmidt Independence Criterion (HSIC) [14] has been mathematically
shown to maximize the dependence between the original feature description and
the associated class label. Motivated by this, we use the matrix factorization technique
to reconstruct the HSIC empirical estimator in MDDM [4] into a least squares prob-
lem, enabling the label propagation mechanism to be seamlessly incorporated into
the dimensionality reduction learning model.

• Consideration is given to the instance correlations. In order to use instance correla-
tions in dimensionality reduction, we introduce a new assumption, which states that
if two instances have a high degree of correlation in the original feature space, they
should also have a high degree of correlation in the low-dimensional feature space.
The instance correlations are assessed using the k-nearest neighbor approach.
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• Through the use of the l1-norm and l2,1-norm regularization terms to select the appro-
priate features, the specific features and the common features of the feature space are
simultaneously investigated in our method, which helps to enhance the performance
of dimensionality reduction.

The rest of the paper is organized as follows. The related work is briefly reviewed
in Section 2. Section 3 introduces the details of our proposed SMDR-IC method. Experi-
mental results are analyzed in Section 4. Finally, Section 5 concludes this paper.

2. Related Work
2.1. Dimensionality Reduction

In this section, we mainly review the related works on dimensionality reduction,
including unsupervised, supervised, and semi-supervised methods.

For a long time, people have been concerned about the topic of data feature dimension-
ality reduction. Since unsupervised dimensionality reduction techniques do not use label
information, they can theoretically be used to reduce the dimensionality of instances with
multiple labels without using label data. A popular dimensionality reduction technique is
principal component analysis (PCA), which constructs the projection matrix by maximiz-
ing feature variances or minimizing squared constructed error [15]. Other unsupervised
techniques, such as locally linear embedding (LLE) [16], Laplacian eigenmaps (LE) [17],
and flexible manifold embedding (FME) [18], have also been reported. Latent semantic
indexing (LSI) [19], which was first used for document analysis and information retrieval,
has since evolved into a successful unsupervised dimensionality reduction method. These
techniques are primarily aimed at obtaining a low-dimensional representation by main-
taining the manifold structure of instances. The large number of redundant and irrelevant
information in high-dimensional data features, however, makes it impossible for a single
feature learning method to extract the varied representation of the data. Consequently,
the supervised and semi-supervised dimensionality reduction modes of feature and label
information coupling are becoming increasingly popular in the problem of multi-label di-
mension reduction. The goal of multi-label informed latent semantic indexing (MLSI) [20],
which extends LSI to a supervised method, is to achieve a projection matrix that maximizes
feature variances and binary label variances through a method based on linear combination.
This method aims to capture correlations between labels, while also preserving the informa-
tion of inputs. However, it does not investigate the internal relationship between features
and labels.

Currently, there have been three basic frameworks for these dimensionality reduction
methods of multi-label data feature space. To achieve the purpose of the training projection
matrix, the first strategy is to identify the main direction in the label space and feature space
and maximize the linear correlation between them. The theoretical foundations of this tactic
come from Hotelling, who proposed in [21] that canonical correlation analysis (CCA) can be
viewed as the problem of locating the basis vectors of two groups of variables so as to max-
imize the correlation between the projections of variables on these basis vectors. CCA can
be used directly—without any adjustments—in the multi-label scenario. Hardoon et al. [5]
used the CCA technique to address the multi-label dimensionality reduction problem
in the beginning. The CCA method of multi-label dimensionality reduction, described
in [5], aims to maximize the linear correlation between the feature set derived from the low
dimensional projection space and the label set. As a foundational technique, CCA has made
significant contributions to numerous extensions in multi-label feature dimensionality
reduction. LS-CCA [22], for example, expands CCA by using a least-squares formulation
and its several regularized variations, suggesting that CCA can be transformed into slightly
different least-squares problems. CCA is extended by 2SDSR [23] by combining it with
other feature reduction methods. The CCA framework’s drawback is that semi-supervision
expansion is challenging.

One of the most well-known supervised dimensionality reduction techniques is linear
discriminative analysis (LDA) [24], which utilizes label information to define the between-
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class and within-class scatter matrices and then maximizes the Rayleigh quotient between
the two matrices to find a projection matrix that makes instances of the same class to be
close while the different class is far away in a low-dimensional space. The second main
framework for dimensionality reduction is provided by this technique. By employing
various label weighting settings, LDA has been extended to multiple types of multi-label
LDA versions [6,25–29]. wMLDAb [25] adopts a binary weight, wMLDAe [26] an entropy-
based weight, wMLDAc (i.e., MLDA) [6] a correlation-based weight, wMLDAf [27] a fuzzy-
based weight, and wMLDAd [28] a dependence-based weight. MLDA-LC [29], in particular,
constructs an adjacency graph to represent instance similarity as a graph Laplacian matrix
and then combines the Laplacian matrix into the MLDA method to reveal the local structure
of multi-label instances. The advantage of the LDA framework is that the path optimization
problem built on the basis of the framework can easily be converted into the eigenvalue and
eigenvector problem of the matrix for solution. The disadvantage is that because the scatter
matrix is constructed using Euclidean distance, the traditional distance cannot adequately
capture the data’s complex manifold structure when the data feature dimension is high.

Gretton et al. [14] developed the mathematical theory for HSIC in 2015, the third
key framework for dimensionality reduction. The empirical estimator for HSIC as well
as an explanation of how HSIC can measure the relationship between the original fea-
ture description and the associated class label can be found in [14]. Since then, multi-label
dimensionality reduction learning has begun focusing on HSIC. MDDM (multi-label dimen-
sionality reduction via dependence maximization) [4], as a supervised baseline technique
of multi-label dimensionality reduction inside the HSIC framework, aims to learn the pro-
jection matrix by maximizing feature-label dependence. (MDDM and HSIC will be briefly
reviewed in Section 2.2). In its initial form, MDDM was developed using two different
projection strategies: MDDMp and MDDMf. The former relies on orthonormal projection
directions, whereas the latter makes the projected features orthonormal. In order to avoid
the direct eigendecomposition on the large-scale matrix, SSMDDM [30] presents an effective
approach for finding the optimum solution of MDDM. It then reformulates MDDM as
a least-squares problem and develops a shared subspace MDDM for multi-label dimension-
ality reduction. However, the label correlations, which are crucial for multi-label learning,
are not taken into account in the least-squares problem of MDDM, as recast by SSMDDM.

In the last ten years, a number of semi-supervised multi-label dimensionality reduc-
tion techniques have been put forth to make use of labeled and unlabeled instances. Some
of the methods combine the learning of a classifier with the learning of a low-dimensional
embedding, such as SSDR-MC [8], BSSML [31], and so on [32]. The corresponding super-
vised multi-label dimensionality reduction techniques are also available in semi-supervised
forms. Examples include [33], which introduces the semi-supervised CCA based on Lapla-
cian regularization; MSDA [34], which adds two regularization terms to the MLDA objective
function by setting up two matrices (adjacency matrix and similarity matrix); SSMLDR [9],
which first obtains soft labels of unlabeled instances by label propagation, and then the soft
labels of all instances, both labeled and unlabeled, are used to construct the scatter matri-
ces of MLDA; SMDRdm [10], which is similar to [9], the scatter matrices are constructed
by estimating the soft labels of unlabeled instances using label propagation, and further,
the empirical measure of HSIC is plugged into the LDA framework to train the projection
matrix with inter-class scatter minimization and dependence maximization as the objective
function. SSMLDR and SMDRdm only pay attention to label correlations and ignore in-
stance correlations between original feature space and low-dimensionality feature space.
Furthermore, these two methods are based on LDA, a framework that heavily relies on the
distance function, making them more vulnerable to outliers and increases the soft label
error [35–37]. Recently, Mikalsen et al. [38] extended the dimensionality reduction tech-
nique to noisy multi-label cases by developing an anti-noise label propagation method
that they used to label unlabeled samples before using the MDDM method to reduce
the dimension of data features. NMLSDR is the name of this approach.
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Although these semi-supervised strategies have shown good experimental results, they
cannot overcome the restrictions of the three frameworks mentioned above.
These framework models can only make limited improvements, and other regular term
constraints cannot be freely added, which is why current dimension reduction methods
rarely consider the specific and commom features of feature space.

2.2. The Brief Review of HSIC and MDDM

As a helpful measure of dependence, the Hilbert–Schmidt Independence Criterion
(HSIC) has been used in numerous machine learning applications. Let X = [x1, x2, · · · , xn]
be a training data set, which consists of n instances, and Y = [y1, y2, · · · , yn] be the label
matrix, where yi denotes the class label vector of xi. Given a multi-lable data set {(X, Y)}
with joint distribution PXY, k and l denote the kernel functions, and the feature kernel
matrix and label kernel matrix, respectively, are defined as K ∈ Rn×n, Kij = k(xi, xj), and
L ∈ Rn×n, Lij = l(yi, yj). Then, the empirical estimator of the HSIC is given by [14]:

HSIC(X, Y , PXY) = (n− 1)−2tr(HKHL), (1)

where tr( · ) indicates the trace operation of a matrix. H ∈ Rn×n is the centering matrix
defined as Hij = δij − 1

n , where δij = 1 if i = j and δij = 0 otherwise.
With maximizing the correlation between the original feature description and the rele-

vant class labels, the HSIC empirical estimator is used in MDDM to project the original data
into the low-dimensional feature space. Denote the projection matrix as P. An instance x
is projected into a new space by φ(x) = PTx, and the induced kernel functions are given
as k(xi, xj) =

〈
φ(xi), φ(xj)

〉
=
〈
PTxi, PTxj

〉
and l(yi, yj) =

〈
yi, yj

〉
, where

〈
xi, xj

〉
denotes

the inner product defined as
〈

xi, xj
〉
= xT

i xj [4].
Drop (n − 1)−2 and notice that K = XTPPTX and L = YTY . The optimization

procedure of Equation (1) is wrote as searching for the optimal linear projection:

P∗ = arg max
P

tr(HXTPPTXHL). (2)

To avoid a trivial solution, an additional constraint for P is introduced, which leads
to the following expression [4]:max

P
tr(HXTPPTXHL),

s.t. pT
i (µXXT + (1− µ)I)pj = δij (1 ≤ i, j ≤ d),

(3)

where d is the dimension of the lower dimensional space, P = [p1, p2, · · · , pd]; µ ∈ [0, 1]
is a pre-defined parameter to control the importance between two constraints. When
µ = 0, the projection matrix is orthonormal, called an orthogonal projection [4]; when
µ = 1, the projected features are uncorrelated on the training data and called uncorrelated
subspace dimensionality reduction [4].

It is easy to verify that the optimal solutions of Equation (3) are characterized by the fol-
lowing generalized eigenvalue problem:

XHLHXT p = λ(µXXT + (1− µ)I)p. (4)

3. Materials and Methods

In this section, we first go over some important notation and symbols, and thereafter
elaborate on our proposed SMDR-IC method.

3.1. Preliminaries

Let X = [xT
1 ; · · · ; xT

l ; xT
l+1; · · · ; xT

n ] ∈ Rn×d be a data set of n d-dimensional instances,
where the first l of the instances are labeled and the remaining u are unlabeled, l + u = n.
L = {1, 2, · · · , c} denotes the label set, and c means that each instance includes c labels.
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Drawing on [9], the additional (c + 1)-th label is appended into the label set in order
to detect the outliers. Define the initial label matrix Y = [yT

1 ; · · · ; yT
l ; yT

l+1; · · · ; yT
n ] =

[Yl ; Yu] ∈ Rn×(c+1), where Yl denotes the initial labels of labeled instances and Yu denotes
the initial labels of unlabeled instances. For the labeled instances, Yij = 1 if the i-th
instance is labeled as j, and Yij = 0 otherwise. For the unlabeled instances, Yij = 1
if j = c + 1, and Yij = 0 otherwise. We suppose the predicted label matrix as F =

[FT
1 ; · · · ; FT

l ; FT
l+1; · · · ; FT

n ] = [Fl ; Fu] ∈ Rn×(c+1), where Fi ∈ Rc+1 (1 ≤ i ≤ n) are column
vectors and 0 ≤ Fij ≤ 1. Fl denotes the predicted labels of labeled instances and Fu denotes
the predicted labels of unlabeled instances.

The objective is to learn a projection matrix P ∈ Rd×t that projects an instance x
from original feature space Rd to a lower dimensional space representation z ∈ Rt, and

z = xTP, (5)

where t� d.

3.2. Obtaining Soft Label by Label Propagation
3.2.1. Neighborhood Graph Construction

To accomplish label propagation, a graph construction consisting of labeled and
unlabeled instances is built to evaluate the similarities among neighboring instances.
The weighted adjacency matrix W is defined specifically by using a kNN graph over
n instances, as shown below:

Wij =

{
1, if xi ∈ kNN(xj) or xj ∈ kNN(xi),
0, otherwise,

(6)

where kNN(xi) contains the k-nearest neighbors of xi computed by the Euclidean distance.
Because of its simplicity and wide applicability, the weight in Equation (6) is simply set
to 0 − 1 weight. This adjacency matrix W can also be obtained by other weight (i.e.,
Gaussian heat kernel) and distance settings.

We normalize W as a stochastic matrix W̃ to ensure that the sum of the transitional
probabilities from i to the other nodes of the graph equals 1, as follows:

W̃ = D−1W , (7)

where D = diag(d11, · · · , dnn) and dii = ∑n
j=1 Wij. W̃ij can be considered as the probability

of a transition from node i to node j along the edge between them.

3.2.2. Label Propagation

Multi-label learning differs from single-label. The former assumes that instances’ labels
are inter-correlated, while the latter assumes that instance labels are independent of one
another. To convert the single-label propagation version to the multi-label propagation
version, we first normalize the initial label matrix:

Ỹij =

{
1
|Yi |

, if Yij = 1,

0, otherwise,
(8)

where | Yi | denotes the number of labels that the instance xi belong to.
The following equation updates the probability that instance xi has the j-th class label:

Fij(t + 1) = λi

n

∑
k=1

W̃ikFkj(t) + (1− λi)Ỹij. (9)

Obviously, in each iteration, the probability of each instance partially propagates
from their neighbors and partially from their own labels. According to the labeled and unla-
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beled instances, we divide the matrix W̃ , Ỹ , F into the following forms based on the labeled
and unlabeled instances:

W̃ =

[
W̃ll W̃lu
W̃ul W̃uu

]
, Ỹ =

[
Ỹl
Ỹu

]
, F =

[
Fl
Fu

]
. (10)

For the labeled instances, we fix the labels as Fl = Ỹl and λl = 0. For the unlabeled
instances, the iteration can be written as follows:

Fu(t + 1) = Iλu W̃ul Fl(t) + Iλu W̃uuFu(t) + (I − Iλu)Ỹu, (11)

where I ∈ Ru×u is an identify matrix and Iλu ∈ Ru×u is a diagonal matrix with the diagonal
elements λu. Due to Fl(t) = Ỹl , Fu(0) = Ỹu, we have:

Fu(t + 1) =
t

∑
i=0

(Iλu W̃uu)
i IλuW̃ulỸl + (Iλu W̃uu)

t+1Ỹu

+
t

∑
i=0

(IλuW̃uu)
i(I − Iλu)Ỹu,

(12)

{Fu(t)} is a convergent sequence, the convergence analysis has been presented in [9]. After
a finite number of iterations, Fu will converge to

Fu = (I − Iλu W̃uu)
−1(Iλu W̃ulỸl + (I − Iλu)Ỹu). (13)

It is easily found that the sum of each row of Fu is equal to 1. This means that
the elements in F are the probability values and Fij can be viewed as the posterior probability
of the instance xi belonging to the j-th class. In particular, Fi,c+1 represents the probability
of the instance xi belonging to the outliers. After obtaining the predicted label Fij for each
instance xi, we define these labels Fij (1 ≤ j ≤ c) as soft labels.

3.3. Dimensionality Reduction

In this subsection, we utilize soft labels to learn the projection matrix P. Firstly, we go
into detail on how to incorporate the label propagation mechanism and label correlations
into MDDM to construct least squares, and then we integrate instance correlations as well
as specific and common features of feature space into our approach separately. Finally, we
discuss how our proposed dimensionality reduction strategy was optimized.

3.3.1. Design of the Semi-Supervised Mode

It is evident from label propagation Equations (6) and (9) that the label propaga-
tion measures the soft labels of unlabeled instances by the similarity of instance features,
whereas label correlations are almost never employed. Therefore, to improve the perfor-
mance of the propagation mechanism, we take the label correlations into consideration.
According to the previous work [6], the correlation, namely cosine similarity, between two
distinct label classes is expressed as follows:

Ckl = cos(Y(k), Y(l)) =

〈
Y(k), Y(l)

〉
∥∥∥Y(k)

∥∥∥∥∥∥Y(l)

∥∥∥ . (14)

Then, we have F̃u = FuC and F̃ = [Fl ; F̃u]. Next, the resulting soft label matrix is
then used to compute the label kernel matrix L in Section 2.2, effectively transforming
the MDDM into a semi-supervised technique. L can be rewritten below:

L = F̃ F̃T . (15)
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3.3.2. Reformulate MDDM to Least Square

To reformulate MDDM to a least squares problem, we first define two necessary matrix
S1, S2 as follows: {

S1 = µXTX + (1− µ)I,
S2 = XT HLHX.

(16)

Then, the generalized eigenvalue problem in Equation (4) can be written as S2 p =
λS1 p. If S1 is inverse (when µ 6= 1, S1 must be inverse), the optimal P is given by the eigen-
vectors of S−1

1 S2 corresponding to the d eigenvalues. Now, we apply the matrix decomposi-
tion technique to decompose S−1

1 S2. The singular value decomposition of X is defined as:

X = Udiag(Σt, 0)V T , (17)

where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices and t = rank(X); Σt ∈ Rt×t

is an orthogonal matrix with the diagonal elements being singular values of X, and
diag(Σt, 0) ∈ Rn×d is a matrix in which the first r diagonal elements are singular val-
ues of X and 0 otherwise.

Let U = [U1, U2] and V = [V1, V2], where U1 ∈ Rn×t, U2 ∈ Rn×(n−t), V1 ∈ Rd×t, and
V2 ∈ Rd×(d−t). Then S1, S2 can be rewritten as:{

S1 = V1[µΣ2
t + (1− µ)I]V T

1 ,
S2 = V1ΣtUT

1 HF̃F̃T HU1ΣtV T
1 .

(18)

According to Equation (18), we can calculate S−1
1 S2 as:

S−1
1 S2 = V1[µΣ2

t + (1− µ)I]−1ΣtUT
1 HF̃F̃T HU1ΣtV T

1 . (19)

We define a diagonal matrix B as follows:

B = [µΣ2
t + (1− µ)I]−

1
2 . (20)

Notice that B is an inverse matrix and B = BT . According to Equations (19) and (20),
we rewrite S−1

1 S2 as:

S−1
1 S2 = V1BBTΣtUT

1 HF̃F̃T HU1ΣtBB−1V T
1 . (21)

Denote T = F̃T HU1ΣtB ∈ Rc×t, and let T = P1ΛPT
2 be the singular value decomposi-

tion of T, where P1 ∈ Rc×c, P2 ∈ Rt×t, and Λ ∈ Rc×t is a diagonal matrix. Then we have:

S−1
1 S2 = V1BP2ΛPT

1 P1ΛPT
2 B−1V T

1

= V1BP2Λ̃PT
2 B−1V T

1 ,
(22)

where Λ̃ = Λ2. Thus, the solution for problem Equation (4), which consists of the eigen-
vectors corresponding to the eigenvalues of S−1

1 S2, is provided by the following equation:

P = V1BP2. (23)

Consider the following least squares problem:

min
P
‖XP− Z‖2

F, (24)

where we assume that both the observation matrix X and the target matrix Z are centered.
The optimal solution of Equation (24) is given by [39]:

P = (XTX)†XTZ, (25)



Mathematics 2023, 11, 782 9 of 25

where ( · )† is the pesudo-inverse of a matrix. If we set Z = U1ΣtBP2, then we have:

P = V1Σ−2
t V T

1 V1ΣtUT
1 U1ΣtBP2

= V1BP2,
(26)

which is exactly the same formula as in Equation (23). It implies that the MDDM for-
mulation in Equation (4) is equivalent to the least-squares formulation in Equation (24).
On the basis of this connection of equivalence, we can attach some constraint conditions—
such as instance correlations and sparse constraints—as regularization items.

3.3.3. Incorporating Instance Correlations

In our dimensionality reduction approach, we not only consider the label correla-
tions as shown in Equations (15) and (18) but also incorporate the instance correlations.
By making the assumption that two instances, xi and xj, may be related in the label space
if they are correlated in the feature space, the previous classification algorithms [40,41]
incorporate instance correlations. In fact, instances in multi-label dimensionality reduction
problems should also maintain the interrelation of their features and labels even before
and after dimensionality reduction. As a result, if two instances xi and xj are correlated
in the original feature space, we assume they will also be related in the low-dimensionality
feature space.

Instead of evaluating the instance correlations using the cosine similarity, we adopt
the k-nearest neighbor (kNN) mechanism to reduce the effects of noisy and redundant
features. Thus, the weighted adjacency matrix W in Equation (6) can be exploited to define
the following regularization term for assessing the interrelation of feature space:

min
P

n

∑
i,j

Wij

∥∥∥xT
i P− xT

j P
∥∥∥ = tr((XP)T L(XP)) = tr(OT LO), (27)

where O = XP is the output low-dimensionality matrix and L = W∗ −W indicates the n× n
Laplacian matrix of W . W∗ is a diagonal matrix and W∗

ii = ∑n
j=1 Wij. After incorporating this

regularization, we can rewrite our objective function in Equation (24) as follows:

min
P

1
2
‖XP− Z‖2

F +
α

2
tr(OT LO). (28)

3.3.4. Incorporating Specific and Common Features

Furthermore, two norm regularization terms that constrain the sparsity of matrix P
are also incorporated in our technique to enhance the performance of the dimensionality
reduction. One is the l1-norm, which can enforce sparsity among all elements in P and
shrink some parameters to zero, allowing specific features in the original feature space
to be selected. The l2,1-norm, which is the other norm, can guarantee the sparsity of P
in rows, which is advantageous for choosing common features in the original feature space.
For instance, in Figure 1, when the sparse projection matrix P with five rows and three
columns is used to reduce the dimensions of instances x1 and x2, the first feature f ′1
of the projection instances z1 and z2 is dominated of the original features f1 and f4, the sec-
ond feature f ′2 is made up of the original features f1, f2, and f3, and the third feature f ′3 is
determined by f2 and f5, respectively. These features can be thought of as the specific features
of each feature in the low dimensional feature space. To give P this performance, we employ
the l1-norm. While features f1 and f2 contribute to the first, second, and third features of z1
and z2, they can be regarded as common features in the original feature space, and we leverage
the l2,1-norm to capture these common features.
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Figure 1. An explanation of specific and common features of feature space.

The final objective function of our proposed approach can be rewritten as Equation (29)
after incorporating these two regularization terms.

min
P

1
2
‖XP− Z‖2

F +
α

2
tr(OT LO) + β‖P‖1 + γ‖P‖2,1, (29)

where α, β, and γ are constant coefficients.

3.3.5. Optimization

Despite knowing that Equation (29) is a convex optimization problem, the objective
function is not smooth because of the non-smoothness of the l1-norm and l2,1-norm regular-
ization terms. To address this non-smooth optimization problem, we first release ‖P‖2,1
by tr(PT AP) in the following [11], where A indicates a d × d diagonal matrix, the i-th
diagonal value in A is denoted as Aii =

1
2‖Pi‖2

. Then, to solve the l1-norm regularization
term, we employ the accelerated proximal gradient method (APG).

In the general accelerated proximal gradient method, a convex optimization problem
can be defined as:

min
P∈H

F(P) = f (P) + g(P), (30)

whereH indicates a real Hilbert space. f (P) and g(P) are both convex, but they are smooth
and non-smooth, respectively. The gradient function ∇ f is also Lipschitz continuous, i.e.,
‖∇ f (P1)−∇ f (P2)‖2

F ≤ L f ‖∆P‖, where ∆P = P1 − P2 and L f is the Lipschitz constant.
Proximal gradient algorithms, rather than directly minimizing F(P), minimize a sequence
of separable quadratic approximations to F(P), denoted as:

QL f (P, P(m)) = f (P(m)) +
〈
∇ f (P(m)), P− P(m)

〉
+

L f

2

∥∥∥P− P(m)
∥∥∥2

F
+ g(P). (31)

Let G(m) = P(m) − 1
L f
∇ f (P(m)), then

P∗ = arg min
P

QL f (P, P(m))

= arg min
P

g(P) +
L f

2

∥∥∥P−G(m)
∥∥∥2

F
.

(32)

According to Equations (29) and (30), f (P) and g(P) are defined as follows:

f (P) =
1
2
‖XP− Z‖2

F +
α

2
tr(OT LO) + γ‖P‖2,1, (33)

g(P) = β‖P‖1. (34)

According to Equation (33), we can calculate ∇ f (P) as:

∇ f (P) = XTXP− XTZ + αXT LXP + γAP. (35)
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According to Equations (32)–(34), the projection matrix P can be optimized by

P∗ = arg min
P

QL f (P, P(m))

= arg min
P

L f

2

∥∥∥P−G(m)
∥∥∥2

F
+ g(P)

= arg min
P

1
2

∥∥∥P−G(m)
∥∥∥2

F
+

β

L f
‖P‖1.

(36)

Lin et al. [42] proposed that instead, setting P(m) = Pm + bm−1−1
bm

(Pm − Pm−1) for a se-
quence bm by satisfying b2

m+1 − bm ≤ b2
m can improve the convergence rate to O(m−2),

where Pm is the result of P at the m-th iteration and P(m) is the intermediate variable at the
m-th iteration. Additionally, for the l1-norm regularization term g(P), if H is a normed
space endowed with the Frobenius norm ‖ · ‖F and g( · ) is l1-norm, then Pm+1 is generated
by soft-thresholding the entries of G(m) as:

Pm+1 = Sε[G(m)] = arg min
P

1
2

∥∥∥P−G(m)
∥∥∥2

F
+ ε‖P‖1, (37)

where Sε[ω] is the soft-thresholding operation, ω ∈ R and ε > 0, defined as:

Sε[ω] =


ω− ε, if ω > ε,
ω + ε, if ω < ε,
0, otherwise.

(38)

Then, in each iteration, Pm+1 can be obtained by the following soft-thresholding
operation:

Pm+1 = S β
L f

[G(m)]. (39)

Here, we calculate the Lipschitz constant L f . Given P1 and P2, according to Equation (35),
we have:

‖∇ f (P1)−∇ f (P2)‖2
F

=
∥∥∥XTX∆P + αXT LX∆P + γA∆P

∥∥∥2

F

≤ 3(
∥∥∥XTX∆P

∥∥∥2

F
+
∥∥∥αXT LX∆P

∥∥∥2

F
+ ‖γA∆P‖2

F)

≤ 3(
∥∥∥XTX

∥∥∥2

2
+
∥∥∥αXT LX

∥∥∥2

2
+ ‖γA‖2

2)‖∆P‖2
F,

(40)

where ∆P = P1 − P2. Obviously, L f is formed by

L f =

√
3(‖XTX‖2

2 + ‖αXT LX‖2
2 + ‖γA‖2

2). (41)

We fix the value of A, which is determined by the initial value of P, to ensure that L f
will always be a constant value.

Algorithm 1 summarizes the pseudo-code of the SMDR-IC method. This algorithm pro-
duces the projection matrix P, which can map the features of instances from d-dimensional
to t-dimensional space, here t = rank(X) and t ≤ d. If the dimensionality is to be reduced
to r(r < t), the first r columns of the projection matrix P can be chosen.
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Algorithm 1 SMDR-IC: Semi-supervised Multi-label Dimensionality Reduction Learning
by Instance and Label Correlations

Require: Feature matrix X ∈ Rn×d, label matrix Y ∈ Rn×c, and parameters k, µ, α, β, γ, σ

Ensure: Projection matrix P ∈ Rd×t, t = rank(X)

1: Fl ← Y , Fu ← 0;

2: Calculate the neighborhood graph construction matrix W for label propagation and

instance correlations by using k-nearest neighbors;

3: Obtain the soft label matrix F;

4: Calculate the label correlations matrix C and obtain the label matrix F̃;

5: Calculate the target matrix Z;

6: b0, b1 ← 1, m← 1;

7: P0, P1 ← (XTX + σI)−1XTZ;

8: Calculate the diagonal matrix A;

9: Calculate Lipschitz constant L f ;

10: repeat:

P(m) ← Pm + bm−1−1
bm

(Pm − Pm−1);

G(m) ← P(m) − 1
L f
∇ f (P(m));

Pm+1 ← S β
L f

(G(m));

bm+1 ←
1+
√

4b2
m+1

2 ;

Calculate the diagonal matrix Am+1;

untill: stop criterion is reached;

11: P← Pm;

An alternative optimization to the accelerated proximal gradient method is the alter-
nating direction method of multipliers (ADMM), which has the advantage that f (P) and
g(P) are completely independent, so they can both be non-smooth.

4. Results
4.1. Benchmark Data Sets

To verify the efficiency of our proposed method, we conduct experiments on fifteen
publicly available real-world data sets from Mulan (http://mulan.sourceforge.net/datasets-
mlc.html, accessed on 5 March 2022), the statistics of which are summarized in Table 1.
These data sets are divided into four categories: music, image, biology, and text. Emotions
is a multi-label music data set, Scene and Corel5k are multi-label image data sets, Yeast is
a multi-label biology data set, and the remaining are subsets of Yahoo, which is a multi-label
text (web) data set. All data sets are standardized to have a mean of zero and a variance
of one.

Table 1. Data statistics (“#instances” represents the total amount of instances, “#Attributes” indicates
the number of features, including both the numeric and nominal features, “#Labels” is the number
of class labels, and “Cardinality” means the average number of labels per instance).

Dataset Domin #Instances #Attributes #Labels Cardinality

Emotions music 593 72 6 1.87
Scene image 2407 294 6 1.07

Corel5k images 5000 499 374 3.52
Yeast biology 2417 103 14 4.23
Arts text 5000 695 26 1.65

http://mulan.sourceforge.net/datasets-mlc.html
http://mulan.sourceforge.net/datasets-mlc.html
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Table 1. Cont.

Dataset Domin #Instances #Attributes #Labels Cardinality

Business text 5000 658 30 1.60
Computers text 5000 1023 33 1.51
Education text 5000 827 33 1.46

Entertainment text 5000 961 21 1.41
Health text 5000 919 32 1.64

Recreation text 5000 910 22 1.43
Reference text 5000 1191 33 1.17

Science text 5000 1116 40 1.45
Social text 5000 1571 39 1.28

Society text 5000 955 27 1.67

4.2. Evaluation Metrics

The performances of different dimensionality reduction methods are evaluated by
employing seven widely used evaluation metrics: Hamming Loss, Ranking Loss, Average
Precision (AvgPrec), OneError, Macro-F1 (MacroF1), Micro-F1 (MicroF1), and Coverage.
These evaluation criteria are given in [4,43] along with detailed descriptions.

For convenience, we modify Hamming Loss, Ranking Loss, and OneError to 1-Hamming,
1-Ranking, and 1-OneError, respectively, so that higher values always mean better for the first
six evaluation metrics, and lower values indicate better performance for Coverage.

4.3. Comparison Methods and Parameters Settings

The previously mentioned multi-label dimensionality reduction methods, CCA [5],
MDDM [4], and six MLDA variants—wMLDAb [25], wMLDAe [26], wMLDAc [6],
wMLDAf [27], wMLDAd [28], and MLDA-LC [29]—are all taken into account to compare
the performance of SMDR-IC. These supervised methods can only be trained on the labeled
portion of the training instances since they require labeled instances. MLDA-LC, specifically,
adopts an instance correlation measure similar to our technique to constrain the consis-
tency between the class-wise within-class distances of instances in the low-dimensional
feature space and the original feature space, allowing the LDA framework to capture local
structures. Moreover, three semi-supervised approaches, SSMLDR [9], SMDRdm [10], and
NMLSDR [38], are compared to SMDR-IC. NMLSDR is a dimensionality reduction method
for noisy multi-label data that was recently proposed. To compare and demonstrate fairness,
we replace NMLSDR’s noise-coping label propagation strategy with our approach’s label
propagation mechanism.

We begin by projecting the high-dimensional instances into a low-dimensional space
using these dimensionality reduction methods. The widely used ML-kNN [43] classifier is
then applied to classify the instances in the low-dimensional space.

In the experiments, we set k = 10 to construct the kNN neighborhood graph construc-
tion. To be more convincing, the label propagation parameters are set to the same as those
in SSMLDR, i.e., λl = 0 for labeled instances and λu = 0.99 for unlabeled instances. µ
in Equation (16) is set to 0.5, as in MDDM [4], to constrain the orthogonality of the objective
matrix. The regularization parameters α, β, and γ are tuned by a grid search strategy
from {10i|i = −5,−4, · · · ,−1} and the best results are reported. All comparison method
parameters were chosen based on their publications’ recommendations.

The experiment was performed using Matlab R2020a on a desktop PC with an Intel(R)
Core(TM) i7-7700k 4.20GHz CPU, 16GB RAM, and NVIDIA GeForce GTX 1080 8G GPU,
with a 64-bit Windows 10 operating system.

4.4. Experimental Results

In our experiments, we randomly partition 70% of instances as the training set and
30% of instances as the test set. In the training set, we randomly select 20% of instances
as the labeled set and the remaining instances as the unlabeled set to learn a projection
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matrix P, which is used to project the d-dimensionality training and test sets to an r-
dimensionality representation. To avoid the random effect, the random partitioning and
selection are repeated 10 times on each dataset for each comparing method, with the aver-
aged results reported.

Due to the restrictions of the MLDA framework, the five methods wMLDAb, wML-
DAe, wMLDAc, wMLDAf, and wMLDAd have a target dimension of at most c− 1. The
rank of the initial feature matrix is maximum and the feature dimension of the data is
reduced by MLDA-LC. Therefore, we set the dimensions of projected features to t = c− 1
for all approaches.

Using the training set after dimensionality reduction, we train an ML-kNN classifier
and validate its performance on the low-dimensionality test set. As shown in Table 2,
SMDR-IC demonstrated excellent effectiveness by obtaining optimal results on all data sets
for seven measures. Indeed, SMIC has over five evaluation criteria on 11 data sets that
produce the highest results, while other outcomes are marginally inferior.

Table 2. Experimental results of 20% labeled instances on fifteen data sets in terms of seven evalua-
tion metrics.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Emotions

1-Hamming 0.6624 0.6865 0.6786 0.6766 0.6768 0.6837 0.6823 0.6991 0.6657 0.7317 0.7507 0.7602
1-Ranking 0.6195 0.6532 0.6533 0.6397 0.6505 0.6507 0.6427 0.7010 0.6223 0.7432 0.7741 0.7872
AvgPrec 0.6105 0.6397 0.6410 0.6247 0.6242 0.6343 0.6370 0.6738 0.6117 0.7106 0.7425 0.7507
1-OneError 0.4607 0.4972 0.4792 0.4685 0.4534 0.4843 0.4949 0.5382 0.4579 0.5916 0.6404 0.6466
MacroF1 0.3703 0.3614 0.3923 0.3688 0.3730 0.3779 0.3895 0.4699 0.3393 0.4930 0.5329 0.5373
MicroF1 0.3902 0.3873 0.4047 0.3896 0.3888 0.3985 0.4072 0.4837 0.3522 0.5151 0.5541 0.5643
Coverage 2.8579 2.6208 2.6421 2.7062 2.6174 2.6848 2.7096 2.4506 2.8152 2.2624 2.1118 2.0287

Scene

1-Hamming 0.7762 0.8040 0.7849 0.7772 0.7862 0.7850 0.7779 0.8056 0.7806 0.8649 0.8759 0.8780
1-Ranking 0.6487 0.6686 0.6564 0.6468 0.6639 0.6532 0.6327 0.7142 0.6503 0.8487 0.8621 0.8660
AvgPrec 0.5609 0.5845 0.5790 0.5656 0.5823 0.5745 0.5470 0.6328 0.5654 0.7688 0.7881 0.7949
1-OneError 0.3573 0.3956 0.3888 0.3647 0.3877 0.3816 0.3409 0.4548 0.3663 0.6296 0.6584 0.6710
MacroF1 0.3354 0.3436 0.3760 0.3450 0.3731 0.3714 0.3164 0.4442 0.3432 0.6012 0.6275 0.6365
MicroF1 0.3378 0.3440 0.3760 0.3479 0.3713 0.3693 0.3175 0.4413 0.3476 0.5954 0.6221 0.6311
Coverage 1.8306 1.7408 1.7864 1.8393 1.7665 1.8183 1.9176 1.5124 1.8371 0.8465 0.7744 0.7592

Corel5k

1-Hamming 0.9872 0.9898 0.9873 0.9889 0.9876 0.9881 0.9891 0.9890 0.9898 0.9905 0.9905 0.9905
1-Ranking 0.8329 0.8395 0.8313 0.8346 0.8317 0.8321 0.8325 0.8356 0.8373 0.8422 0.8416 0.8465
AvgPrec 0.1491 0.2027 0.1643 0.1517 0.1635 0.1673 0.1626 0.1670 0.1646 0.2162 0.2102 0.2235
1-OneError 0.1124 0.2076 0.1373 0.1034 0.1324 0.1365 0.1199 0.1373 0.1223 0.2271 0.2148 0.2382
MacroF1 0.0077 0.0082 0.0158 0.0058 0.0159 0.0158 0.0118 0.0099 0.0029 0.0013 0.0010 0.0024
MicroF1 0.0431 0.0689 0.0814 0.0317 0.0743 0.0730 0.0450 0.0538 0.0165 0.0053 0.0053 0.0118
Coverage 131.5283 130.7983 133.2597 130.2415 133.1978 135.4703 133.7845 129.6946 128.3927 129.4937 129.6759 127.7015

Yeast

1-Hamming 0.7555 0.7721 0.7588 0.7596 0.7639 0.7574 0.7616 0.7602 0.7574 0.7699 0.7819 0.7839
1-Ranking 0.7822 0.7923 0.7813 0.7788 0.7835 0.7826 0.7790 0.7795 0.7757 0.7905 0.8021 0.8065
AvgPrec 0.7015 0.7183 0.6981 0.6962 0.7025 0.6999 0.7001 0.6971 0.6927 0.7098 0.7274 0.7331
1-OneError 0.6803 0.7244 0.6769 0.6722 0.6755 0.6719 0.6862 0.6663 0.6756 0.7140 0.7240 0.7348
MacroF1 0.3651 0.2814 0.3498 0.3278 0.3448 0.3518 0.3252 0.3569 0.3012 0.2914 0.3342 0.3367
MicroF1 0.5757 0.5638 0.5707 0.5591 0.5746 0.5697 0.5707 0.5743 0.5503 0.5718 0.6011 0.6041
Coverage 7.0382 7.0471 7.0299 7.0948 7.0459 6.9999 7.1927 7.0360 7.2023 6.9979 6.7978 6.7818

Arts

1-Hamming 0.8834 0.9210 0.9046 0.9059 0.9035 0.9054 0.9020 0.8916 0.8993 0.9315 0.9321 0.9320
1-Ranking 0.7734 0.7774 0.7557 0.7479 0.7696 0.7797 0.7257 0.7924 0.7426 0.8208 0.8234 0.8250
AvgPrec 0.3355 0.3428 0.3324 0.2997 0.3439 0.3481 0.2605 0.3886 0.2852 0.4402 0.4479 0.4573
1-OneError 0.1883 0.1919 0.1903 0.1454 0.1940 0.1923 0.1062 0.2513 0.1426 0.2969 0.3138 0.3203
MacroF1 0.0962 0.0619 0.0863 0.0677 0.0864 0.0828 0.0466 0.1222 0.0658 0.0880 0.1010 0.1009
MicroF1 0.1738 0.1154 0.1542 0.1070 0.1539 0.1496 0.0860 0.2225 0.1118 0.1625 0.1861 0.1896
Coverage 7.3719 7.3199 7.9105 8.0955 7.5208 7.2357 8.6059 6.9166 8.2504 6.2077 6.1451 6.0962

Business

1-Hamming 0.9487 0.9581 0.9482 0.9482 0.9497 0.9580 0.9374 0.9500 0.9358 0.9692 0.9683 0.9698
1-Ranking 0.9215 0.9315 0.9205 0.9219 0.9238 0.9294 0.9066 0.9322 0.9013 0.9495 0.9517 0.9550
AvgPrec 0.7080 0.7315 0.6791 0.6820 0.6981 0.7413 0.6092 0.7354 0.5925 0.8544 0.8540 0.8618
1-OneError 0.6527 0.6611 0.5983 0.6065 0.6267 0.7100 0.5039 0.6748 0.4885 0.8625 0.8569 0.8667
MacroF1 0.0640 0.0554 0.0639 0.0561 0.0691 0.0536 0.0634 0.0903 0.0650 0.0551 0.0902 0.0950
MicroF1 0.5008 0.5238 0.4651 0.4693 0.4871 0.5231 0.4103 0.5405 0.3874 0.6584 0.6636 0.6747
Coverage 3.6281 3.2017 3.5773 3.6948 3.5538 3.4365 4.1116 3.2611 4.2259 2.7615 2.6629 2.5270

Computers

1-Hamming 0.9306 0.9452 0.9396 0.9431 0.9384 0.9439 0.9359 0.9368 0.9316 0.9553 0.9543 0.9560
1-Ranking 0.8601 0.8540 0.8494 0.8512 0.8536 0.8614 0.8481 0.8733 0.8154 0.8915 0.8968 0.9013
AvgPrec 0.4433 0.4342 0.4120 0.4127 0.4244 0.4406 0.4072 0.4969 0.3301 0.5899 0.5929 0.6127
1-OneError 0.2911 0.2746 0.2557 0.2404 0.2559 0.2750 0.2543 0.3566 0.1823 0.5125 0.5007 0.5273
MacroF1 0.0564 0.0495 0.0562 0.0328 0.0547 0.0452 0.0606 0.0794 0.0360 0.0512 0.0874 0.0974
MicroF1 0.2341 0.2212 0.2113 0.1688 0.2123 0.2098 0.2114 0.2951 0.1520 0.3622 0.3883 0.3871
Coverage 5.8950 6.0295 6.2671 6.2404 6.1239 5.9851 6.2941 5.4448 7.4203 4.9139 4.7315 4.5519



Mathematics 2023, 11, 782 15 of 25

Table 2. Cont.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Education

1-Hamming 0.9229 0.9417 0.9344 0.9436 0.9351 0.9418 0.9334 0.9267 0.9359 0.9518 0.9507 0.9528
1-Ranking 0.8549 0.8626 0.8375 0.8386 0.8474 0.8549 0.8533 0.8640 0.8030 0.8826 0.8830 0.8869
AvgPrec 0.3721 0.3762 0.3378 0.3237 0.3502 0.3618 0.3634 0.4111 0.2545 0.4567 0.4628 0.4791
1-OneError 0.1997 0.1838 0.1708 0.1389 0.1787 0.1767 0.1930 0.2481 0.0915 0.2906 0.3024 0.3207
MacroF1 0.0640 0.0480 0.0531 0.0295 0.0560 0.0453 0.0587 0.0794 0.0324 0.0460 0.0655 0.0605
MicroF1 0.2022 0.1470 0.1533 0.0795 0.1554 0.1324 0.1732 0.2432 0.0825 0.1524 0.1971 0.1870
Coverage 5.6981 5.4315 6.3093 6.2081 5.9069 5.6680 5.7851 5.4213 7.4605 4.8073 4.8027 4.6636

Enter
tainment

1-Hamming 0.8842 0.9128 0.9014 0.9066 0.9018 0.9048 0.9034 0.8940 0.8950 0.9264 0.9276 0.9281
1-Ranking 0.8074 0.8257 0.8035 0.7954 0.8158 0.8114 0.8006 0.8350 0.7223 0.8536 0.8561 0.8613
AvgPrec 0.4078 0.4505 0.4243 0.3997 0.4339 0.4282 0.4317 0.4799 0.2764 0.5205 0.5252 0.5391
1-OneError 0.2351 0.2723 0.2646 0.2271 0.2539 0.2517 0.2772 0.3172 0.1156 0.3659 0.3677 0.3852
MacroF1 0.1229 0.1096 0.1201 0.0946 0.1155 0.1110 0.1286 0.1622 0.0541 0.1364 0.1400 0.1481
MicroF1 0.2315 0.2208 0.2269 0.1707 0.2201 0.2073 0.2332 0.2991 0.0992 0.2692 0.2811 0.2873
Coverage 4.6959 4.3235 4.8199 4.9384 4.5388 4.6301 4.8987 4.1561 6.4181 3.7775 3.6975 3.6377

Health

1-Hamming 0.9255 0.9382 0.9348 0.9374 0.9371 0.9425 0.9339 0.9318 0.9210 0.9497 0.9504 0.9515
1-Ranking 0.8983 0.9021 0.8852 0.8866 0.8935 0.8973 0.8973 0.9039 0.8496 0.9170 0.9223 0.9261
AvgPrec 0.4939 0.4986 0.4815 0.4657 0.5072 0.5276 0.5068 0.5392 0.3579 0.6000 0.6247 0.6384
1-OneError 0.3354 0.3335 0.3355 0.2999 0.3644 0.3856 0.3597 0.4057 0.1973 0.4786 0.5163 0.5324
MacroF1 0.0757 0.0777 0.0805 0.0608 0.0909 0.0682 0.0903 0.1173 0.0507 0.0663 0.1169 0.1209
MicroF1 0.3302 0.2560 0.2713 0.2216 0.3075 0.2797 0.3004 0.3659 0.1679 0.3076 0.4056 0.4101
Coverage 4.5247 4.3600 5.0515 4.9723 4.7303 4.6881 4.6544 4.3671 6.2485 3.9497 3.7576 3.6298

Recreation

1-Hamming 0.8666 0.9113 0.9003 0.8980 0.8992 0.8996 0.8967 0.8879 0.8947 0.9308 0.9292 0.9296
1-Ranking 0.7323 0.7315 0.7471 0.7254 0.7513 0.7551 0.7255 0.7612 0.6571 0.7690 0.7930 0.7985
AvgPrec 0.3211 0.3385 0.3491 0.3102 0.3549 0.3556 0.3198 0.3834 0.2170 0.3860 0.4409 0.4504
1-OneError 0.1591 0.1937 0.1900 0.1530 0.1911 0.1831 0.1677 0.2318 0.0722 0.2265 0.2929 0.3019
MacroF1 0.0978 0.0910 0.1002 0.0827 0.1017 0.0926 0.0937 0.1294 0.0415 0.0556 0.1205 0.1306
MicroF1 0.1592 0.1494 0.1669 0.1279 0.1651 0.1594 0.1456 0.2097 0.0614 0.1038 0.1985 0.2024
Coverage 6.6750 6.6650 6.2568 6.7424 6.1543 6.0911 6.7627 6.0317 8.2247 5.8306 5.3058 5.1896

Reference

1-Hamming 0.9506 0.9552 0.9490 0.9569 0.9497 0.9522 0.9553 0.9542 0.9440 0.9642 0.9624 0.9634
1-Ranking 0.8820 0.8771 0.8718 0.8743 0.8752 0.8755 0.8819 0.8844 0.8167 0.8901 0.8931 0.8983
AvgPrec 0.4854 0.4690 0.4441 0.4649 0.4567 0.4704 0.4958 0.5178 0.2841 0.5587 0.5582 0.5777
1-OneError 0.3265 0.2874 0.2727 0.3032 0.2723 0.3007 0.3487 0.3791 0.0814 0.4575 0.4373 0.4644
MacroF1 0.0514 0.0664 0.0692 0.0535 0.0715 0.0699 0.0686 0.0843 0.0260 0.0187 0.0687 0.0708
MicroF1 0.2841 0.2617 0.2646 0.2581 0.2681 0.2880 0.2923 0.3435 0.0670 0.1944 0.3628 0.3611
Coverage 4.3486 4.4905 4.6713 4.5809 4.5738 4.5717 4.3426 4.2757 6.4441 4.0926 3.9917 3.8267

Science

1-Hamming 0.9407 0.9502 0.9446 0.9473 0.9435 0.9454 0.9471 0.9424 0.9430 0.9608 0.9593 0.9596
1-Ranking 0.8184 0.8148 0.8133 0.7991 0.8097 0.8177 0.8190 0.8278 0.7734 0.8267 0.8399 0.8449
AvgPrec 0.3115 0.3296 0.3122 0.2764 0.3050 0.3158 0.3395 0.3615 0.2110 0.3482 0.3995 0.4079
1-OneError 0.1582 0.1865 0.1603 0.1282 0.1572 0.1595 0.2028 0.2231 0.0723 0.1987 0.2642 0.2711
MacroF1 0.0624 0.0612 0.0623 0.0439 0.0597 0.0548 0.0741 0.0809 0.0293 0.0154 0.0698 0.0744
MicroF1 0.1361 0.1463 0.1399 0.0908 0.1369 0.1298 0.1654 0.1913 0.0549 0.0510 0.1742 0.1684
Coverage 8.6813 8.9410 8.9608 9.4447 9.0948 8.7677 8.7534 8.4367 10.5584 8.5153 7.9343 7.7084

Social

1-Hamming 0.9576 0.9625 0.9586 0.9595 0.9574 0.9600 0.9618 0.9621 0.9477 0.9669 0.9662 0.9666
1-Ranking 0.8881 0.8962 0.8953 0.8922 0.8916 0.8995 0.9019 0.9023 0.8515 0.9161 0.9122 0.9139
AvgPrec 0.4738 0.5121 0.5025 0.4670 0.4920 0.5099 0.5499 0.5599 0.3196 0.5864 0.5901 0.5941
1-OneError 0.2931 0.3613 0.3455 0.2813 0.3327 0.3433 0.4114 0.4234 0.1405 0.4222 0.4571 0.4574
MacroF1 0.0477 0.0536 0.0714 0.0483 0.0690 0.0693 0.0751 0.0700 0.0370 0.0033 0.0669 0.0756
MicroF1 0.1925 0.3129 0.3026 0.1769 0.3024 0.2921 0.3483 0.3688 0.1255 0.0430 0.3677 0.3565
Coverage 5.2518 4.9009 4.9235 5.1183 5.1223 4.8134 4.7232 4.7222 6.6941 4.2353 4.3230 4.2311

Society

1-Hamming 0.8835 0.9230 0.9041 0.9062 0.9053 0.9107 0.9079 0.8917 0.9036 0.9357 0.9362 0.9367
1-Ranking 0.7931 0.7954 0.7831 0.7799 0.7989 0.8015 0.7960 0.8012 0.7219 0.8283 0.8359 0.8366
AvgPrec 0.3702 0.4058 0.3572 0.3443 0.3712 0.3804 0.3821 0.4221 0.2407 0.5111 0.5242 0.5291
1-OneError 0.2221 0.2254 0.1943 0.1856 0.1954 0.2100 0.2317 0.3023 0.0804 0.4251 0.4361 0.4454
MacroF1 0.0944 0.0724 0.0833 0.0754 0.0858 0.0821 0.0943 0.1098 0.0428 0.0573 0.0817 0.0827
MicroF1 0.2009 0.1766 0.1705 0.1639 0.1722 0.1814 0.1969 0.2515 0.0769 0.2760 0.2790 0.2942
Coverage 7.1623 7.1745 7.5051 7.6289 7.0188 7.0651 7.2065 7.0054 9.0593 6.3846 6.2447 6.1403

The best results are shown in bold.

In the meantime, we randomly chose more labeled instances to evaluate the effec-
tiveness of SMDR-IC. As shown in Tables 3 and 4, SMDR-IC performs better when 50%
of the training set’s instances are labeled than when 20% are. However, SMDR-IC with
70% labeled instances of the training set shows higher performance than it does with 20%
labeled instances and has somewhat worse performance than it does with 50% labeled
instances, but it still ranked first on average. This outcome is primarily due to the fact that
the merits of the supervised approaches start to emerge as the fraction of labeled instances
rises enough.
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Table 3. Experimental results of 50% labeled instances on fifteen data sets in terms of seven evaluation metrics.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Emotions

1-Hamming 0.7482 0.7618 0.7490 0.7506 0.7701 0.7434 0.7656 0.7538 0.7529 0.7696 0.7732 0.7862
1-Ranking 0.7600 0.7900 0.7674 0.7764 0.7894 0.7650 0.7946 0.7787 0.7750 0.7931 0.8029 0.8206
AvgPrec 0.7191 0.7544 0.7368 0.7399 0.7535 0.7286 0.7596 0.7467 0.7397 0.7561 0.7677 0.7836
1-OneError 0.5989 0.6545 0.6455 0.6281 0.6545 0.6096 0.6573 0.6410 0.6376 0.6511 0.6736 0.6972
MacroF1 0.5560 0.5513 0.5606 0.5489 0.5888 0.5511 0.5727 0.5730 0.5588 0.5972 0.5914 0.6080
MicroF1 0.5706 0.5748 0.5722 0.5641 0.6039 0.5612 0.5966 0.5804 0.5728 0.6091 0.6121 0.6319
Coverage 2.1242 2.0140 2.1511 2.0607 2.0045 2.1343 1.9792 2.0989 2.0820 1.9826 1.9511 1.8753

Scene

1-Hamming 0.8636 0.8713 0.8683 0.8701 0.8705 0.8721 0.8647 0.8677 0.8688 0.8890 0.8932 0.8934
1-Ranking 0.8386 0.8397 0.8422 0.8484 0.8433 0.8465 0.8421 0.8463 0.8461 0.8819 0.8890 0.8913
AvgPrec 0.7616 0.7688 0.7685 0.7741 0.7726 0.7777 0.7606 0.7715 0.7731 0.8143 0.8226 0.8267
1-OneError 0.6231 0.6391 0.6355 0.6422 0.6438 0.6531 0.6177 0.6378 0.6409 0.7003 0.7111 0.7173
MacroF1 0.6056 0.6149 0.6188 0.6252 0.6252 0.6354 0.5969 0.6258 0.6250 0.6770 0.6863 0.6893
MicroF1 0.5995 0.6093 0.6130 0.6174 0.6173 0.6292 0.5903 0.6168 0.6170 0.6697 0.6797 0.6836
Coverage 0.8953 0.8924 0.8769 0.8474 0.8758 0.8600 0.8703 0.8567 0.8566 0.6794 0.6443 0.6328

Corel5k

1-Hamming 0.9904 0.9904 0.9904 0.9905 0.9904 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9906
1-Ranking 0.8574 0.8600 0.8603 0.8576 0.8587 0.8577 0.8570 0.8575 0.8575 0.8581 0.8568 0.8609
AvgPrec 0.2213 0.2354 0.2316 0.2225 0.2293 0.2304 0.2301 0.2283 0.2197 0.2305 0.2263 0.2403
1-OneError 0.2247 0.2511 0.2375 0.2174 0.2346 0.2404 0.2365 0.2366 0.2182 0.2444 0.2389 0.2577
MacroF1 0.0060 0.0096 0.0077 0.0056 0.0078 0.0077 0.0082 0.0049 0.0032 0.0035 0.0037 0.0055
MicroF1 0.0234 0.0431 0.0314 0.0205 0.0311 0.0277 0.0357 0.0195 0.0114 0.0128 0.0166 0.0236
Coverage 119.3953 118.0986 117.7031 119.2533 119.0181 119.0487 120.1382 119.3591 119.7709 120.0287 121.4830 117.9619

Yeast

1-Hamming 0.7816 0.7855 0.7849 0.7851 0.7874 0.7864 0.7877 0.7903 0.7816 0.7847 0.7930 0.7943
1-Ranking 0.8042 0.8060 0.8075 0.8066 0.8070 0.8100 0.8079 0.8107 0.8040 0.8031 0.8138 0.8172
AvgPrec 0.7304 0.7306 0.7354 0.7340 0.7358 0.7383 0.7332 0.7374 0.7297 0.7303 0.7457 0.7494
1-OneError 0.7273 0.7409 0.7405 0.7346 0.7372 0.7382 0.7354 0.7287 0.7457 0.7387 0.7507 0.7576
MacroF1 0.3484 0.2839 0.3436 0.3373 0.3360 0.3491 0.3191 0.3569 0.3041 0.3123 0.3549 0.3455
MicroF1 0.6037 0.5811 0.6088 0.6029 0.6049 0.6109 0.6074 0.6191 0.5922 0.6002 0.6219 0.6181
Coverage 6.8034 6.7618 6.7270 6.7398 6.7404 6.6576 6.7361 6.6698 6.7809 6.7990 6.6229 6.6229

Arts

1-Hamming 0.9289 0.9359 0.9315 0.9314 0.9329 0.9328 0.9313 0.9286 0.9302 0.9362 0.9360 0.9374
1-Ranking 0.8374 0.8445 0.8412 0.8410 0.8412 0.8433 0.8402 0.8386 0.8349 0.8428 0.8442 0.8487
AvgPrec 0.4915 0.5069 0.4999 0.4943 0.5018 0.5007 0.4905 0.4914 0.4790 0.4890 0.5026 0.5166
1-OneError 0.3715 0.3868 0.3808 0.3707 0.3861 0.3817 0.3674 0.3680 0.3531 0.3575 0.3843 0.4026
MacroF1 0.1776 0.1473 0.1894 0.1759 0.1805 0.1871 0.1763 0.1768 0.1611 0.1435 0.1620 0.1720
MicroF1 0.2720 0.2504 0.2831 0.2693 0.2824 0.2769 0.2617 0.2772 0.2486 0.2195 0.2551 0.2708
Coverage 5.7281 5.5627 5.6451 5.6321 5.6505 5.5943 5.6675 5.6947 5.8493 5.6033 5.6139 5.4561

Business

1-Hamming 0.9684 0.9702 0.9685 0.9687 0.9691 0.9690 0.9688 0.9679 0.9658 0.9700 0.9708 0.9715
1-Ranking 0.9585 0.9573 0.9589 0.9601 0.9591 0.9581 0.9596 0.9583 0.9552 0.9545 0.9602 0.9618
AvgPrec 0.8636 0.8636 0.8597 0.8611 0.8626 0.8595 0.8587 0.8584 0.8435 0.8588 0.8690 0.8768
1-OneError 0.8625 0.8584 0.8535 0.8551 0.8576 0.8569 0.8531 0.8535 0.8332 0.8625 0.8668 0.8784
MacroF1 0.1669 0.1166 0.1513 0.1533 0.1626 0.1551 0.1559 0.1698 0.1331 0.0744 0.1469 0.1545
MicroF1 0.6785 0.6654 0.6699 0.6714 0.6781 0.6733 0.6707 0.6753 0.6481 0.6655 0.6916 0.6951
Coverage 2.3756 2.3873 2.3371 2.3068 2.3437 2.4153 2.3275 2.3466 2.4845 2.5111 2.2897 2.2537

Computers

1-Hamming 0.9496 0.9557 0.9525 0.9528 0.9520 0.9546 0.9513 0.9476 0.9461 0.9551 0.9584 0.9590
1-Ranking 0.9011 0.8975 0.9007 0.8999 0.8986 0.9031 0.9009 0.8975 0.8875 0.8976 0.9111 0.9149
AvgPrec 0.5894 0.5951 0.5866 0.5838 0.5827 0.5916 0.5831 0.5840 0.5437 0.5949 0.6370 0.6433
1-OneError 0.4823 0.5012 0.4843 0.4750 0.4809 0.4869 0.4799 0.4862 0.4305 0.5065 0.5573 0.5622
MacroF1 0.1405 0.0947 0.1450 0.1263 0.1392 0.1288 0.1345 0.1471 0.1136 0.0888 0.1454 0.1489
MicroF1 0.3872 0.3808 0.3948 0.3792 0.3981 0.3883 0.3848 0.3951 0.3409 0.3811 0.4423 0.4515
Coverage 4.4657 4.6249 4.5040 4.5285 4.5744 4.4235 4.4881 4.5891 4.9771 4.6543 4.1604 4.0427

Education

1-Hamming 0.9496 0.9534 0.9511 0.9518 0.9516 0.9519 0.9513 0.9484 0.9498 0.9545 0.9547 0.9549
1-Ranking 0.8928 0.8971 0.8924 0.8923 0.8948 0.8940 0.8942 0.8910 0.8864 0.8967 0.8974 0.9006
AvgPrec 0.4926 0.5025 0.5003 0.4940 0.5045 0.4964 0.4989 0.4923 0.4692 0.5024 0.5127 0.5225
1-OneError 0.3419 0.3485 0.3508 0.3439 0.3607 0.3421 0.3445 0.3427 0.3148 0.3482 0.3683 0.3764
MacroF1 0.1102 0.0921 0.1178 0.1121 0.1159 0.1069 0.1154 0.1152 0.1009 0.1026 0.1060 0.1131
MicroF1 0.2736 0.2352 0.2735 0.2518 0.2679 0.2465 0.2492 0.2802 0.2234 0.2287 0.2533 0.2510
Coverage 4.4508 4.2894 4.4725 4.4939 4.4335 4.4177 4.4527 4.5197 4.6693 4.3086 4.3164 4.2052

Enter
tainment

1-Hamming 0.9218 0.9300 0.9244 0.9249 0.9244 0.9268 0.9266 0.9220 0.9204 0.9309 0.9334 0.9354
1-Ranking 0.8617 0.8686 0.8659 0.8643 0.8654 0.8658 0.8624 0.8643 0.8523 0.8686 0.8755 0.8799
AvgPrec 0.5415 0.5604 0.5570 0.5535 0.5584 0.5568 0.5426 0.5557 0.5202 0.5625 0.5833 0.5932
1-OneError 0.3936 0.4192 0.4179 0.4107 0.4175 0.4109 0.3909 0.4159 0.3679 0.4143 0.4470 0.4577
MacroF1 0.2135 0.1687 0.2041 0.1946 0.2073 0.1920 0.1780 0.2228 0.1661 0.1716 0.2008 0.2146
MicroF1 0.3624 0.3250 0.3561 0.3342 0.3580 0.3323 0.3108 0.3815 0.2997 0.3110 0.3607 0.3742
Coverage 3.5743 3.4669 3.5048 3.5779 3.5085 3.5465 3.5887 3.5519 3.7814 3.4638 3.3178 3.2151

Health

1-Hamming 0.9518 0.9549 0.9535 0.9530 0.9541 0.9546 0.9509 0.9508 0.9474 0.9537 0.9562 0.9570
1-Ranking 0.9315 0.9329 0.9336 0.9319 0.9341 0.9310 0.9273 0.9320 0.9190 0.9325 0.9366 0.9382
AvgPrec 0.6592 0.6684 0.6684 0.6589 0.6688 0.6632 0.6379 0.6617 0.6039 0.6567 0.6828 0.6910
1-OneError 0.5615 0.5741 0.5757 0.5666 0.5747 0.5677 0.5304 0.5641 0.4936 0.5529 0.5927 0.6071
MacroF1 0.1885 0.1587 0.1993 0.2058 0.2125 0.1906 0.1761 0.1985 0.1550 0.1640 0.2072 0.2083
MicroF1 0.4699 0.4499 0.4832 0.4647 0.4885 0.4621 0.4381 0.4829 0.3993 0.4244 0.4805 0.4902
Coverage 3.4239 3.3803 3.3655 3.4105 3.3380 3.4931 3.5839 3.4192 3.8311 3.4003 3.2523 3.2255

Recreation

1-Hamming 0.9200 0.9305 0.9263 0.9248 0.9272 0.9262 0.9253 0.9211 0.9235 0.9323 0.9342 0.9359
1-Ranking 0.8063 0.8131 0.8142 0.8131 0.8131 0.8134 0.8046 0.8094 0.8005 0.8043 0.8214 0.8286
AvgPrec 0.4728 0.4896 0.4922 0.4813 0.4925 0.4887 0.4696 0.4766 0.4534 0.4572 0.5056 0.5204
1-OneError 0.3375 0.3583 0.3637 0.3462 0.3628 0.3553 0.3329 0.3401 0.3107 0.3096 0.3738 0.3917
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Table 3. Cont.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

MacroF1 0.2054 0.1811 0.2290 0.2053 0.2289 0.2141 0.2004 0.2088 0.1764 0.1454 0.2033 0.2135
MicroF1 0.2794 0.2692 0.3045 0.2830 0.3046 0.2939 0.2661 0.2848 0.2440 0.2044 0.2907 0.3020
Coverage 5.0508 4.9122 4.8983 4.8867 4.8609 4.8680 5.0757 4.9829 5.1655 5.0915 4.6943 4.5397

Reference

1-Hamming 0.9554 0.9633 0.9582 0.9582 0.9582 0.9601 0.9584 0.9569 0.9522 0.9635 0.9654 0.9657
1-Ranking 0.8930 0.8966 0.8900 0.8871 0.8891 0.8900 0.8856 0.8962 0.8577 0.8956 0.9073 0.9106
AvgPrec 0.5435 0.5608 0.5460 0.5326 0.5404 0.5412 0.5183 0.5575 0.4469 0.5651 0.6042 0.6154
1-OneError 0.4095 0.4266 0.4191 0.3993 0.4093 0.4136 0.3845 0.4319 0.3034 0.4539 0.4919 0.5069
MacroF1 0.0940 0.0913 0.1072 0.0944 0.1049 0.1084 0.0798 0.1144 0.0790 0.0483 0.1175 0.1184
MicroF1 0.3650 0.3801 0.3684 0.3470 0.3649 0.3577 0.3294 0.3932 0.2542 0.3007 0.4137 0.4255
Coverage 3.9714 3.8601 4.0810 4.1669 4.1009 4.0773 4.2263 3.8670 5.1050 3.9079 3.5004 3.3993

Science

1-Hamming 0.9499 0.9575 0.9533 0.9540 0.9535 0.9543 0.9540 0.9501 0.9523 0.9604 0.9614 0.9622
1-Ranking 0.8423 0.8459 0.8430 0.8381 0.8473 0.8498 0.8453 0.8471 0.8351 0.8443 0.8632 0.8650
AvgPrec 0.3958 0.4074 0.4058 0.3965 0.4136 0.4106 0.3969 0.4122 0.3617 0.3913 0.4622 0.4695
1-OneError 0.2627 0.2712 0.2743 0.2662 0.2814 0.2738 0.2575 0.2801 0.2223 0.2436 0.3369 0.3480
MacroF1 0.1173 0.0975 0.1139 0.1122 0.1212 0.1138 0.1105 0.1189 0.0899 0.0464 0.1359 0.1398
MicroF1 0.2207 0.1965 0.2200 0.2082 0.2276 0.2136 0.2009 0.2318 0.1711 0.1053 0.2603 0.2607
Coverage 7.6821 7.6145 7.7165 7.8391 7.5111 7.5092 7.6200 7.5131 7.9943 7.6924 6.8843 6.8199

Social

1-Hamming 0.9532 0.9625 0.9581 0.9575 0.9568 0.9586 0.9494 0.9574 0.9470 0.9674 0.9683 0.9693
1-Ranking 0.8896 0.8979 0.8935 0.8898 0.8916 0.8962 0.8727 0.9063 0.8550 0.9185 0.9229 0.9265
AvgPrec 0.4669 0.4896 0.4736 0.4522 0.4663 0.4741 0.3958 0.5503 0.3306 0.5955 0.6280 0.6354
1-OneError 0.3022 0.3227 0.3101 0.2775 0.2976 0.2990 0.2292 0.4079 0.1631 0.4370 0.5110 0.5137
MacroF1 0.0779 0.0694 0.0928 0.0810 0.0968 0.0906 0.0591 0.1129 0.0518 0.0055 0.1302 0.1376
MicroF1 0.2298 0.2524 0.2511 0.2056 0.2390 0.2243 0.1938 0.3494 0.1256 0.0625 0.4381 0.4310
Coverage 5.1089 4.8045 4.9903 5.1461 5.1065 4.8719 5.8120 4.5001 6.4971 4.0898 3.8369 3.6669

Society

1-Hamming 0.9220 0.9365 0.9299 0.9269 0.9272 0.9301 0.9288 0.9243 0.9260 0.9370 0.9392 0.9404
1-Ranking 0.8390 0.8431 0.8364 0.8347 0.8378 0.8417 0.8287 0.8375 0.8195 0.8432 0.8534 0.8594
AvgPrec 0.5013 0.5336 0.5083 0.4945 0.5070 0.5104 0.4750 0.5104 0.4565 0.5361 0.5638 0.5761
1-OneError 0.3883 0.4289 0.4036 0.3850 0.3960 0.3989 0.3542 0.4084 0.3368 0.4507 0.4865 0.5048
MacroF1 0.1398 0.1127 0.1461 0.1438 0.1472 0.1443 0.1051 0.1511 0.1091 0.0907 0.1298 0.1537
MicroF1 0.2973 0.2866 0.3059 0.2801 0.2956 0.2911 0.2507 0.3212 0.2273 0.2712 0.3373 0.3568
Coverage 5.9990 5.8973 6.0695 6.1839 6.0735 5.9843 6.2853 5.9705 6.5285 5.9838 5.6912 5.5111

The best results are shown in bold.

Table 4. Experimental results of 70% labeled instances on fifteen data sets in terms of seven evaluation metrics.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Emotions

1-Hamming 0.7615 0.7717 0.7672 0.7739 0.7767 0.7766 0.7671 0.7750 0.7728 0.7798 0.7855 0.7960
1-Ranking 0.7848 0.7976 0.7962 0.7990 0.8015 0.8108 0.8029 0.7974 0.8021 0.8152 0.8159 0.8270
AvgPrec 0.7458 0.7638 0.7630 0.7612 0.7642 0.7764 0.7690 0.7650 0.7672 0.7795 0.7770 0.7945
1-OneError 0.6360 0.6781 0.6736 0.6657 0.6713 0.6933 0.6831 0.6758 0.6736 0.6837 0.6871 0.7185
MacroF1 0.5785 0.5675 0.5876 0.6040 0.5968 0.5989 0.5862 0.6071 0.5980 0.6049 0.6059 0.6244
MicroF1 0.5926 0.5988 0.5982 0.6197 0.6119 0.6197 0.5978 0.6235 0.6159 0.6284 0.6262 0.6443
Coverage 2.0264 1.9848 2.0073 1.9893 1.9208 1.9449 1.9758 2.0090 1.9663 1.8775 1.8725 1.8281

Scene

1-Hamming 0.8828 0.8854 0.8834 0.8835 0.8868 0.8877 0.8740 0.8821 0.8849 0.8918 0.8918 0.8987
1-Ranking 0.8667 0.8700 0.8728 0.8694 0.8756 0.8765 0.8646 0.8705 0.8711 0.8853 0.8864 0.8956
AvgPrec 0.7987 0.8019 0.8031 0.8011 0.8097 0.8114 0.7868 0.8012 0.8030 0.8192 0.8220 0.8323
1-OneError 0.6799 0.6823 0.6841 0.6812 0.6964 0.6971 0.6513 0.6795 0.6849 0.7064 0.7120 0.7256
MacroF1 0.6649 0.6609 0.6692 0.6596 0.6714 0.6773 0.6309 0.6596 0.6684 0.6806 0.6859 0.7021
MicroF1 0.6565 0.6556 0.6597 0.6533 0.6641 0.6708 0.6223 0.6514 0.6599 0.6756 0.6806 0.6977
Coverage 0.7560 0.7281 0.7268 0.7372 0.7131 0.7071 0.7703 0.7333 0.7317 0.6599 0.6614 0.6051

Corel5k

1-Hamming 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9905 0.9906 0.9906 0.9906 0.9906
1-Ranking 0.8614 0.8633 0.8622 0.8619 0.8600 0.8640 0.8623 0.8619 0.8609 0.8601 0.8606 0.8645
AvgPrec 0.2359 0.2459 0.2398 0.2349 0.2342 0.2389 0.2401 0.2338 0.2303 0.2324 0.2346 0.2457
1-OneError 0.2539 0.2702 0.2538 0.2439 0.2442 0.2519 0.2546 0.2428 0.2400 0.2505 0.2539 0.2694
MacroF1 0.0067 0.0111 0.0085 0.0067 0.0080 0.0079 0.0091 0.0065 0.0056 0.0041 0.0062 0.0088
MicroF1 0.0267 0.0449 0.0344 0.0232 0.0289 0.0277 0.0340 0.0267 0.0192 0.0185 0.0254 0.0334
Coverage 117.6995 116.8086 116.7635 117.3177 118.7547 116.2923 117.1544 117.0889 117.6433 117.9017 118.3098 115.5051

Yeast

1-Hamming 0.7934 0.7856 0.7905 0.7876 0.7891 0.7918 0.7884 0.7938 0.7875 0.7907 0.7908 0.7963
1-Ranking 0.8168 0.8095 0.8136 0.8092 0.8083 0.8147 0.8107 0.8171 0.8107 0.8147 0.8131 0.8193
AvgPrec 0.7452 0.7404 0.7439 0.7370 0.7375 0.7434 0.7411 0.7471 0.7407 0.7460 0.7420 0.7501
1-OneError 0.7489 0.7581 0.7541 0.7435 0.7404 0.7441 0.7523 0.7507 0.7539 0.7544 0.7508 0.7581
MacroF1 0.3499 0.2916 0.3459 0.3421 0.3526 0.3627 0.3347 0.3692 0.3154 0.3276 0.3473 0.3519
MicroF1 0.6228 0.5881 0.6144 0.6121 0.6152 0.6241 0.6143 0.6327 0.6046 0.6155 0.6164 0.6249
Coverage 6.5970 6.7419 6.6375 6.7021 6.7200 6.5906 6.7010 6.5565 6.6972 6.6850 6.6313 6.5409

Arts

1-Hamming 0.9350 0.9383 0.9365 0.9361 0.9378 0.9362 0.9360 0.9353 0.9349 0.9371 0.9377 0.9391
1-Ranking 0.8486 0.8526 0.8533 0.8532 0.8550 0.8532 0.8525 0.8484 0.8475 0.8503 0.8523 0.8565
AvgPrec 0.5167 0.5281 0.5271 0.5221 0.5318 0.5228 0.5217 0.5169 0.5074 0.5161 0.5224 0.5354
1-OneError 0.4010 0.4196 0.4113 0.4041 0.4188 0.4019 0.4035 0.3996 0.3871 0.3975 0.4056 0.4243
MacroF1 0.2003 0.1616 0.1926 0.1857 0.1975 0.1992 0.1948 0.1930 0.1741 0.1698 0.1764 0.1966
MicroF1 0.2950 0.2643 0.2962 0.2763 0.3019 0.2861 0.2781 0.2900 0.2606 0.2595 0.2734 0.2929
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Table 4. Cont.

Dataset Metrics CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Coverage 5.4450 5.3883 5.3297 5.3475 5.2751 5.3153 5.3294 5.4547 5.5149 5.4222 5.3745 5.2227

Business

1-Hamming 0.9710 0.9711 0.9708 0.9711 0.9709 0.9715 0.9703 0.9706 0.9699 0.9703 0.9712 0.9722
1-Ranking 0.9624 0.9608 0.9622 0.9625 0.9627 0.9622 0.9626 0.9624 0.9612 0.9547 0.9622 0.9642
AvgPrec 0.8738 0.8712 0.8747 0.8732 0.8743 0.8744 0.8712 0.8716 0.8647 0.8595 0.8747 0.8815
1-OneError 0.8732 0.8659 0.8727 0.8714 0.8709 0.8723 0.8685 0.8671 0.8588 0.8591 0.8709 0.8817
MacroF1 0.1818 0.1347 0.1743 0.1775 0.1843 0.1865 0.1885 0.1882 0.1697 0.0868 0.1769 0.1923
MicroF1 0.6949 0.6792 0.6885 0.6923 0.6922 0.6947 0.6869 0.6931 0.6845 0.6692 0.6974 0.7041
Coverage 2.2193 2.2740 2.2101 2.2083 2.2249 2.2060 2.2209 2.1829 2.2706 2.4765 2.2114 2.1547

Computers

1-Hamming 0.9559 0.9593 0.9572 0.9581 0.9577 0.9584 0.9571 0.9535 0.9533 0.9553 0.9586 0.9601
1-Ranking 0.9120 0.9097 0.9132 0.9144 0.9142 0.9144 0.9130 0.9105 0.9059 0.9012 0.9153 0.9172
AvgPrec 0.6345 0.6372 0.6374 0.6369 0.6402 0.6381 0.6338 0.6311 0.6056 0.6014 0.6442 0.6573
1-OneError 0.5491 0.5581 0.5497 0.5505 0.5519 0.5499 0.5473 0.5442 0.5104 0.5105 0.5604 0.5812
MacroF1 0.1820 0.1285 0.1833 0.1762 0.1829 0.1711 0.1787 0.1855 0.1484 0.0903 0.1836 0.1802
MicroF1 0.4483 0.4373 0.4567 0.4488 0.4584 0.4395 0.4447 0.4406 0.4077 0.3720 0.4557 0.4664
Coverage 4.0848 4.1838 4.0196 4.0554 3.9999 4.0347 4.1099 4.1432 4.3229 4.5234 3.9919 3.9225

Education

1-Hamming 0.9544 0.9560 0.9553 0.9550 0.9554 0.9552 0.9554 0.9538 0.9536 0.9555 0.9555 0.9562
1-Ranking 0.9002 0.9033 0.9015 0.9017 0.9024 0.9014 0.9034 0.8990 0.8936 0.9009 0.9030 0.9043
AvgPrec 0.5250 0.5309 0.5318 0.5293 0.5329 0.5269 0.5289 0.5221 0.4952 0.5209 0.5310 0.5396
1-OneError 0.3829 0.3865 0.3899 0.3865 0.3923 0.3828 0.3823 0.3774 0.3401 0.3767 0.3881 0.4003
MacroF1 0.1516 0.1352 0.1367 0.1478 0.1410 0.1469 0.1512 0.1441 0.1031 0.1222 0.1293 0.1405
MicroF1 0.2931 0.2624 0.2775 0.2747 0.2934 0.2773 0.2794 0.2854 0.2046 0.2376 0.2601 0.2824
Coverage 4.1844 4.1046 4.1851 4.1538 4.1309 4.1618 4.0851 4.2623 4.4157 4.2077 4.1237 4.0771

Enter
tainment

1-Hamming 0.9330 0.9365 0.9321 0.9333 0.9341 0.9339 0.9333 0.9337 0.9321 0.9354 0.9370 0.9372
1-Ranking 0.8773 0.8824 0.8792 0.8791 0.8789 0.8817 0.8798 0.8776 0.8750 0.8785 0.8817 0.8856
AvgPrec 0.5858 0.6029 0.5934 0.5950 0.5995 0.5991 0.5918 0.5904 0.5820 0.5921 0.6071 0.6127
1-OneError 0.4491 0.4735 0.4633 0.4649 0.4702 0.4652 0.4567 0.4561 0.4460 0.4571 0.4817 0.4854
MacroF1 0.2497 0.1954 0.2329 0.2333 0.2353 0.2272 0.2133 0.2555 0.2046 0.2162 0.2339 0.2436
MicroF1 0.4096 0.3729 0.3886 0.3903 0.3932 0.3827 0.3601 0.4177 0.3599 0.3742 0.3996 0.4026
Coverage 3.2566 3.1881 3.2192 3.2511 3.2267 3.1751 3.2452 3.2677 3.3087 3.2189 3.2041 3.1018

Health

1-Hamming 0.9569 0.9585 0.9584 0.9578 0.9584 0.9583 0.9569 0.9572 0.9527 0.9558 0.9589 0.9593
1-Ranking 0.9399 0.9395 0.9421 0.9410 0.9433 0.9414 0.9392 0.9409 0.9306 0.9376 0.9423 0.9437
AvgPrec 0.6934 0.6998 0.7062 0.6986 0.7087 0.7035 0.6914 0.7007 0.6500 0.6780 0.7064 0.7113
1-OneError 0.6055 0.6193 0.6257 0.6143 0.6260 0.6240 0.6023 0.6179 0.5465 0.5829 0.6228 0.6297
MacroF1 0.2280 0.1851 0.2345 0.2344 0.2468 0.2330 0.2283 0.2315 0.1943 0.1965 0.2296 0.2312
MicroF1 0.5062 0.4938 0.5235 0.5155 0.5270 0.5075 0.4946 0.5241 0.4496 0.4607 0.5191 0.5130
Coverage 3.1229 3.1503 3.0704 3.0901 3.0003 3.1112 3.1484 3.0863 3.4417 3.1992 3.0234 2.9960

Recreation

1-Hamming 0.9307 0.9371 0.9350 0.9342 0.9347 0.9346 0.9334 0.9317 0.9324 0.9344 0.9365 0.9386
1-Ranking 0.8266 0.8303 0.8343 0.8313 0.8349 0.8354 0.8281 0.8283 0.8199 0.8148 0.8320 0.8399
AvgPrec 0.5186 0.5303 0.5350 0.5255 0.5375 0.5347 0.5154 0.5240 0.5059 0.4895 0.5301 0.5458
1-OneError 0.3942 0.4115 0.4121 0.3995 0.4146 0.4119 0.3859 0.3981 0.3731 0.3525 0.4083 0.4265
MacroF1 0.2497 0.2276 0.2629 0.2469 0.2597 0.2666 0.2385 0.2519 0.2067 0.1824 0.2476 0.2666
MicroF1 0.3229 0.3208 0.3391 0.3301 0.3435 0.3397 0.3052 0.3266 0.2923 0.2456 0.3259 0.3440
Coverage 4.5768 4.5287 4.4223 4.4789 4.4233 4.4032 4.5629 4.5653 4.7635 4.8695 4.4791 4.2944

Reference

1-Hamming 0.9639 0.9662 0.9641 0.9647 0.9646 0.9649 0.9625 0.9630 0.9614 0.9644 0.9670 0.9670
1-Ranking 0.9068 0.9094 0.9085 0.9084 0.9094 0.9065 0.8996 0.9102 0.8912 0.9022 0.9124 0.9143
AvgPrec 0.6023 0.6148 0.6055 0.6099 0.6063 0.6025 0.5697 0.6080 0.5415 0.5829 0.6257 0.6284
1-OneError 0.4914 0.5056 0.4931 0.5025 0.4923 0.4911 0.4485 0.4933 0.4167 0.4705 0.5199 0.5254
MacroF1 0.1287 0.1230 0.1352 0.1366 0.1389 0.1354 0.1141 0.1341 0.0910 0.0885 0.1366 0.1471
MicroF1 0.4359 0.4412 0.4359 0.4295 0.4351 0.4217 0.3852 0.4461 0.3536 0.3538 0.4475 0.4476
Coverage 3.5143 3.4197 3.4615 3.4766 3.4141 3.5131 3.7654 3.4243 4.0247 3.6828 3.3325 3.2698

Science

1-Hamming 0.9590 0.9621 0.9604 0.9602 0.9604 0.9605 0.9596 0.9589 0.9592 0.9608 0.9628 0.9634
1-Ranking 0.8633 0.8627 0.8660 0.8657 0.8683 0.8686 0.8639 0.8634 0.8559 0.8477 0.8684 0.8735
AvgPrec 0.4623 0.4653 0.4701 0.4652 0.4745 0.4742 0.4597 0.4660 0.4309 0.4121 0.4795 0.4910
1-OneError 0.3357 0.3423 0.3483 0.3401 0.3532 0.3489 0.3318 0.3437 0.2985 0.2787 0.3570 0.3723
MacroF1 0.1590 0.1235 0.1639 0.1536 0.1518 0.1570 0.1479 0.1527 0.1228 0.0759 0.1450 0.1565
MicroF1 0.2702 0.2498 0.2812 0.2655 0.2811 0.2807 0.2616 0.2835 0.2211 0.1726 0.2773 0.2832
Coverage 6.8751 6.9052 6.7387 6.7311 6.6656 6.6881 6.8797 6.8390 7.1929 7.5374 6.6781 6.4324

Social

1-Hamming 0.9625 0.9681 0.9653 0.9647 0.9654 0.9657 0.9623 0.9638 0.9582 0.9678 0.9691 0.9704
1-Ranking 0.9160 0.9209 0.9191 0.9220 0.9208 0.9187 0.9101 0.9208 0.9007 0.9188 0.9281 0.9323
AvgPrec 0.5849 0.6093 0.5964 0.5951 0.6004 0.5900 0.5598 0.6098 0.5072 0.5981 0.6489 0.6581
1-OneError 0.4491 0.4823 0.4649 0.4582 0.4673 0.4553 0.4207 0.4855 0.3547 0.4422 0.5368 0.5434
MacroF1 0.1412 0.1151 0.1491 0.1517 0.1661 0.1469 0.1184 0.1543 0.1047 0.0080 0.1672 0.1622
MicroF1 0.3701 0.4069 0.3984 0.3816 0.4008 0.3794 0.3454 0.4147 0.2702 0.0885 0.4630 0.4661
Coverage 4.0837 3.8727 3.9483 3.8166 3.8927 4.0121 4.2923 3.8763 4.6708 4.0424 3.5747 3.4423

Society

1-Hamming 0.9354 0.9413 0.9380 0.9365 0.9373 0.9375 0.9354 0.9356 0.9356 0.9394 0.9414 0.9421
1-Ranking 0.8560 0.8584 0.8588 0.8554 0.8575 0.8584 0.8476 0.8560 0.8462 0.8530 0.8588 0.8628
AvgPrec 0.5572 0.5787 0.5665 0.5548 0.5645 0.5636 0.5373 0.5597 0.5352 0.5584 0.5818 0.5898
1-OneError 0.4688 0.5003 0.4827 0.4694 0.4827 0.4795 0.4445 0.4741 0.4389 0.4784 0.5163 0.5269
MacroF1 0.1685 0.1376 0.1708 0.1633 0.1670 0.1705 0.1212 0.1682 0.1301 0.1175 0.1573 0.1682
MicroF1 0.3470 0.3278 0.3526 0.3321 0.3471 0.3446 0.2907 0.3533 0.3010 0.3121 0.3665 0.3681
Coverage 5.5597 5.5129 5.4695 5.6288 5.5691 5.5561 5.8383 5.5596 5.8517 5.6550 5.5235 5.4241

The best results are shown in bold.
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Regarding the experimental results reported in Tables 2–4, the semi-supervised meth-
ods outperform the supervised methods because these supervised methods obtain the ge-
ometric structure of instances by using labeled instances, whereas the semi-supervised
method leverages labeled and unlabeled instances to obtain a more comprehensive ge-
ometric structure of instances. Furthermore, because the label propagation mechanism
of the NMSLDR method is replaced by that of the SMDR-IC method, the comparison results
demonstrate that learning of instance similarity, common features, and specific features all
play significant roles in capturing the geometric structure of instances.

To investigate further the performance differences between the compared methods
and the proposed approach SMDR-IC, the necessary analyses were carried out using
the Friedman test [44]. Table 5 lists the Friedman statistics FF for each evaluation metric
and critical levels. The null hypothesis that all comparison algorithms perform equally well
is rejected for each evaluation metric at significance level α = 0.05. The proposed approach,
SMDR-IC, is viewed as the control method, and the Bonferroni–Dunn test is utilized as

the post-hoc test [44]. The critical distance (CD), defined as CD = qa

√
K(K+1)

6N , is used
to assess the average ranking differences between any two algorithms. Here, qa = 3.2680,
(K = 12, N = 15), and CD = 4.3025. Figure 2 depicts the CD diagrams for each evaluation
metric. The red line in each subfigure shows that the distances between SMDR-IC and
certain comparison methods are less than CD, indicating statistical similarity. We observe
that SMDR-IC and MDDM have significant statistical similarities for Ranking Loss, Average
Precision, OneError, and Coverage, which is consistent with MDDM where the baseline
method of SMDR-IC and SMDR-IC ranks second under MacroF1 and first under the other
six evaluation metrics.

Table 5. Friedman statistics FF and the critical value of each evaluation metric.

Metric FF (K = 12, N = 15) Critical Value (α = 0.05)

Hamming loss 50.5529

1.8513

Ranking loss 59.7234
Average Precision 64.3119

One Error 47.8750
MacroF1 16.8654
MicroF1 19.9092

Coverage 54.2087

(a) (b) (c) (d)

(e) (f) (g)

Figure 2. Bonferroni–Dunn test for SMDR-IC and other compared techniques. (a) 1-Hamming.
(b) 1-Ranking. (c) AvgPrec. (d) 1-OneError. (e) MacroF1. (f) MicroF1. (g) Coverage.

We also selected four domain data sets (Emotions, Scene, Yeast, and Arts) and five
comparing methods, including supervised and semi-supervised to further study the per-
formance of SMDR-IC under different target dimensionalities. Figures 3–6 show the av-
erage results concerning 1-Hamming, 1-Ranking, AvgPrec, and Coverage, respectively.
It can also be seen that SMDR-IC almost always outperforms other comparing methods
on these evaluation metrics. These results further demonstrate the effectiveness of SMDR-IC
for multi-label dimensionality reduction.
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Figure 3. Results of 1-Hamming on four data sets under different target dimensionalities.
(a) Emotions. (b) Scene. (c) Yeast. (d) Arts.
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Figure 4. Results of 1-Ranking on four data sets under different target dimensionalities.
(a) Emotions. (b) Scene. (c) Yeast. (d) Arts.
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Figure 5. Results of AvgPrec on four data sets under different target dimensionalities. (a) Emotions.
(b) Scene. (c) Yeast. (d) Arts.
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Figure 6. Results of Coverage on four data sets under different target dimensionalities. (a) Emotions.
(b) Scene. (c) Yeast. (d) Arts.

4.5. Sensitivity Analysis of Parameters

Three crucial parameters—α, β, and γ—are present in our dimensionality reduction
model. α controls the contributions of embedding instance correlations, while β and γ
regulate the sparsity of the projection matrix. It is necessary for us to conduct the sen-
sitivity analysis of parameters for SMDR-IC. All values of parameters are specified as
[10−7, 10−6, · · · , 102, 103] based on four domain data sets, including Emotions, Scene, Yeast,
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and Arts. We tune one parameter by a step 101, while fixing other parameters at their
best settings.

Figures 7–9 show the influence of three parameters on four data sets. Parameter α
controls the instance correlations, and the larger value of it means the higher importance
of instance correlations. We can clearly see that when the α increases from 10−7 to 100,
the performance tends to increase slowly and remain stable, but when the α exceeds 1,
performance begins to decline slowly on Yeast and Arts and rapidly on Emotions and
Scene. This is explained by the fact that the influence of instance correlations becomes
more significant as the α value increases, potentially limiting the influence of other factors
and resulting in poor performance. Parameters β and γ control the sparsity of specific
features and common features, respectively. The trends are similar to the parameter α, with
the increasing values of β and γ, the performance tends to increase and maintain stability.
Nevertheless, with parameters β or γ > 101, the performance beings to decline, slowly
on Yeast and Arts, and rapidly on Emotions and Scene.
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Figure 7. Sensitivity analysis of parameter α on four data sets for five evaluation metrics.
(a) 1-Hamming. (b) 1-Ranking. (c) AvgPrec. (d) 1-OneError. (e) Coverage.
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Figure 8. Sensitivity analysis of parameter β on four data sets for five evaluation metrics.
(a) 1−Hamming. (b) 1−Ranking. (c) AvgPrec. (d) 1−OneError. (e) Coverage.
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Figure 9. Sensitivity analysis of parameter γ on four data sets for five evaluation metrics.
(a) 1-Hamming. (b) 1-Ranking. (c) AvgPrec. (d) 1-OneError. (e) Coverage.

4.6. Convergence and Time Complexity Analysis

The accelerated proximal gradient method (APG), a special version of the gradient
descent method, is used to solve optimization problems with non-differentiable objec-
tive functions. The SMDR-IC optimization model Equation (29) can be transformed into
the standard model solved by APG. For its convergence theory, see [42].

As the number of iterations is increased, Figure 10 illustrates the changes in the objec-
tive function values for the SMDR-IC dimensionality reduction model on the four data sets.
It is clear that the value of the objective function rapidly declines as iteration times increase.
More specifically, on the Emotions dataset after around 50 iterations, and on the Scene,
Yeast, and Arts data sets after about 150, 40, and 2500 iterations, respectively, the objective
function value tends to a fixed value. In conclusion, the APG method steadily converges
when solving the SMDR-IC dimensionality reduction model.

The following is the conclusion of the complexity analysis of SMDR-IC methods.
The time complexity of constructing a kNN graph matrix W and computing the label
correlations matrix C is denoted as O(n2d) and O(lc2), respectively, where n is the num-
ber of labeled and unlabeled instances, d is the dataset dimensionality, l is the number
of labeled instances, and c is the number of labels. The time complexity of obtaining
the soft labels is approximately O(n2c). The time cost of calculating the target matrix Z is
dominated by SVD on X, which can be denoted as O(n2d + nd2). O(nd2 + d3) is the time
complexity of initializing P. The time complexity of calculating the Lipschitz constant L f is
denoted by the symbol O(d3). The time cost of iteration steps is dominated by calculating
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the gradient of f (P), which can be denoted as O(nd2 + n2d). As a consequence, the total
time complexity of SMDR-IC is denoted as O(m(n2d + nd2) + d3), where m is the number
of iterations.
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Figure 10. Convergence analysis of proposed method on four data sets. (a) Emotions. (b) Scene.
(c) Yeast. (d) Arts.

Table 6 lists the calculation time of each methods on four data sets. According to
Table 6, we see the following. Firstly, the semi-supervised dimensionality methods take
longer than the supervised ones. This is because semi-supervised dimensionality meth-
ods use more instances than supervised ones in the learning process. Specifically, semi-
supervised dimensionality reduction methods use both labeled and unlabeled instances
to learn, whereas supervised methods use only labeled instances. Semi-supervised dimen-
sionality methods also require obtaining soft labels for unlabeled instances. Secondly, when
comparing other semi-supervised dimensionality reduction methods, SMDR-IC performs
with similar efficiency on data sets with medium data volume, and slower efficiency on data
sets with small and large data volume, while most of them take a longer time. This is
because the final result of SMDR-IC is obtained by the gradient optimization method, and
the number of iterations for the optimization method to converge varies on different data
sets, making it difficult to find a universally applicable setting.

Table 6. Calculation time (s) of different methods on four data sets.

Dataset CCA wMLDAb wMLDAe wMLDAc wMLDAf wMLDAd MLDA-
LC MDDM SSMLDR SMDRdm NMLSDR SMDR-

IC

Emotions 0.0662 0.0297 0.0201 0.0276 0.0302 0.0520 0.0206 0.0242 0.0422 0.0395 0.0361 0.1429
Scene 0.1193 0.1183 0.1203 0.1116 0.1224 0.1378 0.1697 0.1463 0.7838 0.7003 0.6598 0.8260
Yeast 0.1435 0.1469 0.1407 0.1503 0.1569 1.0397 0.1557 0.1405 0.7012 0.5310 0.4905 0.6690
Arts 0.5485 0.5748 0.5866 0.5789 1.1861 1.5268 0.9560 1.3994 6.1865 5.8123 5.2988 11.9221

5. Conclusions

In this paper, we introduced a novel method, namely semi-supervised multi-label
dimensionality reduction learning by instances and label correlations (SMDR-IC), which
effectively utilizes the information from both labeled instances and unlabeled instances
by label propagation. SMDR-IC exploits the instance correlations by assuming that if two
instances are correlated in the original feature space, they will also be related in the low-
dimensionality feature space. The label correlations are also taken into account by reformu-
lating the least squares method. Furthermore, l1-norm and l2,1-norm regularization terms
are respectively utilized to select specific features and common features in feature space.
Finally, extensive experiments on fifteen data sets prove that our method can outperform
other well-established multi-label dimensionality reduction methods.

The main shortcoming of the SMDR-IC technique is that the projection mapping φ
considered is a linear operator, and the linear operator may not be capable of learning
the manifold structure of high-dimensional space completely. Then, in future research,
we will concentrate on developing more effective nonlinear projection operators and re-
searching the classification method coupled with dimensionality reduction techniques.
In addition, SMDR-IC is slightly disadvantaged in terms of efficiency, mainly due to the
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difficulty in finding universally applicable convergence determination conditions for itera-
tive optimization for different data sets. Therefore, iterative convergence determination
methods or more efficient solution methods applicable to different data sets are to be further
studied in future work.
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