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Abstract: This research investigates the stabilization and control of an uncertain Euler–Bernoulli
nano-beam with fixed ends. The governing partial differential equations of motion for the nano-
beam are derived using Hamilton’s principle and the non-local strain gradient theory. The Galerkin
method is then applied to transform the resulting dimensionless partial differential equation into
a nonlinear ordinary differential equation. A novel fault-tolerant terminal sliding mode control
technique is proposed to address the uncertainties inherent in micro/nano-systems and the potential
for faults and failures in control actuators. The proposed controller includes a finite time estimator,
the stability of which and the convergence of the error dynamics are established using the Lyapunov
theorem. The significance of this study lies in its application to the field of micro/nano-mechanics,
where the precise control and stabilization of small-scale systems is crucial for the development of
advanced technologies such as nano-robotics and micro-electromechanical systems (MEMS). The
proposed control technique addresses the inherent uncertainties and potential for faults in these
systems, making it a valuable choice for practical applications. The simulation results are presented
to demonstrate the effectiveness of the proposed control scheme and the high accuracy of the
estimation algorithm.

Keywords: robust adaptive control; non-local strain gradient theory; fault-tolerant terminal sliding
mode control; finite time disturbance observer; nonlinear vibrations; Hamiltonian principle

MSC: 93C40; 74H45; 74S40

1. Introduction

Micro/nano-electromechanical systems (MEMS/NEMS) are miniaturized devices
that operate at the micro/nanoscale and have a wide range of applications in various
fields, including healthcare [1], electronics, the automotive industry, aerospace, and de-
fense [2]. Micro/nano-beams are an important component of these systems because they
can be used to transfer forces, displacements, and other mechanical quantities between
different parts of the device. Some specific examples of the use of micro/nano-beams in
MEMS/NEMS include:

• Bio-MEMS [1]: These are devices that use micro/nano-scale technology to interact
with biological systems, such as cells, tissues, and organs. Micro/nano-beams can
be used in bio-MEMS to create mechanical forces that stimulate or sense biological
responses or to perform other functions such as drug delivery or tissue engineering.

• Atomic force microscopes [3]: These are advanced imaging tools that use a micro/nano-
scale cantilever beam to probe the surface of a sample at a very high resolution. The
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beam is used to sense the interaction forces between the sample and the tip of the
beam, which can be used to create a detailed map of the sample’s surface.

• Micro-switches [2]: These are tiny switches that can be used to control the flow of
electrical current in a circuit. Micro/nano-beams can be used in micro-switches to
actuate the switch and change the state of the circuit.

• Micro-actuators [4]: These are devices that can generate mechanical forces or displace-
ments in response to an electrical or other input. Micro/nano-beams can be used as
actuators in MEMS/NEMS to create small, precise movements.

• Micro-resonators [5]: These are devices that can vibrate at a specific frequency, and are
used in a variety of applications including sensors, oscillators, and filters. Micro/nano-
beams can be used to create the resonant motion in micro-resonators.

• Micro-sensors [6]: These are devices that can detect and measure physical quantities
such as temperature, pressure, humidity, or chemical concentrations. Micro/nano-
beams can be used in micro-sensors to sense these quantities and convert them into an
electrical signal.

In addition to these examples, micro/nano-beams are also used in printers to improve
the speed and quality of printing and to lower production costs and increase the number
of dots per inch (dpi) [7]. Overall, micro/nano-beams are a versatile and essential com-
ponent of many micro/nano-electromechanical systems, and they have the potential to
revolutionize a wide range of fields and applications [8].

The mechanical and physical behavior of micro/nano-beams has been extensively
studied through both experimental observations and theoretical methods [9,10].

To date, several studies have investigated various theories for modeling nano- and
microsystems. These theories include continuum mechanics, molecular dynamics, and
quantum mechanics, among others. Each theory has its own advantages and disadvantages,
and the choice of which theory to use depends on the specific system being studied and
the level of accuracy required. For example, continuum mechanics is widely used for
modeling large-scale systems, while molecular dynamics and quantum mechanics are
used for modeling small-scale systems at the atomic and subatomic level. Additionally,
some theories have been developed specifically for nano and micro-systems, such as the
non-local strain gradient theory, which takes into account the size-dependent behavior of
these systems. Overall, there is a wide range of theories available for modeling nano- and
micro-systems, and the choice of which theory to use should be made based on the specific
characteristics and requirements of the system being studied [11].

Molecular dynamic (MD) simulation allows for the analysis of nano-structures at the
atomic level [12]. However, this method can be time-consuming and may not be practical
for all situations. On the other hand, the classical continuum mechanics theory, which
is based on the study of large-scale materials, may not be accurate for the analysis of
micro/nano-structures due to the lack of an additional length scale parameter and the
importance of intermolecular forces on small scales. In addition, there are uncertainties
about obtaining elasticity constants, such as the modulus of elasticity, using the discrete
space model of micro/nano-structures with a continuum [13]. To address these issues, the
non-classical continuum theory has become a popular choice for the analysis of micro/nano-
structures. It offers the benefits of not requiring a long time for analysis and being more
accurate than classical continuum theory [14]. Non-classical continuum theory includes
various approaches, such as fractional calculus, which have been shown to be effective in
the analysis of micro/nano-scale systems. In general, the use of non-classical continuum
theory has become more prevalent in the analysis of micro/nano-structures due to its
accuracy and efficiency compared to other methods [15].

One of the non-classical continuum theories developed for modeling size-dependent
beams is the couple stress theory [16,17]. The strain gradient theory, which takes into
account the strain energy being a function of the amount of strain and its first derivative [18],
has been introduced in [19], and the modified strain gradient theory has been proposed
in [20]. Similarly, the non-local elasticity theory [21] considers the stress at a point as a
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function of strains at all points in the continuum, but only characterizes the softening
effect and does not consider stiffness enhancement. However, strain gradient and couple
stress theories can be used to incorporate stiffness enhancement. Therefore, the non-local
elasticity theory, strain gradient theory, and couple stress theory address different aspects
of size-dependent material behavior. Consequently, the combination of the non-local
elasticity theory [15] and the strain gradient theory [22], called the non-local strain gradient
theory [23], is essential for accurately modeling real size-dependent mechanical behavior.

The nonlinear control of MEMS/NEMS has been a subject of significant research
in recent years due to the importance of these micro/nano-scale systems in a variety of
applications. The small size and high sensitivity of these systems make them prone to
nonlinear behavior, which can affect their performance and stability [24,25]. Therefore,
developing effective control strategies for nonlinear MEMS/NEMS systems is essential for
ensuring their reliable operation. One approach that has been widely used for nonlinear
control of MEMS/NEMS is sliding mode control (SMC). SMC is a robust control method
that can effectively handle uncertainties and perturbations in the system, making it well-
suited for micro/nano-scale systems where these factors can have a significant impact
on performance.

SMC works by driving the system to a sliding surface in the state space, where the
control input is applied in such a way as to maintain the system on the surface [26–29]. This
allows the system to track a desired reference signal while rejecting external disturbances
and uncertainties. There have been many successful applications of SMC to the nonlinear
control of MEMS/NEMS systems. For example, it has been used to control the vibration
of micro-resonators, stabilize the nonlinear dynamics of micro/nano-beams, and improve
the performance of micro/nano-actuators. In these applications, SMC has been shown
to be an effective method for improving the accuracy and reliability of micro/nano-scale
systems. In addition to these practical applications, there has also been significant research
on the theoretical foundations of SMC for nonlinear MEMS/NEMS systems, including the
development of new control laws and the study of stability and convergence properties.
Overall, the use of SMC for nonlinear control of MEMS/NEMS has proven to be a valuable
tool for improving the performance and reliability of these systems [30–33]. On the other
hand, the existence of faults and failures in most of the practical systems is undeniable,
and this makes considering their effects in the design of controller essential [34,35]. These
issues demand more studies on the controller techniques for micro/nano-beams.

The precise control and stabilization of small-scale systems are essential for the de-
velopment of advanced technologies such as nano-robotics and micro-electromechanical
systems (MEMS). However, the inherent uncertainties and potential for faults in these
systems pose significant challenges for control design. To address these challenges, the
authors propose a novel fault-tolerant terminal sliding mode control technique. The pro-
posed controller includes a finite time estimator, the stability of which and the convergence
of the error dynamics are established using the Lyapunov theorem. The effectiveness
of the proposed control scheme and the high accuracy of the estimation algorithm are
demonstrated through the simulation results. This research is novel in its approach to
addressing the specific challenges that arise in the control of micro/nano-systems, and it
has the potential to greatly improve the precision and robustness of small-scale systems,
ultimately leading to the development of advanced technologies such as nano-robotics
and MEMS.

The paper is structured as follows: Section 2 introduces the mathematical model of
a simply supported Euler–Bernoulli nano-beam subjected to a centralized force in the
middle of the beam. Section 3 presents the design of the proposed controller. In Section 4,
numerical simulations are presented to demonstrate the effectiveness and performance of
the proposed control architecture and estimation algorithm for stabilizing the nonlinear
vibration of the nano-beam. Finally, the conclusions are presented in Section 5.
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2. System Model and Mathematical Formulation

The strain energy (U) of an isotropic linear elastic material can be described using the
non-local strain gradient theory [23]:

U =
1
2

∫
V
(σxxεxx + σxx

(1)∇εxx)dV (1)

where σxx, σxx
(1), and εxx indicate the classical stress, the higher-order stress, and the normal

strain, respectively. In addition, the one-dimensional differential operator is represented by
∇ in which is equal to ∂/∂x. In addition, σxx and σxx

(1) can be defined as

σxx =
∫ L

0
Eα0

(
x, x′, e0a

)
ε
′
xx
(

x′
)
dx′ (2)

σxx
(1) = lm2

∫ L

0
Eα1

(
x, x′, e1a

)
ε
′
xx,x
(

x′
)
dx′ (3)

txx = σxx −∇σxx
(1) (4)

where L, α0, α1, and E stand for the length of the nano-beam, the principal attenuation
kernel function combining constitutive equations of the non-local effects, an additional
kernel function relating to the non-local effect, and the Young’s modulus, respectively. In
addition, the effects of the non-local elastic stress field are expressed by e0a and e1a. The
strain gradient length scale parameter is represented by lm. The general non-local strain
gradient constitutive equation is given by [23]:[

1− (e0a)2∇2
][

1− (e1a)2∇2
]
txx = E

[
1− (e1a)2∇2

]
εxx − Elm2

[
1− (e0a)2∇2

]
∇2εxx (5)

where ∇2 = ∂2

∂ x2 is the Laplacian operator. Let e0 = e1 = e [23] and Equation (5) can be
rewritten as [

1− (ea)2∇2
]
txx = E

(
1− lm2∇2

)
εxx (6)

Supposing lm = 0 results in non-local elasticity theory as [21]:[
1− (ea)2∇2

]
txx = Eεxx (7)

In addition, considering ea = 0, the strain gradient theory is given by [22]

txx = E
(

1− lm2∇2
)

εxx (8)

The structure of a hinged–hinged nano-beams is illustrated in Figure 1.
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Considering Figure 1, the displacement components of a straight Euler–Bernoulli
nano-beam can be represented as:

u1(x, z, t) = u(x, t)− z ∂w(x,t)
∂x

u2(x, z, t) = 0
u3(x, z, t) = w(x, t)

(9)
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The displacements in the x, y, and z directions are represented by u1, u2 , and u3, re-
spectively. When considering large deflection and small slope for a straight Euler–Bernoulli
nano-beam, Von Karman’s nonlinear strain relationship can be expressed as follows:

εxx =
∂u(x, t)

∂x
+

1
2
(

∂w(x, t)
∂x

)
2
− z

∂2w(x, t)
∂x2 (10)

in which εxx denotes the longitudinal strain. The first variation of strain energy is given by:

δ
∫ t

0
Udt =

∫ t

0

∫
V

(
σxxδεxx + σxx

(1)∇δεxx

)
dVdt (11)

Equation (11) can be rewritten as follows:

δ
∫ t

0 Udt =
∫ t

0

∫
V

(
σxxδεxx −∇σxx

(1)δεxx

)
dVdt +

∫ t
0

[∫
A σxx

(1)δεxxdA
]∣∣∣L

0
dt

=
∫ t

0

∫
V(txxδεxx)dVdt +

∫ t
0

[∫
A σxx

(1)δεxxdA
]∣∣∣L

0
dt

(12)

where A is the cross-sectional area. Now, we define the following stress resultants as:

Nc =
∫

A
txxdA, Mc =

∫
A

ztxxdA, Nnc =
∫

A
σxx

(1)dA, Mnc =
∫

A
zσxx

(1)dA (13)

where Mc and Nc are the classical normal moment and force, respectively; in addition,
Mnc and Nnc indicate the non-classical ones. Substituting Equations (10) and (13) into
Equation (12) results in:

δ
∫ t

0 Udt =
∫ t

0

∫ L
0

[
Nc

(
∂δu
∂x + ∂w

∂x
∂δw
∂x

)
−Mc

∂2δw
∂x2

]
dxdt

+
∫ t

0

[
Nnc

(
∂δu
∂x + ∂w

∂x
∂δw
∂x

)
−Mnc

∂2δw
∂x2

]∣∣∣L
0

dt
(14)

In addition, for the work that is carried out by the applied external forces, one has:

δ
∫ t

0
Wdt =

∫ t

0

∫
L
( f δu + qδw)dxdt (15)

where f and q represent the distributed axial and transverse loads, respectively. Similarly,
the first variation of kinetic energy is given by:

δ
∫ t

0
Kedt =

∫ t

0

∫ L

0
IA

(
∂u
∂t

∂δu
∂t

+
∂w
∂t

∂δw
∂t

)
dxdt (16)

where
IA =

1
12

bh3 (17)

The general form of Hamilton’s principle, which is used to derive the equations of
motion, is as follows:

δ
∫ t

0
[Ke − (U −W)]dt = 0 (18)

By applying Hamilton’s principle (18) and separating the coefficients of δu and δw,
the governing equation of the system can be reached as follows:

δu⇒ ∂Nc
∂x + f (x, t) = IA

∂2u
∂t2

δw⇒ ∂2 Mc
∂x2 + ∂

∂x

(
Nc

∂w
∂x

)
+ q(x, t) = IA

∂2w
∂t2

(19)
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Moreover, the corresponding boundary conditions are:

δu⇒ Nc = 0 or u = 0
δ∂u
∂x ⇒ Nnc = 0 or ∂u

∂x = 0
δw⇒ ∂Mc

∂x + Nc
∂w
∂x = 0 or w = 0

δ∂w
∂x ⇒ Mc − Nnc

∂w
∂x = 0 or ∂w

∂x = 0
δ∂2w
∂x2 ⇒ Mnc = 0 or ∂2w

∂x2 = 0

(20)

Equation (6) can be modified to apply to a nano-beam using the non-local strain
gradient theory as follows:

txx − (ea)2 ∂2txx
∂x2

= E
[

∂u
∂x + 1

2 (
∂w
∂x )

2 − z ∂2w
∂x2

]
−Elm2

[
∂3u
∂x3 +

∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2
− z ∂4w

∂x4

] (21)

According to Equations (13) and (21), one has:

Nc − (ea)2 ∂2 Nc
∂x2 = Axx

[
∂u
∂x + 1

2 (
∂w
∂x )

2]− Axxlm2
[

∂3u
∂x3 +

∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2
]

Mc − (ea)2 ∂2 Mc
∂x2 = −Dxx

∂2w
∂x2 + Dxxlm2 ∂4w

∂x4

(22)

where
(Axx, Dxx) =

∫
A

E
(

1, z2
)

dA, Bxx =
∫

A
EzdA = 0 (23)

Now, based on Equation (19), we substitute ∂Nc
∂x and ∂2 Mc

∂x2 into Equation (22), which yields:

Nc = Axx

[
∂u
∂x + 1

2 (
∂w
∂x )

2]− Axxlm2
[

∂3u
∂x3 +

∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2
]
+ (ea)2

(
IA

∂3u
∂t2∂x −

∂ f
∂x

)
Mc = −Dxx

∂2w
∂x2 + Dxxlm2 ∂4w

∂x4 + (ea)2
[

IA
∂2w
∂t2 − ∂

∂x

(
Nc

∂w
∂x

)
− q
] (24)

Substituting Equation (19) in Equation (24) yields:

∂
∂x

{[
Axx

∂u
∂x + Axx

2 ( ∂w
∂x )

2]− [Axxlm2 ∂3u
∂x3 + Axxlm2( ∂w

∂x
∂3w
∂x3 + ( ∂2w

∂x2 )
2)
]}

+IA
∂2

∂t2

[
(ea)2 ∂2u

∂x2 − u
]
= (ea)2 ∂2 f

∂x2 − f

Dxxlm2 ∂6w
∂x6 − Dxx

∂4w
∂x4 + ∂

∂x

(
Nc

∂w
∂x

)
− (ea)2 ∂3

∂x3

(
Nc

∂w
∂x

)
+IA

∂2

∂t2

[
(ea)2 ∂2w

∂x2 − w
]
= (ea)2 ∂2q

∂x2 − q

(25)

If we assume that the rotational inertia of the beam is negligible, the governing
equation of the system, which is a function of u and its derivatives, can be written as follows:

∂

∂x

{[
Axx

∂u
∂x

+
Axx

2
(

∂w
∂x

)
2
]
−
[

Axxlm2 ∂3u
∂x3 + Axxlm2(

∂w
∂x

∂3w
∂x3 + (

∂2w
∂x2 )

2)

]}
=

∂

∂x
(Nc) = 0 (26)

According to Equation (26), it can be concluded that Nc remains unchanged. By
integrating both sides of equation (26), we obtain the following equation:

∂u
∂x

+
1
2
(

∂w
∂x

)
2
− lm2 ∂3u

∂x3 − lm2(
∂w
∂x

∂3w
∂x3 + (

∂2w
∂x2 )

2) =
C

Axx
(27)

where C is a constant parameter. The boundary condition for the hinged–hinged beam is:

u(0, t) = u(L, t) =
∂2u(0, t)

∂x2 =
∂2u(L, t)

∂x2 = 0 (28)
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By using the strain gradient theory [22], as described in Equation (28), applying
the boundary conditions related to the second derivatives and integrating both sides
of Equation (27) over the length of the beam (from x = 0 to x = L), we can derive the
following equation:

CL
Axx

= [u(L, t)− u(0, t)]− lm2
[

∂2u(L,t)
∂x2 − ∂2u(0,t)

∂x2

]
+ 1

2

∫ L
0 ( ∂w

∂x )
2
dx− lm2

∫ L
0 ( ∂w

∂x
∂3w
∂x3 + ( ∂2w

∂x2 )
2)dx

(29)

Hence
CL
Axx

= [u(L, t)− u(0, t)]− lm2
[

∂2u(L,t)
∂x2 − ∂2u(0,t)

∂x2

]
+ 1

2

∫ L
0 ( ∂w

∂x )
2
dx− lm2

∫ L
0 ( ∂w

∂x
∂3w
∂x3 + ( ∂2w

∂x2 )
2)dx

(30)

Nc =
Axx

2L

∫ L

0
(

∂w
∂x

)
2
dx− Axxlm2

L

∫ L

0
(

∂w
∂x

∂3w
∂x3 + (

∂2w
∂x2 )

2)dx (31)

Substituting Equation (31) into Equation (25) results in the governing equation for the
nano-beam based on the nonlocal strain gradient theory, which is expressed as follows [15]:

Dxxlm2 ∂6w
∂x6 − Dxx

∂4w
∂x4 +

[
Axx
2L
∫ L

0 ( ∂w
∂x )

2
dx− Axx lm2

L
∫ L

0 ( ∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2)dx

]
×[

∂2w
∂x2 − (ea)2 ∂4w

∂x4

]
+ IA

∂2

∂t2

[
(ea)2 ∂2w

∂x2 − w
]
= (ea)2 ∂2q

∂x2 − q
(32)

To express Equation (32) in dimensionless form, the following quantities are introduced:

x =
x
L

, w =
w
r

, z =
z
h

, t = t

√
EI

ρAL4 , α =
ea
L

, β =
lm
L

(33)

where r =
√

I
A . Therefore, the dimensionless governing equation is obtained as:

β2Dxx
∂6w
∂x6 − Dxx

∂4w
∂x4 +

[
Axx

2

∫ 1
0 ( ∂w

∂x )
2
dx− β2 Axx

∫ 1
0 (

∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2)dx

]
∂2w
∂x2

−
[

α2 Axx
2

∫ 1
0 ( ∂w

∂x )
2
dx− α2β2 Axx

∫ 1
0 (

∂w
∂x

∂3w
∂x3 + ( ∂2w

∂x2 )
2)dx

]
∂4w
∂x4

+α2 IA
∂4w

∂x2∂t2 − IA
∂2w
∂t2 = α2 ∂2q

∂x2 − q

(34)

where
Axx = 1, Dxx = 1, IA = 1 (35)

In this study, we use the Galerkin approach to transform the partial differential
equation into a nonlinear ordinary differential equation. To do this, we decompose the
temporal and spatial terms of w

(
x, t
)

as follows [36]:

w
(

x, t
)
= Q

(
t
)
φ(x)

φ(x) = sin(πx)
(36)

where Q
(
t
)

represents the unknown temporal component that needs to be determined,
while φ(x) represents the spatial component of the transverse deflection that satisfies the
boundary conditions of the hinged-hinged nano-beam.

In addition, the concentrated force q
(

x, t
)

is given by:

q
(
x, t
)
= q

(
t
)
δ
(

x− 1
2

)∫ a+ε
a−ε f (x)δ(x− a)dx = f (a),

∫ a+ε
a−ε f (x)δ(n)(x− a)dx

= −
∫ a+ε

a−ε
∂ f
∂x δ(n−1)(x− a)dx

(37)
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Substituting Equations (36) and (37) in Equation (34), multiplying both sides of Equa-
tion (34) by φ(x), and by calculating the integral over the length of the beam, the ordinary
differential equation (ODE) will be obtained as follows:

..
Q
(
t
)
+ K1Q

(
t
)
+ K2Q3(t) = −(α2π2 + 1

)
q
(
t
)

(38)

where the dot denotes the derivative with respect to time, and coefficients K1 and K2 are
given by:

K1 =
β2Dxx

∫ 1
0 φ(6)φdx− Dxx

∫ 1
0 φ(4)φdx

α2
∫ 1

0 φ′′φdx−
∫ 1

0 (φ)2dx
(39)

K2 = −
Axx

2
∫ 1

0 (φ′)2dx.
∫ 1

0 φ′′ φdx−β2 Axx
∫ 1

0 φ′′′ φ′dx.
∫ 1

0 φ′′ φdx−β2 Axx
∫ 1

0 (φ′′ )2dx.
∫ 1

0 φ′′ φdx

α2
∫ 1

0 φ′′ φdx−
∫ 1

0 (φ)2dx

−
α2 Axx

2
∫ 1

0 (φ′)2dx.
∫ 1

0 φ(4)φdx−α2β2 Axx
∫ 1

0 φ′′′ φ′dx.
∫ 1

0 φ(4)φdx−α2β2 Axx
∫ 1

0 (φ′′ )2dx.
∫ 1

0 φ(4)φdx

α2
∫ 1

0 φ′′ φdx−
∫ 1

0 (φ)2dx

(40)

where φ(4) and φ(6) are the fourth and sixth derivatives of φ with respect to time, re-
spectively, and φ′ is its first derivative with respect to x. The state-space equation of the
system is:

Q
(
t
)
= x1,

.
Q
(
t
)
=

.
x1 = x2{ .

x1 = x2
.
x2 = −K1x1 − K2(x1)

3 − bq
(
t
) (41)

3. Controller Design
3.1. Problem Formulation

The non-local strain gradient nano-beams’ general state space in the presence of
disturbance is described using the following form:

.
xi = xi+1 i = 1, 2, . . . , n− 1
.
xn = f (x) + g(x)u + d(t)
y = x1

(42)

where xi and xn stand for the states of the system. It is noteworthy that here we design the
controller for general cases in which n could be any number, and for the nano-beam n = 2.
f (x) and g(x) are nonlinear functions that describe the system dynamics. u represents the
external control input, and d(t) represents the disturbance.

According to the definitions of faults and failures presented in many sources, includ-
ing [37–39], faults and/or failures are modelled as follows:

u = uc + b(t)((ei − 1)uc + u) (43)

where u is the actual control input; uc indicates the desired control input; and u denotes
the uncertain constant fault input. Parameter 0 ≤ ei ≤ 1 is considered to be the actuator
control effectiveness. The time profile of a fault affecting the actuator is represented by
time-varying function bi (t) which is given by:

b(t) =

{
0, t < t0

1− e−ai(t−t0)
i t ≥ t0

(44)

In this equation, ai > 0 represents the unknown fault evolution rate, and ti is the time
of occurrence of the fault. An incipient fault occurs when ai is small, while an abrupt fault
occurs when ai is large. The state space equation of the system in the presence of actuator
faults and/or failures is given by:
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
.
xi = xi+1i = 1, 2, . . . , n− 1
.
xn = f (x) + g(x)u + N(t)
y = x1
N = g(x)b(t)((ei − 1)uc + u) + d(t)

(45)

Assumption 1. Uncertainties and disturbances are bounded, meaning there is a constant d0 such
that the norm of d is less than or equal to d0 (‖d‖ ≤ d0).

Assumption 1 states that uncertainties and disturbances in the system are bounded,
meaning there is a maximum limit on the magnitude of these disturbances, represented
by a constant d0. This assumption can be mechanically motivated by the fact that in
physical systems, disturbances and uncertainties are often caused by external factors such
as environmental conditions, which are limited in their magnitude. For example, wind
gusts or vibrations from nearby sources will have a maximum limit in terms of the forces
they exert on the system.

Assumption 2. Due to the physical limitations on the actuators, control actions are constrained,
i.e., | uc | ≤ umax. In addition, the additive fault u is bounded, i.e., | u| ≤ u0.

Assumption 2 states that control actions are constrained due to the physical limitations
of the actuators, meaning there is a maximum limit on the magnitude of the control inputs,
represented by a constant umax. Additionally, the assumption states that any additive
fault in the system, represented by u, is also bounded with a maximum limit of u_0. This
assumption can be mechanically motivated by the fact that actuators, such as motors
and servos, have physical limitations on the amount of torque or force they can produce.
Additionally, any additive faults in the system, such as sensor or actuator failures, will also
have a maximum limit in terms of the impact they have on the system.

3.2. Finite-Time Disturbance-Observer-Based

To demonstrate the finite-time convergence of the closed-loop system and the error of
the disturbance observer, Lemma 1 was utilized.

Lemma 1 [40]. Let Lyapunov function V(t) which fulfils the following inequality:

.
V(t) + ϑV(t) + ξVχ ≤ 0, ∀t > t0 (46)

The system will reach its equilibrium point in a finite time, as indicated by the following convergence
time:

ts ≤ t0 +
1

ϑ(1 + χ)
ln

ϑV1−χ(t0) + ξ

ξ
(47)

where ϑ > 0, ξ > 0 and 0 < χ < 1.

In the design process for the finite time estimator, the following auxiliary variables
are defined:

s = z− xn (48)

where z is calculated by the following formula:

.
z = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s) + g(x)u (49)

where p0 < q0 and q0 and p0 are odd positive integers. In addition, parameters k, ε, and β
are positive and β > |N|. The disturbance estimation N̂ is given by:

N̂ = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x) (50)
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Considering Equations (46), (49) and (50) yields:

.
s =

.
z− .

xn = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x)− N (51)

Considering Equations (49)–(51), the following is achieved:

Ñ = N̂ − N = −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x)− N
= −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x)− .

xn + f (x) + g(x)u
= −ks− βsign(s)− εsp0/q0 − | f (x)|sign(s) + g(x)u− .

xn
=

.
z− .

xn =
.
s

(52)

Theorem 1. The disturbance estimator (49)–(51) ensures that the error of disturbance estimation
converges to zero in finite time.

Proof. Consider a Lyapunov function of the form:

V0 =
1
2

s2 (53)

The time derivative of the Lyapunov function is given by:

.
V0 = s

.
s = s

(
−ks− βsign(s)− εsp0/q0 − | f (x)|sign(s)− f (x)− N

)
≤ −ks2 − βssign(s)− εsp0+q0/q0 + |s||N|
≤ −ks2 − εsp0+q0/q0

≤ −2kV0 − 2(p0+q0)/2q0 εV(p0+q0)/2q0
0

(54)

�

Considering Lemma 1 and Equation (54), it can be confirmed that in the finite time,
the auxiliary variable s and, as a result, the disturbance estimation error converge to zero.

Herein, to design the fault-tolerant terminal sliding mode controller, the following
sliding surfaces are defined:

s1 = y− yd

s(n)1 = y(n) − y(n)d =
.
xn − y(n)d ,

(55)

We use the following recursive procedure to design nth sliding surface:

s2 =
.
s1 + α1s1 + β1sp1/q1

1
s3 =

.
s2 + α2s2 + β2sp2/q2

2
. . . .
sn =

.
sn−1 + αn−1sn−1 + βn−1spn−1/qn−1

n−1 + s

(56)

The jth-order time derivative of si is calculated as follows:

s(j)
i = s(i+1)

i−1 +
d(j)

dt(j)

[
αi−1si−1 + βi−1spi−1\qi−1

i−1

]
(57)

On the basis of Equations (56) and (57), the following equation is obtained:

.
sn = s(n)1 +

n−1

∑
j=1

αjs
(n−j)
j +

n−1

∑
j=1

β j
d(n−j)

dt(n−j)
s

pj/qj
j +

.
s (58)
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In accordance with Equations (45), (55) and (58) we have:

.
sn =

.
xn − y(n)d +

n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s
pj/qj
j +

.
s

= f (x) + g(x)u + d− y(n)d ++
n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s
pj/qj
j +

.
s

(59)

Finally, the disturbance-observer-based fault-tolerant tracking control law is given by:

u = − u0
g(x)

u0 = f (x)− yn
d +

n−1
∑

j=1
αjs

(n−j)
j +

n−1
∑

j=1
β j

d(n−j)

dt(n−j) s
pj/qj
j + N̂ + δsn + µspn/qn

n
(60)

where user-defined parameters δ and µ should be positive.

Theorem 2. The proposed control law (60) ensures that the states of the system (43) will converge
to the desired value in finite time, even in the presence of uncertainties, external disturbances, and
faults in the control actuators.

Proof. Substituting Equation (61) into Equation (60) yields:

.
s2 = −δs2 − µsp2/q2

2 + N − N̂ +
.
s = −δs2 − µsp2/q2

2 − Ñ +
.
s (61)

In accordance with Equation (52), we know that after finite time Ñ =
.
s; thus, we obtain:

.
s2 = −δs2 − µsp2/q2

2 (62)

Now, assume a Lyapunov function candidate as:

V =
1
2

s2
2 (63)

the time derivative of V is given by:

.
V = s2

.
s2 = −δs2

2 − µs
1+(

p2
q2

)

2
= −2δV − µ2(p2+q2)/2q2 V(p2+q2)/2q2

(64)

�

Based on Lemma 1 and Equation (64), the states of the closed-loop system will converge
to the equilibrium point in finite time, which completes the proof.

The block diagram of the proposed control technique is shown by Figure 2. Based on
Equation (60), the disturbances, as well as faults and failures, were considered in the model,
and it makes the designed controller an appropriate and robust choice for the control of
nano-beams.
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4. Numerical Simulations

In this section, the numerical simulation for the stabilization of the nano-beam is
demonstrated using the proposed control scheme. For numerical simulation, the parameters
of the nano-beam are α = β = 0.1; consequently, the exact value of the parameters that
appeared in (38) is obtained as K1 = 97.4, K2 = −19.97, and b = 1.09 [15].

The paper discussed the impact of using nonlocal parameters in modeling a system.
Despite this, there may still be uncertainties present that make it necessary to use a distur-
bance observer. To address this, the proposed controller is specifically designed to work in
conjunction with a powerful disturbance observer and reject the effects of all uncertainties.
This allows for more accurate modeling and control of the system, despite any remaining
uncertainties. Therefore, to better investigate real conditions for the nano-systems, we
consider the external disturbance as:

d(t) = 0.2 sin(0.3πt) + 0.3 sin(0.2πt) + 0.15 sin(0.2
√

t + 1) (65)

The physical mechanisms of unexpected disturbances and faults in a nano-beam are
varied and multifaceted. Some of the key factors that can contribute to these disturbances
include thermal expansion or contraction, external forces such as mechanical stress, material
defects, control actuator failure, and manufacturing errors.

Thermal expansion or contraction can cause the nano-beam to bend or deform in un-
expected ways, leading to unexpected disturbances or faults. Similarly, external forces such
as mechanical stress can cause the nano-beam to bend or deform, leading to unexpected
disturbances or faults. Material defects such as cracks, voids, or impurities can weaken the
nano-beam and make it more susceptible to unexpected disturbances or faults.

Control actuator failure can also cause unexpected disturbances or faults in a nano-
beam, as the actuators may not work as intended and thus not provide the expected
control on the nano-beam. Manufacturing errors such as improper alignment or uneven
distribution of materials can also cause unexpected disturbances or faults in a nano-beam.

It is important to note that these disturbances and faults can be caused by a combina-
tion of multiple factors, and not all disturbances or faults are predictable. Therefore, the
present research investigates the utilization of the non-local strain gradient theory and a
novel fault-tolerant terminal sliding mode control technique to effectively address these
disturbances and faults in the stabilization and control of an uncertain Euler–Bernoulli
nano-beam with fixed ends.

The user-defined parameter of the control scheme is considered to be:

k = 30, β = 300, ε = 55, p0 = 1, q0 = 7
α1 = 5, β1 = 0.1, δ = 5, µ = 1.1, p1 = 3, q1 = 7, p2 = 1, q2 = 3

(66)

The control gains in the proposed control technique are selected through a process
of trial and error. This process involves adjusting the control gains and evaluating the
system’s performance until the desired level of performance is achieved.

The performance of the proposed control technique has been compared with a PID
controller in order to demonstrate its advantages. The control gain of PID is chosen as
Kp = 10, Ki = 0.1, and Kd = 15. In this case, we do not consider faults and failures in
the actuators, and only the system is analyzed in the presence of external disturbances.
The controller is turned on at t = 2 .Figures 3 and 4 show the results of the stabilization
of the nano-beam based on the proposed control technique and the PID controller. As
can be seen in these figures, the proposed robust adaptive controller outperforms the PID
controller. Additionally, Figure 5 illustrates the excellent performance of the proposed
disturbance observer, demonstrating its ability to effectively counteract disturbances and
reject them entirely.
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Now, we considered the nano-beam in the presence of faults and failure in the actuator.
To this end, in addition to disturbances, the following faults and failure are considered for
numerical simulations:

u = uc + b(t)((ei − 1)uc + u)

b(t) =

{
0, t < t0

1− e−ai(t−t0)
i t ≥ t0

ei = 0.7, ai = 10; t0 = 10; u = 3;

(67)

Figures 6–9 present the results of stabilizing the nano-beam using the proposed control
technique in the presence of disturbances and faults. The controller is turned on at t = 2.
Figure 6 demonstrates the time history of the deflection of nano-beam based on the pro-
posed control scheme. Based on this figure, after one time unit, the nano-beam is completely
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stabilized. Figure 7 demonstrates the time history of deflection of the nano-beam using the
proposed control scheme. As is shown in these figures, the proposed controller, which is
equipped with the fast estimator, could appropriately deal with uncertainties and faults in
the actuator which is an important concern in the control nano-systems. Figure 8 illustrates
the performance of the controller in stabilizing the system. In addition, the performance of
the estimator is depicted in Figure 9. These results conspicuously confirm that by applying
the suggested controller, the states of the system reach their desired values in a short period
of time.
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Figure 6. Results of the vibration suppression based on the proposed method in the presence of
disturbances and faults in the actuator.
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Figure 7. Time history of deflection of the nano-beam using the proposed control scheme in the
presence of disturbances and faults in the actuator.
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Figure 8. Control command based on the proposed control technique in the presence of disturbances
and faults in the actuator.
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Figure 9. Results of the proposed finite time estimator in the presence of disturbances and faults in
the actuator.

In summary, the numerical simulations vividly illustrate the effectiveness of the
proposed control scheme for stabilization of the nano-beam when there exist unexpected
disturbances and faults.

5. Conclusions

This study examined the stabilization of nonlinear vibrations in nano-beams using
the non-local strain gradient theory. The equations of motion for the system were obtained
and reduced to an ordinary differential equation using the Galerkin approach. A new
disturbance-observer-based fault-tolerant terminal sliding mode control was then devel-
oped to stabilize the system, with a disturbance estimator included to handle uncertainties
and faults in the control actuator. The stability of the closed-loop system was demonstrated
using the Lyapunov stability theorem, and the performance of the proposed control scheme
was compared to that of a PID controller through numerical simulations for two different
cases. The results showed that the proposed control scheme was effective in stabilizing
the uncertain nano-beam. It is acknowledged that terminal sliding mode control is known
to have a singularity problem, where the control signal approaches infinity as the sliding
surface approaches zero. This singularity problem is a well-known issue in the field of
terminal sliding mode control and it is important to consider it. Therefore, it is suggested
that some future studies in this field investigate and address the singularity problem in
terminal sliding mode control for the control of nano-beams, such as the use of nonsingular
sliding surfaces. In addition, future work could involve enhancing its performance using
an intelligent fuzzy tuning approach.
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