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Abstract: Our aim in this paper is to obtain formulas for solutions of rational difference equa-
tions such as xn+1 = 1 ± (xn−1yn)/(1− yn), yn+1 = 1 ± (yn−1xn)/(1− xn), and xn+1 = 1 ±
(xn−1yn−2)/(1− yn), yn+1 = 1± (yn−1xn−2)/(1− xn), where the initial conditions x−2, x−1, x0,
y−2, y−1, y0 are non-zero real numbers. In addition, we show that the some of these systems are peri-
odic with different periods. We also verify our theoretical outcomes at the end with some numerical
applications and draw it by using some mathematical programs to illustrate the results.
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1. Introduction

Nonlinear difference equations have recently captured the attention of numerous
scholars. In fact, during the past ten years, we have encouraged a rapid rise in interest in
these kinds of equations. The fact that these types of equations have several applications not
just in mathematics but also in related areas, particularly in biological sciences, engineering,
ecology, discrete temporal systems, economics, physics, and so on, may have contributed
to the desire. We believe that, as more appealing and engaging results are achieved and
communicated in studies, this area of research will continue to captivate the minds of more
scholars in the years to come. The challenge of solving nonlinear difference equations
in closed form has emerged as a common theme in this research area. In reality, a large
number of articles attempt to solve nonlinear difference equations in any way they can;
for an example, see [1–6]. Evidently, it can be very difficult to obtain the solution form for
these kinds of equations in general. However, a number of approaches have lately been
proposed to simplify challenging nonlinear difference equations into linear forms with
established solution forms. For instance, a sizable class of nonlinear difference equations
were solved in closed-form by converting into linear types (see, e.g., [7–12]).

Numerous academics have examined how systems of solved difference equations
behave, for instance: Cinar examined the answers to the following system of difference
equations in [13].

Ψn+1 =
m
Θn

, Θn+1 =
pΘn

Ψn−1Θn−1
.

El-Metwally [14] found the solutions form for the following systems of rational differ-
ence equations:

µn+1 =
µn−1vn

±µn−1 ±vn−2
, vn+1 =

vn−1µn

±vn−1 ± µn−2
.
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Kara and Yazlik in [15] showed that the following three-dimensional system of differ-
ence equations

vn+1 =
ϑnϑn−2

bvn−1 + aϑn−2
, ϑn+1 =

znzn−2

dϑn−1 + czn−2
, zn+1 =

vnvn−2

f zn−1 + evn−2
,

can be solved. Furthermore, they determined the forbidden set of the initial conditions by
employing acquired formulas. Finally, they provided various applications involving the
difference equation system discussed before.

Mansour et al. [16] examined the behavior of the difference equations systems’ solutions

vn+1 =
vn−5

−1 + vn−5yn−2
, yn+1 =

yn−5

±1± yn−5vn−2
.

In [17], Ozban studied the positive solutions of the following system of rational
difference equations

vn+1 =
a

ϑn−3
, ϑn+1 =

bϑn−3

vn−qϑn−p
.

Sroysang [18] focused on a system of a rational higher-order difference equation

xn+1 =
xn−m+1

A + ϑnϑn−1 . . . ϑn−m+1
, ϑn+1 =

ϑn−m+1

A + xnxn−1 . . . xn−m+1
.

Touafek et al. [19] investigated the periodic nature and provided the form of the
solutions of the following systems of rational difference equations

xn+1 =
yn

xn−1(±1± yn)
, yn+1 =

xn

yn−1(±1± xn)
.

Furthermore, Yalçınkaya [20] has obtained the sufficient conditions for the global
asymptotic stability of the following system of two nonlinear difference equations

xn+1 =
xn + yn−1

xnyn−1 − 1
, yn+1 =

yn + xn−1

ynxn−1 − 1
.

In [21], Zhang et al. studied the boundedness, the persistence, and global asymptotic
stability of the positive solutions of the following system

xn = A +
1

yn−p
, yn = A +

yn−1

xn−ryn−s
.

Zhang et al. [22] studied the dynamics of a system of the rational third-order difference
equation

xn+1 =
xn−2

B + ynyn−1yn−2
, yn+1 =

yn−2

A + xnxn−1xn−2
.

For more studies for nonlinear difference equations and systems of rational difference
equations see [2,23–32].

Furthermore, difference equations are appropriate models for describing situations
where population growth is not continuous but seasonal with overlapping generations.

Researchers have looked at the generalized Beverton–Holt stock recruitment model
in [33]

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
.

Khaliq et al. [34] studied the dynamical analysis of the following system of discrete-
time two-predators and the one-prey Lotka–Volterra model
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xn+1 =
αxn − βxnyn − γxnzn

1 + δxn
,

yn+1 =
ζyn + ηxnyn − µynzn

1 + εyn
,

zn+1 =
vzn + ρxnzn − σynzn

1 + ωzn
.

The boundedness character, persistence, local, and global behavior of the follow-
ing two-directional interacting and invasive species model were examined by Din and
Elsayed [35]

xn+1 = α + βxn + γxn−1e−yn , yn+1 = δ + εyn + ζyn−1e−xn .

The authors in [36] explored local dynamics with topological classifications, bifurcation
analysis, and chaos control in a discrete-time COVID-19 epidemic model. See also [37–39].

In this paper, we deal with the existence of the form for the solutions of the following
systems of difference equations

xn+1 = 1 + δ
xn−1yn

1− yn
, yn+1 = 1 + γ

yn−1xn

1− xn
, (1)

and
xn+1 = 1 + δ

xn−1yn−2

1− yn
, yn+1 = 1 + γ

yn−1xn−2

1− xn
, (2)

with the initial conditions x−2, x−1, x0, y−2, y−1 , and y0 are arbitrary non zero real numbers.

2. Main Results
2.1. System (1) When δ = +1 and γ = +1

In this section, we investigate the solutions of the following system of two difference
equations

xn+1 = 1 +
xn−1yn

1− yn
, yn+1 = 1 +

yn−1xn

1− xn
,

where n ∈ N0 and the initial conditions are arbitrary non zero real numbers with x0 6= 1
and y0 6= 1.

Theorem 1. Let {xn, yn}∞
n=−1 be a solution of System (1), then

1. {xn, yn}∞
n=−1 is a periodic solution with period four, i.e., xn+4 = x4, yn+4 = yn for all

n ≥ −1.
2. {xn, yn}∞

n=−2 has the following form

x4n−1 = x−1, x4n = x0, x4n+1 = 1 +
x−1y0

1− y0
, x4n+2 =

(x0 − 1)(1− y−1)

y−1
,

y4n−1 = y−1, y4n = y0, y4n+1 = 1 +
y−1x0

1− x0
, y4n+2 =

(x−1 − 1)(1− y0)

x−1
.
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Proof. From Equation (1), we have

xn+1 = 1 +
xn−1yn

1− yn
, yn+1 = 1 +

yn−1xn

1− xn
,

xn+2 = 1 +
xnyn+1

1− yn+1
= 1 +

xn

(
1+

yn−1xn
1−xn

)
1−
(

1+
yn−1xn
1−xn

) = 1 +
xn

(
1+

yn−1xn
1−xn

)
(
−yn−1xn

1−xn

)
= 1− xn(1−xn+yn−1xn)

yn−1xn
= yn−1−(1−xn+yn−1xn)

yn−1
= yn−1−1+xn−yn−1xn

yn−1
= (xn−1)(1−yn−1)

yn−1
,

yn+2 = 1 +
ynxn+1

1− xn+1
= 1 +

yn

(
1+

xn−1yn
1−yn

)
1−
(

1+
xn−1yn
1−yn

) = 1−
(

1+
xn−1yn
1−yn

)
( xn−1

1−yn

) = 1− (1−yn+xn−1yn)
xn−1

= xn−1−(1−yn+xn−1yn)
xn−1

= (xn−1−1)(1−yn)
xn−1

.

Furthermore, we see from Equation (1) that

xn+3 = 1 +
xn+1yn+2

1− yn+2
= 1 +

(
1+

xn−1yn
1−yn

)( (xn−1−1)(1−yn)
xn−1

)
1−
(
(xn−1−1)(1−yn)

xn−1

) = 1 + (1−yn+xn−1yn)(xn−1−1)
{xn−1−(xn−1−1)(1−yn)}

= 1 + (1−yn+xn−1yn)(xn−1−1)
{xn−1−(xn−1−1+yn−xn−1yn)} = 1 + (1−yn+xn−1yn)(xn−1−1)

(1−yn+xn−1yn)
= 1 + (xn−1 − 1) = xn−1,

yn+3 = 1 +
yn+1xn+2

1− xn+2
= 1 +

(
1+

yn−1xn
1−xn

)( (xn−1)(1−yn−1)
yn−1

)
1−
(
(xn−1)(1−yn−1)

yn−1

) = 1 + (xn−1−yn−1xn)(1−yn−1)
yn−1−((xn−1)(1−yn−1))

= 1 + (xn−1−yn−1xn)(1−yn−1)
yn−1−(xn−1−yn−1xn+yn−1)

= 1 + (xn−1−yn−1xn)(1−yn−1)
−(xn−1−yn−1xn)

= 1− (1− yn−1) = yn−1.

Finally we obtain

xn+4 = 1 +
xn+2yn+3

1− yn+3
= 1 +

(
(xn−1)(1−yn−1)

yn−1

)
yn−1

1−yn−1
= 1 + (xn−1)(1−yn−1)

1−yn−1
= 1 + xn − 1 = xn,

yn+4 = 1 +
yn+2xn+3

1− xn+3
= 1 +

(
(xn−1−1)(1−yn)

xn−1

)
xn−1

1−xn−1
= 1 + (xn−1−1)(1−yn)

1−xn−1
= 1− (1− yn) = yn.

This completes the proof.

2.2. System (1) When δ = −1 and γ = +1

The system of difference equations’ solutions are provided in this section

xn+1 = 1− xn−1yn

1− yn
, yn+1 = 1 +

yn−1xn

1− xn
,

since n ∈ N0 and the initial values are arbitrary nonzero real numbers such that x0 6= 1 and
y0 6= 1.

Theorem 2. Assume {xn, yn} is a solution of System (2). Then, for n = 0, 1, 2, . . . ,

x4n−1 = x−1 + (2n), x4n = x0 + (2n),

x4n+1 =
x−1y0

(y0 − 1)
+ (2n + 1), x4n+2 =

1− x0

y−1
+ x0 + (2n + 1),

y4n−1 = y−1 +
(2n)y−1

(x0 − 1)
, y4n = y0 +

(2n)(y0 − 1)
x−1

,

y4n+1 = 1− y−1(2n + x0)

x0 − 1
, y4n+2 =

(1− y0)(x−1 + (2n + 1))
x−1

.
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Proof. The result is true for n = 0. Assume n exceeds 1 and that n− 1 is consistent with
our premise, which is

x4n−5 = x−1 + (2n− 2), x4n−4 = x0 + (2n− 2),

x4n−3 =
x−1y0

(y0 − 1)
+ (2n− 1), x4n−2 =

1− x0

y−1
+ x0 + (2n− 1),

y4n−5 = y−1 +
(2n− 2)y−1

(x0 − 1)
, y4n−4 = y0 +

(2n− 2)(y0 − 1)
x−1

,

y4n−3 = 1− y−1(2n− 2 + x0)

x0 − 1
, y4n−2 =

(1− y0)(x−1 + (2n− 1))
x−1

.

It follows from System (2) that

x4n−1 = 1− x4n−3y4n−2

1− y4n−2
= 1−

( x−1y0
(y0−1)+(2n−1)

)(
(1−y0)(x−1+(2n−1))

x−1

)
1− (1−y0)(x−1+(2n−1))

x−1

= 1− (−x−1y0+(2n−1)(1−y0))(x−1+(2n−1))
x−1−(1−y0)(x−1+(2n−1)) = 1− [−x−1y0+(2n−1)(1−y0)](x−1+(2n−1))

x−1−[x−1−y0x−1+(2n−1)(1−y0)]

= 1− [−x−1y0+(2n−1)(1−y0)](x−1+(2n−1))
−[−y0x−1+(2n−1)(1−y0)]

= 1 + (x−1 + (2n− 1)) = x−1 + 2n,

y4n−1 = 1 + y4n−3x4n−2
1−x4n−2

= 1 +

(
1− y−1(2n−2+x0)

x0−1

)(
1−x0
y−1

+x0+(2n−1)
)

1−
(

1−x0
y−1

+x0+(2n−1)
)

= 1 +
(x0 − 1− y−1(2n− 2 + x0))(1− x0 + y−1x0 + y−1(2n− 1))

(x0 − 1)y−1

[
1−

(
1−x0
y−1

+ x0 + (2n− 1)
)]

= 1 + (x0−1−y−1(2n−2+x0))(1−x0+y−1x0+y−1(2n−1))
(x0−1)[y−1−1+x0−x0y−1−y−1(2n−1)]

= 1 + (x0−1−y−1(2n−2+x0))(1−x0+y−1x0+y−1(2n−1))
(x0−1)[−1+x0−x0y−1−y−1(2n−2)]

= 1 + (1−x0+y−1x0+y−1(2n−1))
(x0−1)

= 1− 1 + (y−1x0+y−1(2n−1))
(x0−1) = y−1(x0+(2n−1))

(x0−1) .

Furthermore, we obtain from System (2) that

x4n = 1− x4n−2y4n−1

1− y4n−1
= 1−

(
1−x0
y−1

+x0+(2n−1)
)( y−1(x0+(2n−1))

(x0−1)

)
1− y−1(x0+(2n−1))

(x0−1)

= 1− (1−x0+x0y−1+y−1(2n−1))(x0+(2n−1))
(x0−1)−y−1(x0+(2n−1)) = 1 + (x0 + (2n− 1)) = x0 + 2n,

y4n = 1 + y4n−2x4n−1
1−x4n−1

= 1 +

(
(1−y0)(x−1+(2n−1))

x−1

)
(x−1+2n)

1−(x−1+2n) = 1− (1−y0)(x−1+2n)
x−1

= y0 +
(2n)(y0−1)

x−1
.

Similarly, we can prove the other relations. This completes the proof.

Lemma 1. Let {xn, yn} be a solution of System (2), then {xn}, {yn} are unbounded solutions.

Proof. The proof follows from the expressions of solutions of System (2).

The following theorems can be proved similar to the previous theorem so it will
be omitted.
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Theorem 3. Assume that the sequences {xn, yn} are a solution of the system

xn+1 = 1 +
xn−1yn

1− yn
, yn+1 = 1− yn−1xn

1− xn
.

Then, all solutions are unbounded and provided by the following formulas

x4n−1 = x−1

(
y0 + (2n− 1)

y0 − 1

)
, x4n = x0 +

(2n)(x0 − 1)
y−1

,

x4n+1 = 1 +
x−1(y0 + (2n))

(1− y0)
, x4n+2 =

(1− x0)(y−1 + (2n + 1))
y−1

,

y4n−1 = y−1 + (2n), y4n = y0 + (2n),

y4n+1 = (2n + 1) +
y−1x0

x0 − 1
, y4n+2 =

(1− y0)

x−1
+ y0 + (2n + 1),

where n = 0, 1, 2, . . . and x0, y0 6= 1.

Theorem 4. If x0, y0 6= 1, then the solutions of the system

xn+1 = 1− xn−1yn

1− yn
, yn+1 = 1− yn−1xn

1− xn
,

are unbounded and for n = 0, 1, 2, . . .

x4n−1 = (2n) + x−1

(
y0 + (2n− 1)

y0 − 1

)
, x4n = x0 + (2n) +

(2n)(x0 − 1)
y−1

,

x4n+1 = (2n + 1) +
x−1(y0 + (2n))

(y0 − 1)
, x4n+2 = (2n + 1) + x0 +

(x0 − 1)(2n + 1)
y−1

,

y4n−1 = (2n) +
y−1(x0 + 2n− 1)

(x0 − 1)
, y4n = y0 + (2n) +

(2n)(y0 − 1)
x−1

,

y4n+1 = (2n + 1) +
y−1(x0 + 2n)

x0 − 1
, y4n+2 = y0 + (2n + 1) +

(2n + 1)(y0 − 1)
x−1

.

2.3. System (2) When δ = +1 and γ = +1

In this section, we obtain the form of the solutions of the following system of difference
equations

xn+1 = 1 +
xn−1yn−2

1− yn
, yn+1 = 1 +

yn−1xn−2

1− xn
, (3)

where n ∈ N0 and the initial conditions are arbitrary non-zero real numbers such that
x0, y0 6= 1.

Theorem 5. If {xn}∞
n=−2, {yn}∞

n=−2 are solutions of System (3). Then, for n = 0, 1, . . .

x2n−1 =
n−1

∑
i=0

(
y−2

1− y0

)i
+ x−1

(
y−2

1− y0

)n
, x2n =

n−1

∑
i=0

(
x0 − 1

x−2

)i
+ x0

(
x0 − 1

x−2

)n
,

y2n−1 =
n−1

∑
i=0

(
x−2

1− x0

)i
+ y−1

(
x−2

1− x0

)n
, y2n =

n−1

∑
i=0

(
y0 − 1

y−2

)i
+ y0

(
y0 − 1

y−2

)n
,

where ∑−1
i=0(A)i = 0.
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Proof. The conclusion is true for n = 0. Assume n exceeds 1 and that n− 1 is covered by
our supposition, so that

x2n−4 =
n−3

∑
i=0

(
x0 − 1

x−2

)i
+ x0

(
x0 − 1

x−2

)n−2
, x2n−3 =

n−2

∑
i=0

(
y−2

1− y0

)i
+ x−1

(
y−2

1− y0

)n−1
,

x2n−2 =
n−2

∑
i=0

(
x0 − 1

x−2

)i
+ x0

(
x0 − 1

x−2

)n−1
,

y2n−4 =
n−3

∑
i=0

(
y0 − 1

y−2

)i
+ y0

(
y0 − 1

y−2

)n−2
, y2n−3 =

n−2

∑
i=0

(
x−2

1− x0

)i
+ y−1

(
x−2

1− x0

)n−1
,

y2n−2 =
n−2

∑
i=0

(
y0 − 1

y−2

)i
+ y0

(
y0 − 1

y−2

)n−1
.

Now, it follows from System (3) that

x2n−1 = 1 +
x2n−3y2n−4
1− y2n−2

= 1 +

(
∑n−2

i=0

(
y−2

1−y0

)i
+ x−1

(
y−2

1−y0

)n−1
)(

∑n−3
i=0

(
y0−1
y−2

)i
+ y0

(
y0−1
y−2

)n−2
)

1−
(

∑n−2
i=0

(
y0−1
y−2

)i
+ y0

(
y0−1
y−2

)n−1
)

= 1 +

(
∑n−2

i=0

(
y−2

1−y0

)i
+ x−1

(
y−2

1−y0

)n−1
)(

∑n−3
i=0

(
y0−1
y−2

)i
+ y0

(
y0−1
y−2

)n−2
)

1−
(

1 +
(

y0−1
y−2

)
+
(

y0−1
y−2

)2
+ · · ·+

(
y0−1
y−2

)n−2
+ y0

(
y0−1
y−2

)n−1
)

= 1−

(
∑n−2

i=0

(
y−2

1−y0

)i
+ x−1

(
y−2

1−y0

)n−1
)(

∑n−3
i=0

(
x−2

1−x0

)i
+ y0

(
x−2

1−x0

)n−2
)

(
y0−1
y−2

)(
1 +

(
y0−1
y−2

)
+
(

y0−1
y−2

)2
+ · · ·+

(
y0−1
y−2

)n−3
+ y0

(
y0−1
y−2

)n−2
)

= 1−
(

y−2
y0 − 1

)(n−2

∑
i=0

(
y−2

1− y0

)i
+ x−1

(
y−2

1− y0

)n−1
)

= 1 +
(

y−2
1− y0

)(n−2

∑
i=0

(
y−2

1− y0

)i
+ x−1

(
y−2

1− y0

)n−1
)

=
n−1

∑
i=0

(
y−2

1− y0

)i
+ x−1

(
y−2

1− y0

)n
.

y2n−1 = 1 +
y2n−3x2n−4
1− x2n−2

= 1 +

(
∑n−2

i=0

(
x−2

1−x0

)i
+ y−1

(
x−2

1−x0

)n−1
)(

∑n−3
i=0

(
x0−1
x−2

)i
+ x0

(
x0−1
x−2

)n−2
)

1−
(

∑n−2
i=0

(
x0−1
x−2

)i
+ x0

(
x0−1
x−2

)n−1
)

= 1 +

(
∑n−2

i=0

(
x−2

1−x0

)i
+ y−1

(
x−2

1−x0

)n−1
)

(
1−x0
x−2

)
= 1 +

(
x−2

1− x0

)(n−2

∑
i=0

(
x−2

1− x0

)i
+ y−1

(
x−2

1− x0

)n−1
)

=
n−1

∑
i=0

(
x−2

1− x0

)i
+ y−1

(
x−2

1− x0

)n
.

We can prove the other relations similarly. The proof is complete.
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Lemma 2. Let {xn, yn} be a solution of System (3), then {xn}, {yn} are unbounded solutions.

The following theorems can be treated similarly to the previous results.

Theorem 6. The solutions of the system

xn+1 = 1− xn−1yn−2

1− yn
, yn+1 = 1− yn−1xn−2

1− xn
, (4)

where x0, y0 6= 1 are provided as follows

x2n−1 =
n−1

∑
i=0

(
y−2

y0 − 1

)i
+ x−1

(
y−2

y0 − 1

)n
, x2n =

n−1

∑
i=0

(
x0 − 1

x−2

)i
+ x0

(
x0 − 1

x−2

)n
,

y2n−1 =
n−1

∑
i=0

(
x−2

x0 − 1

)i
+ y−1

(
x−2

x0 − 1

)n
, y2n =

n−1

∑
i=0

(
y0 − 1

y−2

)i
+ y0

(
y0 − 1

y−2

)n
.

Lemma 3. If x0 + x−2 = 1, and y0 + y−2 = 1, then the solutions are bounded and periodic with
period four and adopt the form

{xn}∞
n=−2 = {x−2, x−1, x0, 1− x−1, x−2, x−1, . . . },

{yn}∞
n=−2 = {y−2, y−1, y0, 1− y−1, y−2, y−1, . . . }.

Otherwise, every solution of System (4) is unbounded.

Theorem 7. Every solution {xn, yn} of the following system

xn+1 = 1 +
xn−1yn−2

1− yn
, yn+1 = 1− yn−1xn−2

1− xn
, (5)

with non-zero real numbers, the initial conditions satisfies x0, y0 6= 1 adopts the form

x4n−1 =
n−1

∑
i=0

(−1)i

{(
y−2

y0 − 1

)2i
+

(
y−2

y0 − 1

)2i+1
}
+ (−1)nx−1

(
y−2

y0 − 1

)2n
,

x4n =
n−1

∑
i=0

(−1)i

{(
x0 − 1

x−2

)2i
+

(
x0 − 1

x−2

)2i+1
}
+ (−1)nx0

(
x0 − 1

x−2

)2n
,

x4n+1 = 1 +
n−1

∑
i=0

(−1)i+1

{(
y−2

y0 − 1

)2i+1
+

(
y−2

y0 − 1

)2i+2
}
+ (−1)n+1x−1

(
y−2

y0 − 1

)2n+1
,

x4n+2 = 1 +
n−1

∑
i=0

(−1)i+1

{(
x0 − 1

x−2

)2i+1
+

(
x0 − 1

x−2

)2i+2
}
+ (−1)n+1x0

(
x0 − 1

x−2

)2n+1
,

y4n−1 =
n−1

∑
i=0

(−1)i

{(
x−2

x0 − 1

)2i
−
(

x−2

x0 − 1

)2i+1
}
+ (−1)ny−1

(
x−2

x0 − 1

)2n
,

y4n =
n−1

∑
i=0

(−1)i

{(
y0 − 1

y−2

)2i
+

(
y0 − 1

y−2

)2i+1
}
+ (−1)ny0

(
y0 − 1

y−2

)2n
,

y4n+1 = 1 +
n−1

∑
i=0

(−1)i

{(
x−2

x0 − 1

)2i+1
−
(

x−2

x0 − 1

)2i+2
}
+ (−1)ny−1

(
x−2

x0 − 1

)2n+1
,

y4n+2 = 1 +
n−1

∑
i=0

(−1)i+1

{(
y0 − 1

y−2

)2i+1
+

(
y0 − 1

y−2

)2i+2
}
+ (−1)n+1y0

(
y0 − 1

y−2

)2n+1
.
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Lemma 4. If x0 + x−2 = 1 and y0 + y−2 = 1, then the solutions of System (5) are bounded and
periodic with period eight as follows

{xn}∞
n=−2 = {x−2, x−1, x0, 1 + x−1, 1 + x0,−x−1,−x0, 1− x−1, x−2, x−1, . . . },

{yn}∞
n=−2 = {y−2, y−1, y0, 1− y−1, 1 + y0, 2− y−1,−y0,−1 + y−1, y−2, y−1, . . . }.

Otherwise, every solution of System (5) is unbounded.

Remark 1. As in the previous theorem, we can obtain the solutions of the following system

xn+1 = 1− xn−1yn−2

1− yn
, yn+1 = 1 +

yn−1xn−2

1− xn
.

3. Numerical Examples

In this section, we present some numerical examples that support the above theoreti-
cal results.

Example 1. Suppose System (1) under the initial conditions x−1 = 0.5, x0 = −2, y−1 = 7
and y0 = −0.8. See Figure 1 below.

0 5 10 15 20 25 30
−4

−2

0

2

4

6

8

n

x
 (

n
),

y
 (

n
)

plot of X(n+1)=X(n+1)=1+Y(n)X(n−1)/1−Y(n),Y(n+1)=1+X(n)Y(n−1)/1−X(n)

 

 

x(n)

y(n)

Figure 1. Represents behavior of System (1) when x−1 = 0.5, x0 = −2, y−1 = 7 and y0 = −0.8.

Example 2. See Figure 2 below as an example for System (2) with the initial values x−1 = 5,
x0 = 0.4, y−1 = 0.3, and y0 = 0.7.
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0 10 20 30 40 50 60 70
−20

−10

0

10

20

30

40

n

x
 (

n
),

y
 (

n
)

plot of X(n+1)=X(n+1)=1−Y(n)X(n−1)/1−Y(n),Y(n+1)=1+X(n)Y(n−1)/1−X(n)

 

 

x(n)

y(n)

Figure 2. Shows the behavior for System (2) with the initial values x−1 = 5, x0 = 0.4, y−1 = 0.3
and y0 = 0.7.

Example 3. Figure 3 below shows the behaviour of the solution of System (3) when the initial
values x−2 = 0.5, x−1 = 1.2, x0 = 0.6, y−2 = 0.7, y−1 = 0.8, and y0 = 0.3.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

n

x
 (

n
),

y
 (

n
)

plot of X(n+1)=1+Y(n−2)X(n−1)/1−Y(n),Y(n+1)=1+X(n−2)Y(n−1)/1−X(n)

 

 

x(n)

y(n)

Figure 3. Expresses the solution of System (3) when the initial values x−2 = 0.5, x−1 = 1.2,
x0 = 0.6, y−2 = 0.7, y−1 = 0.8 and y0 = 0.3.

Example 4. Suppose the initial conditions for the system xn+1 = 1− xn−1yn−2

1− yn
, yn+1 = 1−

yn−1xn−2

1− xn
are x−2 = 0.9, x−1 = 1.2, x0 = 0.1, y−2 = 0.3, y−1 = −2, and y0 = 0.7. See

Figure 4.
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n
)

plot of X(n+1)=1−Y(n−2)X(n−1)/1−Y(n),Y(n+1)=1−X(n−2)Y(n−1)/1−X(n)

 

 

x(n)

y(n)

Figure 4. Plot of solutions of System (4) when the initial conditions are x−2 = 0.9, x−1 = 1.2, x0 = 0.1,
y−2 = 0.3, y−1 = −2 and y0 = 0.7.

Example 5. Figure 5 shows the periodic nature of the solution of System (5) with the initial
conditions x−2 = 0.4, x−1 = −1, x0 = 0.6, y−2 = 0.2, y−1 = −3, and y0 = 0.8.

0 5 10 15 20 25 30 35 40
−4

−2

0

2

4

6

n

x
 (

n
),

y
 (

n
)

plot of X(n+1)=1+Y(n−2)X(n−1)/1−Y(n),Y(n+1)=1−X(n−2)Y(n−1)/1−X(n)

 

 

x(n)

y(n)

Figure 5. Shows the periodicity of the solution of System (5) with x−2 = 0.4, x−1 = −1, x0 =

0.6, y−2 = 0.2, y−1 = −3 and y0 = 0.8.

4. Conclusions

In this paper, we obtained the expressions of the solutions of different classes of
third-order rational systems of difference equations. In Section 1, the work of the au-
thors on the same side of the difference equations, whether they are equations, systems
of equations, or some applications of difference equations, is presented. After the intro-
duction in Section 2, we have solved the first system of second order rational difference

equations xn+1 = 1 +
xn−1yn

1− yn
, yn+1 = 1 +

yn−1xn

1− xn
. After finding the solutions, we pro-

vided numerical examples to illustrate the results. In Section 3, we obtained the form

of the solution of the second system xn+1 = 1− xn−1yn

1− yn
, yn+1 = 1 +

yn−1xn

1− xn
; we also

mentioned the solutions of the other systems xn+1 = 1 +
xn−1yn

1− yn
, yn+1 = 1− yn−1xn

1− xn
,

and xn+1 = 1 − xn−1yn

1− yn
, yn+1 = 1 − yn−1xn

1− xn
. Finally, Section 4 was devoted to the
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form of the solutions of the main system of third order fractional difference equations

xn+1 = 1 +
xn−1yn−2

1− yn
, yn+1 = 1 +

yn−1xn−2

1− xn
and some other systems that we obtained

the expressions of the solutions for and studied the periodicity nature of the solutions.
Moreover, we confirmed our results using numerical simulations and drew them using
Matlab program.
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