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Abstract: Neural networks have a wide range of promise for image prediction, but in the current
setting of neural networks as a service, the data privacy of the parties involved in prediction raises
concerns. In this paper, we design and implement a privacy-preserving neural network prediction
model in the three-party secure computation framework over secret sharing of private data. Secret
sharing allows the original data to be split, with each share held by a different party. The parties
cannot know the shares owned by the remaining collaborators, and thus the original data can be
kept secure. The three parties refer to the client, the service provider and the third server that
assist in the computation, which is different from the previous work. Thus, under the definition of
semi-honest and malicious security, we design new computation protocols for the building blocks
of the neural network based on replicated secret sharing. Experimenting with MNIST dataset on
different neural network architectures, our scheme improves 1.3×/1.5× and 7.4×/47.6× in terms
of computation time as well as communication cost compared to the Falcon framework under the
semi-honest/malicious security, respectively.

Keywords: neural network; privacy-perserving; three-party secure computation; replicated secret
sharing

MSC: 68P27; 68T07

1. Introduction

Machine learning is now widely used in computer science research and practical
industrial applications, generating huge social impact and economic benefits. In particular,
convolutional neural networks have great potential in the field of image processing, such
as face recognition [1–3] and speech recognition [4]. Due to their wide applicability, service
providers are starting to rent neural networks as a commodity for their services. In this
scenario, the model is pre-trained by the service provider and the client simply uploads
their own private data to obtain the desired output.

With the advent of the digital age, massive data infrastructures are being built and
sensitive data is being generated. The end-to-end communication between the client and
the service provider can create security vulnerabilities, allowing the leakage of the private
data owned by the client as well as model parameters trained by the service provider
at great human and material cost [5]. Therefore, there is a need to protect the privacy of
parties during the inference process, and neural networks that supports secure computation
become a hot topic of current research.

Secure multi-party computation (SMC) offers a promising solution for
privacy-preserving neural network, which originates from the Millionaire’s Problem pro-
posed by Yao in 1982 [6]. In the SMC framework, collaborating parties do not reveal
their private data to each other. Depending on the number of members involved in the
protocol, current research is divided into (1) two-party secure computation (2PC) [7–10];
(2) three-party secure computation (3PC) [11–15]; and (3) four-party secure computation
(4PC) [16,17].
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SecureML [18] is based on a two-server model and relies on techniques such as
oblivious transfer [19] and garbled circuits to support secure computation of shared decimal
numbers, implementing protocols for various machine learning algorithms such as linear
regression, logistic regression and neural networks. A hybrid protocol framework is
proposed in [20] that effectively combines arithmetic sharing, boolean sharing and Yao’s
garbled circuits to provide a solution for 2PC problem, which is known as ABY. Chandran
et al. [21] build a compiler based on ABY to convert easy-to-write and high-level programs
into efficient 2PC protocols using boolean or arithmetic circuits for better performance.
Agrawal et al. [22] combine boolean sharing and arithmetic sharing to propose a ternary
matrix-vector multiplication protocol with correlated oblivious transfer, and design a new
fixed-point optimisation algorithm through a floating-point adaptive gradient optimisation
procedure to improve prediction efficiency.

Homomorphic encryption is also an effective mean of protecting privacy, which is
often used in 2PC. The first to use homomorphic encryption for secure inference is the
CryptoNet [23] framework, where the user encrypts his private data and uploads it to the
cloud server, which performs the corresponding computation directly on the ciphertext
and returns the resulting ciphertext. The data exists in ciphertext form, which protects the
user’s privacy. However, in this framework, the non-linear layer needs to be calculated by
approximation, e.g., the activation function is replaced by a square function, and therefore
the accuracy of the model may be reduced due to the difference between the approximation
function and the original function. Researches [24–28] based on this are very computation-
ally expensive and have high latency due to the limitations of homomorphic encryption
itself, so further improvements are still needed, e.g., in combination with secret sharing
or garbled circuits. Gazelle [29] combines garbled circuits with homomorphic encryption
to achieve homomorphic linear algebraic kernel which maps neural network layers to
optimized homomorphic matrix multiplication and convolution computation, improving
the inference time of neural networks. Delphi [30] builds on Gazelle and proposes a new
planner that automatically generates neural network architecture configurations to navigate
the trade-off between performance and accuracy to further improve performance.

Araki et al. [31] propose a 3PC framework for boolean circuits with honest majorities,
which is secure in the presence of semi-honest adversaries. Furukawa et al. [32] build
on this by constructing beaver multiplication triples [33] to verify the correctness of the
computation, making the protocol secure in the presence of malicious adversaries at most
one party. Mohassel et al. propose a three-server model, namely the ABY3 [34], which
generalises and optimises the conversion between arithmetic sharing, binary sharing and
Yao’s garbled circuits on the basis of ABY, and propose new techniques for fixed-point
multiplication with shared decimal values. Chameleon [35] is a hybrid protocol framework
that utilises additive secret sharing, garbled circuits and the Goldreich-Micali-Wigderson
(GMW) protocol [36] to improve performance, and introduces a semi-honest third party
to design a more efficient oblivious transfer protocol for arithmetic triples. SecureNN [37]
studies the computation of forward prediction and backpropagation training for deep
learning models in a three-party computation environment, using only arithmetic addition
and secret sharing, eliminating expensive cryptographic operations and guaranteeing semi-
honest security. Malicious security is also presented in that paper, but the computation
of its protocol is not accurate in this security setting. Falcon [38] proposes an end-to-end
3PC protocol for neural networks training and inference based on the ideas of SecureNN
and ABY3, improving performance and ensuring semi-honest as well as malicious security,
which is the main reference of this paper.

Trident [39] is a privacy-preserving machine learning framework that implements a
four-server model. The fourth party in the protocol is inactive in the online phase except for
input sharing and output reconstruction. Flash [40] guarantees output delivery security (all
parties get the output regardless of the behaviour of the adversary), and optimises the dot
product protocol to make its computation independent of vector size as well as truncation
and highest significant bit extraction algorithms. QuantizedNN [41] proposes an efficient
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privacy-preserving machine learning framework using the quantization scheme of Jacob
et al. [42], and provides protocols under the semi-honest or malicious security setting.

In the above studies, the 2PC [18,20–22] requires both parties involved in the protocol
to be semi-honest. The 4PC [39–41] is not of practical importance due to the limitation
of the number of computing servers. Instead, the 3PC [32,34,37,38] is considered to be
one of the most promising framework available due to its security and efficiency. The
main techniques include secret sharing, garbled circuits [43], homomorphic encryption,
GMW protocol, etc. Each technique has its advantages and disadvantages, for example,
homomorphic encryption has the highest computational complexity, while secret sharing
requires the least bandwidth compared to garbled circuits or GMW protocol. Therefore, we
mainly use secret sharing to build a 3PC framework for privacy-preserving neural network
prediction. Our contributions are shown below.

• A neural network prediction model for three-party secure computation is constructed.
Experiments are conducted on pre-trained different model architectures with the
MNIST dataset, achieving an accuracy of 96.64%, 97.04%, 98.70% and 96.50%, re-
spectively, with errors of no more than 1% from the results predicted directly on the
plaintext.

• We define two security models. In the semi-honest environment, collaborators behave
honestly, performing calculations according to the protocol and ensuring that they do
not learn the shares held by the remaining parties. In the malicious environment, the
protocol is terminated if malicious activity is detected, ensuring correct computation.
Depending on the application scenario and performance requirements, the choice
between the two security environments can be made.

• New sub-protocol algorithms for neural networks are designed using secret sharing,
and they can be combined to construct secure prediction modelwith different com-
binations, it was possible to construct secure prediction model, improving the time
required for prediction and the cost of communication compared to previous work.

The rest of the paper is structured as follows: Section 2 focuses on the relevant
theoretical knowledge; Section 3 introduces the prediction framework and the sub-protocol
algorithms for the neural network; Section 4 presents the experimental results; and Section 5
provides the conclusion.

2. Preliminaries

In this section, we describe the concepts and notations needed in this paper.

2.1. Replicated Secret Sharing

The three parties are denoted by P0, P1, P2, respectively, then Pi+1, Pi−1 denote the
next and previous party of Pi, where the subscript is in modulo 3, i.e., the next party of P0
is P1 and the previous party is P2. Let [[x]]L = (x0, x1, x2) denotes the 2-out-of-3 replicated
secret sharing [31,32,34] of x in the number field ZL, i.e., x ≡ x0 + x1 + x2(mod L), where
L = 2` (L is a number of data type with bit size `). Then P0 holds the pair (x0, x1), P1 holds
the pair (x1, x2) and P2 holds the pair (x2, x0). Any two parties can combine to recover the
original data x. Similarly, the 2-out-of-3 replicated secret sharing of y in the number field
Z2 can be denoted by [[y]]2 = (y0, y1, y2), i.e., y = y0

⊕
y1
⊕

y2.
Furthermore, Let [x]L = (x0, x1, x2) and [y]2 = (y0, y1, y2) denote the 3-out-of-3 secret

sharing in the ZL and Z2, respectively, then P0 holds the shares x0 and y0, P1 holds the
shares x1 and y1, and P2 holds the shares x2 and y2. Only a joint three-party effort can
recover the original data x and y.

2.2. Random Number

We need to add a certain amount of noise to the sharing values to avoid channel
attacks in peer-to-peer transmission. When the party Pi generates a random number seed
ki and shares it with the previous party Pi−1, each of the three parties has the peer-to-peer
communication channel (Pi, Pi−1), (Pi, Pi+1) and a sharing seed pair (ki, ki+1). A pseudo-
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random generation function Fki
is used to generate public random numbers as follows,

where ct is a counter that automatically adds 1 after each call to the pseudo-random
generation function.

• The party Pi generates the random number αi = Fki (ct)− Fki+1(ct)(i = 0, 1, 2), then all
parties can directly generate a 3-out-of-3 secret sharing of 0 without interaction, i.e.,
α0 + α1 + α2 ≡ 0(mod L).

• The party Pi generates the random number pair (ri, ri+1) =
(

Fki (ct), Fki+1(ct)
)

(i = 0, 1, 2), then (r0, r1, r2) can form a 2-out-of-3 replicated secret sharing of r without
interaction, i.e., r0 + r1 + r2 ≡ r(mod L).

Optimization. In the main protocols of Section 3, we need parties to have the 2-out-of-3
replicated secret sharing of 0, which is proposed in Section 3.1 in [34]. Then the secret
sharing of x is denoted by (x0, x1, x2) = (α0, α1 + x, α2), which can reduce the number of
interactions between the parties. The random numbers can be pre-generated in the offline
phase, so we focus mainly on the online phase of the computation.

3. Framework and Protocols

In this section, we describe the prediction model for 3PC, the basic operations and
some sub-protocols for the fully connected, convolutional, activation and pooling layers
over replicated secret sharing.

3.1. Overview of the Framework

In this paper, we focus on the prediction phase of neural networks, where users query
inference results by leasing pre-trained models. Our proposed 3PC prediction model
consists of three roles, as shown in Figure 1. One is the data owner P0, which applies its
own private data to the leased model; the second is the service provider P2, which provides
pre-trained network models for users to perform query services; and the last is the helper
service P1, which performs auxiliary computations.

Figure 1. The prediction model for three-party secure computation.

First, P0 shares private data [[x]]L = (α0, x + α1, α2) and P2 shares model parameters
[[y]]L = (β0, β1, y + β2) in the form of 2-out-of-3 replicated secret sharing, where [[α]]L and
[[β]]L are both 2-out-of-3 replicated secret sharing of 0. Afterwards, the three parties jointly
use their shared data for inference. The result is also in sharing form. Finally, the P0
communicates with the P1 and reconstructs to obtain the final inference result. In this way,
the user’s input data, the specific parameters of the model, and the final inference output
are all in secret sharing form, and no information about the original data can be leaked by
any of the parties’ shares, thus allowing for complete privacy.

In most of the current studies [31,34,38], outsourced cloud computers are used to
perform SMC. Therefore, the computation volume of each computer as well as its security
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assumptions are the same, while in proposed model, P0, as the service renter, is semi-
honest and does not modify the data in order to get the final expected value. Therefore,
the proposed model has the following two definitions of security, based on the security
assumptions of the party P1 and P2.

Definition 1. The model is defined as a semi-honest security model if both P1 and P2 are semi-honest.

Definition 2. The model is defined as a malicious security model if P1 or P2 is malicious.

In the semi-honest security model, the parties will obey the protocol but will attempt
to learn the shares owned by the remaining parties from the results of the intermediate
calculations received. In a malicious security model, the malicious party may corrupt the
correctness of the protocol by tampering with the intermediate data so that the model does
not achieve the desired result. Therefore, we need a method of validation to ensure that the
protocol can proceed correctly.

3.2. Basic Operation

Linear calculations. Assuming that a, b, c are common constant and [[x]]L, [[y]]L are
secret sharing, then the sharing of the linear calculation [[ax + by + c]]L can be expressed
as (ax0 + by0 + c, ax1 + by1, ax2 + by2). The addition between secret sharing can be added
directly corresponding to shares, whereas constant addition only requires adding the
constant to a certain share. Constant multiplication requires that each share be multiplied by
the constant. These three operations only need to be calculated locally without interaction,
so does not require a security algorithm.

Multiplication. Let [[x]]L = (x0, x1, x2) and [[y]]L = (y0, y1, y2), then a total of two
steps are required to obtain the secret sharing of z = xy. First, party Pi computes zi =
xiyi + xi+1yi + xiyi+1 locally, which gets the 3-out-of-3 secret sharing of z, i.e., [z]L =
(z0, z1, z2) = (x0y0 + x1y0 + x0y1, x1y1 + x2y1 + x2y2, x2y2 + x0y2 + x2y0), which is defined
as [z]L := [[x]]L[[y]]L. Afterwards, the party Pi sends share zi + αi to party Pi−1, which gets
the 2-out-of-3 replicated secret sharing of z, i.e., [[z]]L = (z0 + α0, z1 + α1, z2 + α2), where a
3-out-of-3 secret sharing of 0 is added for blinding to ensure the security of the data.

In the malicious security model, the information sent by P1 and P2 could be changed,
so validation means need to be added to ensure the correctness of the data, as shown in
Algorithm 1. An additional uniformly distributed tuple ([[a]]L, [[b]]L, [[c]]L) is needed, which
c ≡ ab(mod L).

Algorithm 1 Multiplication protocol ∏Mult

Input: shares of [[x]]L and [[y]]L held by P0, P1, and P2.
Output: shares of [[z]]L held by P0, P1, and P2.
Common Randomness: 3-out-of-3 secret sharing [α]L of 0, 2-out-of-3 replicated
secret sharing [[β]]L of 0, and uniformly distributed tuple ([[a]]L, [[b]]L, [[c]]L), where
c ≡ ab(mod L).

1: for i = 0, 1, 2, Pi computes locally [[u]]L := [[x]]L − [[a]]L, [[v]]L := [[y]]L − [[b]]L.
2: for i = 0, 1, 2, Pi computes [z]L := [[x]]L[[y]]L, [p]L := [[u]]L[[b]]L, [q]L := [[a]]L[[v]]L,

[o]L := [[u]]L[[v]]L and si = pi + qi + oi + ci. These calculations can be performed locally.
3: for i = 1, 2, Pi sends (zi + αi, si) to P0 in the malicious security model, while Pi only

needs to send zi + αi to P0 in the semi-honest security model.
4: P0 computes s′ = ∑i(zi + αi − si). Output ⊥ if s′ 6= 0, otherwise, continue the protocol.
5: P0 computes locally z ≡ z0 + α0 + z1 + α1 + z2 + α2(mod L).
6: P0 transmits z + β1 to P1.
7: return [[z]]L = (β0, β1 + z, β2).

Theorem 1. The protocol ∏Mult described in Algorithm 1 allows for correct and secure operation
of the multiplication functionality.
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Proof of Theorem 1. In step 1 and 2, there are u = x− a, v = y− b, z = xy, p = ub, q = av,
o = uv, then

s = p + q + o + c

= (x− a)b + a(y− b) + (x− a)(y− b) + ab

= xb− ab + ay− ab + xy− ay− xb + ab + ab

= xy

So in step 4, s′ = z + α− s = 0, which means the messages sent by P1 and P2 are correct,
without being tempered, and can continue to be calculated. Otherwise, terminal the
protocol. Thus, in step 5, P0 can correctly calculate z = xy and send the share to get [[z]]L

after adding the random number. The introduction of common randomness during the
transmission ensures the security of the data in Algorithm 1.

Reconstruction. In the semi-honest security model, denoted by [[α]]L for 2-out-of-3
replicated secret sharing of 0, P1 sends x2 + α2 to P0, then the party P0 has shares x0 + α0,
x1 + α1, and x2 + α2, which can be recovered by computing x ≡ x0 + α0 + x1 + α1 + x2 +
α2(mod L) to recover the global value x, which only need 1 round communication and 1
message. In the malicious security model, because P1 and P2 may tamper with the data, in
order to ensure the correctness of the final result, it is necessary for P1 and P2 to transmit
both x2 + α2 to P0. P0 judges the received messages, and if the two messages are equal,
it means that the correct value is transmitted in this round of communication without
tampering, and the subsequent calculation can be continued. Otherwise, it is immediately
terminated.

3.3. Fully Connected Layer

The computation of the fully connected layer is a matrix multiplication such that the
input X(n× 1) and the weight W(m× n), then the output Y = W × X(yi = ∑n

j=1 wijxj,
i = 1, ..., m). Since the addition calculation can be performed directly locally, the main focus
is on the multiplication between the shares and the matrix multiplication based on it. We
use a fixed-point algorithm (as shown in Section 5.1 of [34]), so the matrix multiplication
result needs to be truncated in the protocol ∏MatMul , which is shown in Algorithm 2, to
ensure that the accuracy of the input and output remains consistent.

The two secret sharing of input are [[W]]L = (W0, W1, W2), [[X]]L = (X0, X1, X2), and
the sharing of output is [[Y = WX]]L. The protocol needs to generate a pair of shared random
numbers ([[R]]L, [[R′]]L), where R = R′/2d (Each element of the matrix is divided by 2d, d
indicates the precision bit of the input). First, the parties compute locally [Y′]L = [[W]]L[[X]]L,
where Y = Y′/2d. After that, P1 transmits the blinded Y′1 with R′1 to P0, and P2 transmits
the blinded Y′2 with R′2 to P0, ensuring the privacy of the shared values in transmission. P0
receives the messages from P1 and P2 and performs an addition operation for reconstruction,
as shown in Line 5, to obtain the blinded Y′, so that the parameter of the party P2 cannot
be calculated by W = (Y′ − R′)X−1. Because multiplication leads to a larger precision of
the result, the truncation algorithm Z = (Y′ − R′)/2d is needed to reduce the precision.
In order to get the output sharing, P0 needs to blind Z and send it to P1, then the final
2-out-of-3 replicated secret sharing [[Y]]L = (R0, Z + R1, R2) is obtained.

In the malicious security model, similarly, an additional uniformly distributed tuple
([[A]]L, [[B]]L, [[C]]L) is needed, which C ≡ AB(mod L), to ensure the correctness of the
data.
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Algorithm 2 Matrix Multiplication protocol ∏MatMul

Input: shares of [[W]]L and [[X]]L held by P0, P1, and P2.
Output: shares of [[Y]]L held by P0, P1, and P2.
Common Randomness: truncation pair of shared random number ([[R]]L, [[R′]]L),
where R = R′/2d, and uniformly distributed tuple ([[A]]L, [[B]]L, [[C]]L), where C ≡
AB(mod L).

1: for i = 0, 1, 2, Pi computes locally [[U]]L = [[W]]L − [[A]]L, [[V]]L = [[X]]L − [[B]]L.
2: for i = 0, 1, 2, Pi computes [Y′]L = [[W]]L[[X]]L, [P′]L = [[U]]L[[B]]L, [Q′]L = [[A]]L[[V]]L,

[O′]L = [[U]]L[[V]]L and Si = Y′ i − P′ i − Q′ i − O′ i − Ci. These calculations can be
performed locally.

3: for i = 1, 2, Pi transmits (Y′ i − R′ i, Si) to P0 in the malicious security model, while Pi
only needs to send Y′ i − R′ i to P0 in the semi-honest security model.

4: P0 computes S′ = ∑i Si. Output ⊥ if S′ 6= 0, otherwise, continue the protocol.
5: P0 computes Y′ − R′ = ∑i(Y′ i − R′ i) and truncates Z = (Y′ − R′)/2d.
6: P0 transmits Z + R1 to P1.
7: return [[Y]]L = (R0, Z + R1, R2).

Theorem 2. The protocol ∏MatMul described in Algorithm 2 allows for correct and secure operation
of the matrix multiplication functionality.

Proof of Theorem 2. The proof of the theorem proceeds similarly to Theorem 1.

3.4. Convolutional Layer

The convolution computation can be viewed as the merging of multiple matrix mul-
tiplications, so the convolution can be expanded into a matrix of larger dimensionality.
Suppose the convolution calculation between an input image of 3× 3 and a kernel of size
2× 2 (with the step of 1) can be converted into a matrix multiplication between W(1× 4)
and X(4× 4), which as follows.

Conv

[k1 k2
k3 k4

]
,

x1 x2 x3
x4 x5 x6
x7 x8 x9

 =
[
k1 k2 k3 k4

]
×


x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9


Then we can call the protocol ∏MatMul directly to calculate it.

3.5. Wrap Function

The definition of the wrap functions wrap2e, wrap3e and wrap3 is given below, which
can compute the carry efficiently when the shared values are summed as integers.

wrap2e(a0, a1, L) =

{
0 if 0 6 a0 + a1 < L
1 Otherwise

(1)

wrap3e(a0, a1, a2, L) =


0 if 0 6 ∑2

i=0 ai < L
1 if L 6 ∑2

i=0 ai < 2L
2 if 2L 6 ∑2

i=0 ai < 3L

(2)

wrap3(a0, a1, a2, L) = wrap3e(a0, a1, a2, L)(mod 2) (3)

Next, we describe the relationship between the most significant bit of a and wrap3
function on the secret sharing (a0, a1, a2). Note that a ≡ a0 + a1 + a2(mod L) and ai is a
share within modulo L, and we can see the most significant bit MSB(a) = MSB(a0) +
MSB(a1) + MSB(a2) + c (mod 2), where c is the carry of the previous index. The key
insight here is that ignoring the most significant bit of ai, the carry c of the previous
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index is obtained by performing the wrap3 function on ai with modulo L/2. Furthermore,
this operation is equivalent to performing wrap3 function on 2ai with modulo L. That is,
c = wrap3(a0, a1, a2, L/2) = wrap3(2a0, 2a1, 2a2, L).

The wrap2e function can be computed directly locally and therefore does not require a
security algorithm. In addition, the wrap2e function allows us to write the following exact
integer equation: if a ≡ a0 + a1(mod L), then a = a0 + a1 − wrap2e(a0, a1, L) · L. Where the
former is a congruence relation and the latter is an integer relation which is exactly equal.
Finally, Algorithm 3 gives the wrap3 protocol on the 2-out-of-3 replicated secret sharing of
a. It is necessary to blind the transmitted data in the communication to ensure data security,
so two 2-out-of-3 replicated secret sharing of 0, denoted by [[r]]L and [[η]]2, are introduced.

Algorithm 3 Wrap protocol ∏Wrap

Input: shares of [[a]]L held by P0, P1, and P2.
Output: shares of a bit [[θ]]2 held by P0, P1, and P2, where θ = wrap3(a0, a1, a2, L).
Common Randomness: [[r]]L (random shares of 0), [[α]]2 where α = wrap3(r0, r1, r2, L),
and [[η]]2 (a bit random shares of 0).

1: for i = 0, 1, 2, Pi computes locally xi ≡ ai + ri(mod L) and βi = wrap2e(ai, ri, L).
2: In the semi-honest security setting, P1 sends x2 to P0. While in the malicious security

setting, P1 sends x2 to P0 and P2 sends H(x2) to P0.
3: In the malicious security setting, P0 first needs to judge whether the hash value of x2

from P1 is equal to H(x2) from P2. Output ⊥ if it is not equal, otherwise, continue the
protocol.

4: P0 computes δ = wrap3(x0, x1, x2, L) and sends δ + η1 to P1.
5: return [[θ]]2 = (β0 ⊕ α0 ⊕ η0, β1 ⊕ α1 ⊕ δ⊕ η1, β2 ⊕ α2 ⊕ η2).

Theorem 3. The protocol ∏Wrap described in Algorithm 3 allows for correct and secure operation
of the wrap3 functionality.

Proof of Theorem 3. The following equations exist in Algorithm 3:

a = a1 + a2 + a3 − θe · L (4)

r = r0 + r1 + r2 − αe · L (5)

xi = ai + ri − βi · L, ∀i ∈ {0, 1, 2} (6)

x = x0 + x1 + x2 − δe · L (7)

where θe, αe and δe represent the exact wrap3e function, Equations (4), (5) and (7) follow
the definition of the exact wrap3e function, while Equation (6) follows the definition of the
wrap2e function. because x ≡ a + r(mod L) and r = 0, so x ≡ a(mod L). From the Eqs.4-7
we can get

θe = β0 + β1 + β2 − δe − αe (8)

Equation (8) modulo 2 is operated to get θ = β0 + β1 + β2 − δ − α, which is used
to calculate the wrap3 in Algorithm 3. Similarly, in the malicious security model, the
verification method in step 3 ensures that the data is correct, so the protocol ∏Wrap is correct.
In addition, the introduction of random numbers ensures the security of Algorithm 3.

3.6. ReLU Activation Layer

In the decimal real number field, the activation function ReLU(x) is defined as
ReLU(x) = x if x > 0, otherwise, ReLU(x) = 0. Under the C++ data type represen-
tation on the ring ZL, x > L/2 indicates a negative number whose most significant bit
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MSB(x) = 1, and 0 6 x < L/2 indicates a positive number whose most significant bit
MSB(x) = 0. Therefore, when using fixed-point encoding, the definition of ReLU(x) can
be converted as follows: if MSB(x) = 1, ReLU(x) = 0, otherwise, ReLU(x) = x, i.e.,
ReLU(x) = x · (1−MSB(x)).

When the secret shared values of x are known, the most significant bit MSB(x) is
given as follows.

MSB(x) = MSB(x0)⊕MSB(x1)⊕MSB(x2)⊕ wrap3(2x0, 2x1, 2x2, L) (9)

The secret sharing of MSB(x) is obtained by first calling the ∏Wrap protocol to calculate
the sharing of the carry bits, and then locally dissociating directly with the most significant
bit of the shares of x, as shown in Line 2 of Algorithm 4. If the secret sharing of x and
MSB(x) are held in different number fields, i.e., [[x]]L = (x0, x1, x2) and [[MSB(x)]]2 =
[[0]]2 = (1, 1, 0), then calling the multiplication protocol on two sharing can obtain [[2x]]L =
(2x0 + x1, x1 + x2, x2), which is not the expected value. So we cannot call the multiplication
protocol directly, but need to convert the secret sharing of MSB(X) in Z2 to the secret
sharing of 1−MSB(x) in ZL and then call the protocol ∏Mult to get the 2-out-of-3 replicated
secret sharing of ReLU(x).

Algorithm 4 ReLU protocol ∏RU

Input: shares of [[x]]L held by P0, P1, and P2.
Output: shares of [[y]]L held by P0, P1, and P2, where y = ReLU(x).
Common Randomness: random numbers [[r]]L and [[r]]2.

1: Run ∏Wrap to get [[θ]]2 where θ = wrap3(2x0, 2x1, 2x2, L).
2: for i = 0, 1, 2, Pi computes locally (θi ⊕ MSB(xi), θi+1 ⊕ MSB(xi+1) to obtain

[[MSB(x)]]2 = (θ0 ⊕MSB(x0), θ1 ⊕MSB(x1), θ2 ⊕MSB(x2)).
3: Run ∏Reconst to get c where c = (r⊕MSB(x)) and P0 broadcasts c to P1 and P2.
4: If c = 0, set [[1−MSB(x)]]L = 1− [[r]]L, otherwise, [[1−MSB(x)]]L = [[r]]L.
5: Run ∏Mult over [[x]]L and [[1−MSB(x)]]L to get [[y]]L.
6: return [[y]]L.

Theorem 4. The protocol ∏RU described in Algorithm 4 allows for correct and secure operation of
the ReLU functionality.

Proof of Theorem 4. The protocol ∏Wrap called in step 1 is correct and secure. Step 2 is
computed locally without the security algorithm. Step 3 invokes the protocol ∏Reconst
and then exposes c as the blinded MSB(x), so ensuring that the true value of MSB(x) is
not known to the parties. Step 4 is computed locally and if c = 0, indicating that r is the
same as MSB(x), then 1−MSB(x) = 1− r, otherwise c 6= 0 when r is complementary to
MSB(x), then 1−MSB(x) = r. The protocol ∏Mult called in step 5 is correct and secure.
Therefore, it follows from Theorem 1.2 in [44] that combined protocol ∏RU is also correct
and secure.

3.7. Max-Pooling Layer

In the max-pooling layer, we treat the elements in the local field as a row vector as
follows: x1 x2 x3

x4 x5 x6
x7 x8 x9

− >


x1 x2 x4 x5
x2 x3 x5 x6
x4 x5 x7 x8
x5 x6 x8 x9

.

Then the computation at this layer is to find the maximum element in each row vector.
The functionality of the protocol ∏MP is simply expressed as the input of a vector in the
form of secret sharing and the output of secret sharing of its maximum value. At the
intermediate layer, we only need to focus on the maximum value of each vector, so it is
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sufficient to carry out the calculations in steps 3, 4 and 5 of Algorithm 5. Iterating through
the input via a for loop, the difference between the two numbers is first calculated and
the protocol ∏RU is called to determine if the difference is zero, which in turn gives the
maximum value of the current traversal. In the final predictive classification, the index of
the maximum value in the vector, i.e., the label, needs to be obtained. So we pre-generate a
number of one-hot vectors ~ek with k = {1, 2, ..., n} and select the output in step 6 to get the
index of the maximum value of the output vector.

Algorithm 5 Maxpool function ∏MP

Input: shares of x1, x2, ..., xn in ZL held by P0, P1, and P2.
Output: shares of xk and ~ek held by P0, P1, and P2, where k = argmax{x1, x2, ..., xn}
and ~ek = {e1, e2, ..., en} with ek = 1 and ei = 0 ∀i 6= k.
Common Randomness: No additional common randomness required.

1: Set max ← a1 and ~ind← ~e1 = {1, 0, ..., 0}.
2: for i = {2, 3, ..., n} do
3: Set d← (max− ai).
4: b← MSB(d), c← ReLU(d).
5: max ← c + ai.
6: ~ind← ( ~ind⊕~ei)b⊕ ~ind.
7: end for
8: return max, ~ind.

Theorem 5. The protocol ∏MP described in Algorithm 5 allows for correct and secure operation of
the Maxpool functionality.

Proof of Theorem 5. Algorithm 5 calls the protocol ∏RU in step 4 (the computation of b
is in steps 1 and 2 of Algorithm 4), and the protocol ∏Mult in step 6. Similarly, because
sub-protocols are secure, the combined protocol is also secure. In step 6, if b = 0, ( ~ind⊕
~ei)b⊕ ~ind = ~ind, so the current max > ai and output ~ind. If b = 1, ( ~ind⊕ ~ei)b⊕ ~ind =
~ind⊕~ei ⊕ ~ind = ~ei, so max < ai and the one-hot vector ei corresponding to ai is outputted.

In summary, Algorithm 5 is correct and secure.

3.8. Performance Analysis

We summarise the overhead of the protocol theoretically, with the number of rounds
and the communication complexity shown in Table 1. The protocol ∏Reconst requires the
transmission of 1 message in the semi-honest security model and 2 messages in the mali-
cious security model. the protocol ∏MatMul represents matrix multiplication of dimensions
x× y and y× x and requires 2 communications in the semi-honest security model (e.g.,
steps 3 and 6), whereas in the malicious security model, although the same 2 communica-
tions are performed, the first communication complexity is 2×. If the number of elements
transmitted is the same, the communication complexity of ∏Wrap under the malicious
security model can be the same as that of the protocol ∏Mult under the semi-honest security
model. The focus of protocol ∏RU is on the combined computation of ∏Wrap, ∏Reconst and
∏Mult. The protocol ∏MP only needs to compute the maximum value in the pooling layer
of the neural network, i.e., only steps 3–5 in the for loop need to be performed. Let matrix
dimension after local feature transformation be x× y, then the protocol ∏RU needs to be
called y− 1 times. The full protocol ∏MP is only called when the final label classification is
performed and the one-hot encoding of each label needs to be calculated.

As can be seen from Table 1, the number of rounds under the malicious security model
is essentially the same as that under the semi-honest security model, but the communication
complexity is approximately 2×, making it a much less efficient implementation.
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Table 1. Theoretical overheads of protocols.

Protocol Dependence
Semi-Honest Malicious

Rounds Comm. Rounds Comm.

∏Reconst n 1 1kn 1 2kn
∏Mult n 2 3n 2 5n

∏MatMul (x× y)(y× z) 2 3kxz 2 5kxz
∏Wrap n 2 2kn 2 3kn
∏RU n 6 8kn 6 12kn
∏MP x× y 8(y− 1) 11kn(y− 1) 8(y− 1) 17kn(y− 1)

Note: k is the number of bytes occupied by each value.

We compared the theoretical complexity of the Astra [45], Blaze [46], Falcon [38],
Flash [40] and Trident [39] frameworks with the proposed scheme. We compares the end-
to-end overhead of the protocol ∏RU due to the different methods used in this framework
to calculate the non-linear functions. Table 2 shows the comparison of the theoretical
complexity. Astra is a third-party secure computation framework with semi-honest security.
Blaze builds on Astra to achieve malicious security and fairness in a 3PC honest majority
corruption model and uses an adder circuit approach for non-linear function computation.
The framework which is most similar to the proposed scheme is Falcon and introduces a
non-zero random number r in step 1 of the protocol ∏Wrap, so the PC protocol needs to be
called in step 4 to compare the x and r, which is in Section 3.3 of the [38]. In contrast, we
introduce a secret sharing of 0, so there is no need to call the PC protocol, resulting in a log`
reduction in the number of rounds and a 4× reduction in communication complexity for
the protocol ∏RU .

Table 2. Comparison of theoretical complexity of sub-protocols in each franework.

Framework
Multiplication ReLU

Rounds Comm. Rounds Comm.

Astra [45] 1 4` 3 + log` 45`
Blaze [46] 1 3` 4 (κ + 7)`

Falcon [38] 1 4` 5 + log` 32`
Proposed 2 3` 5 8`
Flash [40] 1 3` 10 + log` 46`

Trident [39] 1 3` 4 8`+ 2

Note: ` is the bit size of the data type, κ is the security parameter, and log denotes the logarithm with base 2.

4. Results

Our experiments are written in C++ program on the virtual machine Ubuntu 22.04.1
LTS amd64 and focus on evaluating the performance overhead of the proposed scheme for
private prediction on multiple neural networks.

The training is first performed on plaintext data using the torch library, with the
accuracy of 98.06% on Network-A, 99.00% on Network-B, 99.56% on Network-C and
99.77% on Network-D (networks are described in Section 4.1). Afterwards, the performance
of various sub-protocols under semi-honest and malicious security is benchmarked as
shown in Section 4.2. Section 4.3 evaluates the prediction time and communication cost of
the proposed scheme in this paper based on the model parameters obtained from training
with the test dataset. Finally, the feasibility of this scheme is verified by comparing the
accuracy under the secret sharing and plaintext in Section 4.4.

The inputs to the neural network as well as the parameters are generally floating point
numbers, so they must be encoded in fixed point form, setting their precision bit to 13.
Experiments in this paper are conducted using a smaller ring ` = 32, allowing the entire
framework to run on smaller data types with half the communication complexity compared
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to the generic framework with ` = 64. The Eigen library is used to speed up the matrix
multiplication calculation.

4.1. Dataset and Networks

The dataset is MNIST [47], where each image is a 28× 28 pixel handwritten digital
image with labels between 0 and 9, consisting of 60,000 images in the training set and
10,000 images in the test set.

For comparisons with different neural network architectures, four standard network
architectures are chosen for the experiments, which are shown in Figure 2.

(a)

(b)

(c)

(d)

Figure 2. Four network architectures. (a) Network-A. (b) Network-B. (c) Network-C. (d) Network-D.

• Network-A: This is a neural network evaluated in the SecureML [18] framework. It
consists of 3 fully connected layers, with an activation layer added after each layer.
The number of nodes in each layer is 128× 784, 128× 128, 10× 128. This is the smallest
network with 118,282 parameters.
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• Network-B: This is a neural network evaluated in the Chameleon [35] framework. The
network structure has 6 layers in total. The first layer is a convolutional layer with
a kernel of 2× 2× 1× 5. The third and fifth layers are fully connected layers with
nodes of 100× 980, 10× 100, respectively. The second, fourth and sixth layers are the
activation layers. Its total number of parameters is about 99,135.

• Network-C: This is a neural network evaluated in the MiniONN [48] framework. The
network has a total of 10 layers. The first and fourth layers are convolutional layers
with kernels of 5× 5× 1× 16, 5× 5× 16× 16, respectively. The second and fifth layers
are pooling layers with kernels of 2× 2. Layers 7 and 9 are fully connected layers with
nodes of 100× 256, 10, respectively, and the rest of the layers are activation layers. Its
total number of parameters is 33,542.

• Network-D: The network was first proposed in [47] for automatic detection of postal
codes and digit recognition, which has 10 layers. The first and fourth layers are
convolutional layers with kernels of 5× 5× 1× 20, 5× 5× 20× 50, respectively. the
second and fifth layers both are pooling layers with kernels of 2× 2. Layers 7 and 9
are fully connected layers with nodes of 500× 800, 10× 500, respectively, and the rest
of the layers are activation layers. It has a total of 431,080 parameters.

4.2. Microbenchmarks

In this section, we benchmark the computations of the fully connected, convolutional,
activation and pooling layers. Three different parameter sets are used for the experiments,
and the average of 100 experiments is taken as the result. A comparison of the sub-layers
performance in a semi-honestly security model is shown in Table 3. The fully connected
and convolutional layers mainly invoke the protocol ∏MatMul which reduces the compu-
tational complexity from 4` to 3` compared to Falcon, resulting in an improvement in
communication cost of about 1/4 under the same parameters. In the activation layer, com-
pared to Falcon, there are fewer calls to the comparison protocol, resulting in performance
improvement of about 2.7×–9.0× in computation time and about 10.95× in communication
cost for the same parameters. In the pooling layer, we mainly calculate the maximum value
in the local field without focusing on its index, and the protocol ∏MP is based on the pro-
tocol ∏RU , so the performance is also improved compared to Falcon, with the 5.1×–8.4×
improvement in computation time and about 11.6×–13.4× in communication cost.

Table 3. Microbenchmarks in semi-honest security.

Layers Dimension
FALCON Proposed

Time (ms) Comm (KB) Time (ms) Comm (KB)

Fully-connect1 784, 128, 10 1.55 122.50 1.41 91.88
Fully-connect2 1, 500, 100 0.44 1.56 0.36 1.17
Fully-connect3 1, 100, 1 0.18 0.02 0.17 0.01

Conv1 28, 5, 1, 20 0.63 180.00 0.53 135.00
Conv2 28, 3, 1, 20 0.50 211.25 0.42 158.44
Conv3 8, 5, 16, 50 0.67 12.50 0.61 9.38
ReLU1 128, 128 5.38 3504.00 0.60 320.00
ReLU2 576, 20 1.44 2463.75 0.50 225.00
ReLU3 64, 16 1.19 219.00 0.43 20.00

Maxpool1 24× 24× 20, 2× 2 7.12 1949.06 1.39 168.75
Maxpool2 24× 24× 16, 2× 2 6.64 1559.25 1.19 135.00
Maxpool3 8× 8× 50, 4× 4 3.43 782.23 0.41 58.59

In the malicious security model, the computational performance of the sub-layers is
shown in Table 4. The performance is lower than in the semi-honest security model due
to the need to verify the correctness of the data in the communication in each protocol.
In our scheme, the introduction of the hash function leads to a significant reduction in
communication cost. Compared to Falcon, the improvement is much higher than in in the
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semi-honest model. For example, with the same parameter setting of the fully connected
and convolutional layers, the communication cost is improved by about 1.3× with the
semi-honest security setting, while it can be improved by about 1.8×–101.9× with the
malicious security setting. With the same parameter setting in the activation layer, the
communication cost is increased by about 11.0× with the semi-honest security setting,
while it can be increased by 51.1× with the malicious security setting. In the pooling layer
with the same parameter setting, the communication cost is increased by approximately
12× with the semi-honest security setting, while it is increased by approximately 54× with
the malicious security setting.

Table 4. Microbenchmarks in malicious security.

Layers Dimension
FALCON Proposed

Time (ms) Comm (KB) Time (ms) Comm (KB)

Fully-connect1 784, 128, 10 7.10 809.88 4.72 153.13
Fully-connect2 1, 500, 100 1.03 198.63 0.59 1.95
Fully-connect3 1, 100, 1 0.30 1.20 0.27 0.02

Conv1 28, 5, 1, 20 2.93 402.31 1.67 225.00
Conv2 28, 3, 1, 20 2.06 406.39 0.95 264.06
Conv3 8, 5, 16, 50 2.90 176.56 1.78 15.63
ReLU1 128, 128 5.89 11,896.00 2.10 448.13
ReLU2 576, 20 3.65 16,098.80 1.62 315.13
ReLU3 64, 16 3.70 1431.00 0.53 28.13

Maxpool1 24× 24× 20, 2× 2 10.56 12,681.60 4.23 236.63
Maxpool2 24× 24× 16, 2× 2 9.15 10,145.20 1.53 189.38
Maxpool3 8× 8× 50, 4× 4 5.77 5036.13 1.29 83.91

After theoretical and experimental analysis, verify that the proposed scheme has better
performance in terms of computation time as well as communication complexity. Experi-
ments under both security definitions are also compared and show that the performance of
the malicious model is lower than that of the semi-honest model, but the performance im-
provement of the malicious model is higher than that of the semi-honest model compared
to other works.

4.3. Security Prediction

Table 5 shows the number of communication bytes (KB) and the end-to-end latency
(ms) for the proposed scheme to perform a single inference query with the Falcon frame-
work. We execute the queries in different network architectures as well as in semi-honest
and malicious settings. In the semi-honest setting, predicting a single sample takes about
45.71 ms with an improvement of 1.18×, and its communication cost is about 8.90 KB with
an improvement of 7.12× on Network-A. On Network-B, it takes about 39.54 ms with an
improvement of 1.14×, and its communication cost is about 34.65 KB with an improvement
of 7.23×. On Network-C, it takes about 32.36 ms (1.47×), and its communication cost is
about 324.02 KB (7.62×). Network-D takes about 155.28 ms (1.38×), and its communication
cost is about 476.52 KB (7.61×). In a malicious security setting, our work is 1.29×–1.80×
faster, with a communication efficiency improvement of about 32.36×–81.77× compared
to Falcon.

These experiments show that the proposed method has lower latency and fewer
communication cost in single-sample prediction. Depending on the trust assumptions,
malicious model requires more communication as well as higher runtimes compared to the
semi-honest model. Figure 3 shows that the time performing batch prediction on different
networks is roughly linear in the number of samples. Similarly, compared to the Falcon
framework, our scheme performs better when predicting the same number of samples.
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Table 5. Comparison of security predictions under different architectures.

Networks
FALCON Proposed

Semi-Honest Malicious Semi-Honest Malicious

Network-A Time (ms) 54.01 78.81 45.71 61.20
Comm (KB) 63.38 1090.87 8.90 13.34

Network-B Time (ms) 45.02 75.56 39.54 47.60
Comm (KB) 250.34 2144.46 34.65 52.42

Network-C Time (ms) 47.56 77.21 32.36 42.98
Comm (KB) 2467.58 15,733.20 324.02 486.19

Network-D Time (ms) 214.83 266.90 155.28 194.38
Comm (KB) 3626.88 25,292.3 476.52 714.94

(a) (b)

(c) (d)

Figure 3. Prediction timings for batch size on Networks A-D over MNIST. (a) Network-A.
(b) Network-B. (c) Network-C. (d) Network-D.

4.4. Comparison vs. Plaintext Computation

We perform experiments comparing secure prediction using secret sharing with tradi-
tional plaintext prediction using PyTorch. Results with the 64-bit floating-point data type
on PyTorch (plaintext) and the 32-bit data type (secret sharing) are shown in Table 6. The
second and third columns show the accuracy with the training set and test set obtained by
setting the learning rate to 0.1 and iterating 15 times using traditional prediction methods.
The fourth column is the accuracy of the test set under three-party secure computation. The
fifth column is the error values for prediction accuracy, with differences all less than 1% be-
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tween secure computation and plaintext computation. The results show that most networks
have no/low loss in accuracy when the computation is performed as a fixed-point integer
with the 13-bit precision in our work, confirming the effectiveness of the proposed scheme.

Table 6. Comparison of accuracy under secure prediction and plaintext.

Networks Training Accuracy Plaintext Inference Security Inference Relative Error

Network-A 98.06% 97.12% 96.64% 0.48%
Network-B 99.00% 97.90% 97.04% 0.86%
Network-C 99.56% 99.02% 98.70% 0.32%
Network-D 97.77% 97.22% 96.50% 0.72%

5. Conclusions

This paper proposes a neural network model for privacy prediction based on a
3PChree-party secure computing framework. While traditional 3PChree-party secure
computing outsources all computations to three non-colluding servers, our three-party
refers to the client, the service provider and the third-party server that assists in the
computation. Because of the inclusion of the client in the computation, the definition of
security in the model is slightly different than before. Therefore, depending on the different
trust assumptions, this paper proposes wo definitions of security to choose from, namely
semi-honest and malicious security.

The introduction of the secret sharing technique ensures that the model parties do
not have access to the original data of the client as well as the model parameters of the
service provider, thus ensuring data security. Therefore, we give sub-protocols such as
∏Reconst, ∏Mult, ∏MatMul , ∏Wrap, ∏RU and ∏MP through the secret sharing technique.
Compared to existing works, our scheme offers an improvement in both prediction time
and communication cost.

The times reported in our experiments are all online times, and the performance of the
framework would be further improved if the multiplicative triples computation is divided
into the offline phase. As the entire codebase is parallelizable, improvements may be made
later by parallelization or using GPUs in future work.
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