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Abstract: Traffic closed-circuit television (CCTV) devices can be used to detect and track objects on
roads by designing and applying artificial intelligence and deep learning models. However, extracting
useful information from the detected objects and determining the occurrence of traffic accidents
are usually difficult. This paper proposes a CCTV frame-based hybrid traffic accident classification
model that enables the identification of whether a frame includes accidents by generating object
trajectories. The proposed model utilizes a Vision Transformer (ViT) and a Convolutional Neural
Network (CNN) to extract latent representations from each frame and corresponding trajectories. The
fusion of frame and trajectory features was performed to improve the traffic accident classification
ability of the proposed hybrid method. In the experiments, the Car Accident Detection and Prediction
(CADP) dataset was used to train the hybrid model, and the accuracy of the model was approximately
97%. The experimental results indicate that the proposed hybrid method demonstrates an improved
classification performance compared to traditional models.

Keywords: traffic accident classification; trajectory tracking; YOLO; Deep SORT; convolutional neural
network; vision transformer

MSC: 68T99

1. Introduction

The determination of accident-prone locations and accident-causing factors has re-
ceived more attention owing to the increasing incidence of traffic accidents. Closed-circuit
television (CCTV) devices play a vital role in recording global traffic, identifying vehicles,
and analyzing the causes of accidents. Among the methods employed in this regard, the
raw risk estimation approach is limited by the calculations involved in regression anal-
ysis [1]. Traditional machine learning approaches have been widely utilized for traffic
accident detection and classification [2]. These approaches require rigorous data analysis
and complex feature engineering, and most machine learning classification models need
help to extract useful features from original input data [3]. These approaches have demon-
strated limited performance in complex and dynamic traffic scenarios. The unpredictability
of traffic accidents can lead to incorrect judgments, for example, mislabeling relatively safe
locations as accident-prone locations. Consequently, accurate accident classification re-
quires a thorough understanding of traffic scenes. An Artificial Neural Network (ANN) [4]
processes input data by correlating the connections between multiple neurons with weights.
The traffic accident classification approach based on ANNs has been demonstrated to
approximate the relationship between complex nonlinear variables [5]. However, the ANN
learning process is not visible and requires the analysis of a large number of parameters,
which is why the results of traffic accident classification are not particularly reliable.

In the past decade, rapid developments have been made in Multi-Object Tracking
(MOT), object detection, object tracking, and other approaches [6]. MOT estimates the
motion of objects from video sequences and has been widely utilized in various applica-
tions, such as video stabilization [7], 3D reconstruction [8], pedestrian detection [9], and
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vehicle detection [10]. MOT approaches based on CCTV frames could help improve road
safety and the monitoring and evaluation of the causes of accidents. Object detection
extracts relevant features by locating objects in video frames and drawing bounding boxes.
Existing object detection research applies deep learning-based methods to detect objects
using surveillance [11] or vehicle [12] camera footage. However, object detection cannot
always handle complex traffic scenes. Object tracking is often conducted after object de-
tection using the bounding box to track the object in consecutive frames and to obtain its
trajectory [13,14]. Even in the presence of occlusion, popular object tracking approaches
can maintain a high tracking accuracy. However, current object trajectory tracking-based
traffic accident classification research is unable to determine the accident’s location [15].
Owing to the complex motion of objects in real traffic scenes and an inability to consider
the object trajectory’s deep features, the accuracy of accident detection is poor. The traffic
accident classification process is essential in understanding the cause of traffic accidents
and deducing the connection between the object’s trajectory and the accident’s location.

Recent advances in deep learning have enabled the development of powerful and robust
models for traffic accident classification. Convolutional Neural Networks (CNNs) are deep
learning models suited for vision, detection, and classification tasks [16]. A CNN consists
of multiple layers of convolutional filters that can extract and combine local features from
the input image and generate more informative high-level representations [17,18]. Despite
their impressive performance, the applications of CNNs in traffic accident classification are
limited. CNNs may not effectively analyze traffic accident scenes with large or complex
objects, low lighting, or other challenging conditions. Furthermore, CNNs cannot extract
the spatial and temporal relationships between video frames, which could be crucial for
accurately classifying traffic accidents. Many researchers used hybrid methods to overcome
these disadvantages and to break through the limitations of a single model [19]. Hybrid
methods combine multiple models or algorithms to create more powerful and robust systems
by utilizing their respective strengths. Initially, the hybrid method was used primarily in
Computer Vision (CV) [20], for instance, by combining CNNs and Support Vector Machine
(SVM) [21]. It has since extended to other fields such as Natural Language Processing
(NLP) [22] and recommender systems [23]. As more advanced machine learning models
and algorithms have been developed, hybrid methods have been able to utilize them to
achieve better performance. Additionally, the enhanced capabilities of graphical processors
and computer power have made it possible to train more complex hybrid models [24], such as
the combination of a CNN and transformer [25]. Overall, these developments have provided
new possibilities for addressing the problem of traffic accident classification.

This paper proposes a hybrid method for traffic accident classification based on CCTV
frames, which focuses on modeling fusion features to help determine the location of traffic
accidents in CCTV frames. The proposed method consists of two main stages. First, a
Trajectory Generator detects the objects and generates their trajectories. The Trajectory
Generator consists of You Only Look Once (YOLOv5) [26] and Deep Simple Online and
Real-time Tracking (Deep SORT) [27]. Next, the Traffic Accident Classifier outputs traffic
accident classification results. The Traffic Accident Classifier comprises a CNN, a Vision
Transformer (ViT) [28], and a Feature Fusion Network. The main contributions of this paper
are summarized as follows:

• The proposed hybrid method utilizes CCTV frames as input to extract fusion features
from one frame and the corresponding trajectories by applying ViT and CNN, which
enhance the deduction of the relationship between frame and trajectory features to
determine the area where traffic accidents occur. ViT and CNN can be combined as an
end-to-end learning framework.

• This is the first attempt to use YOLOv5, Deep SORT, ViT, and CNN to classify traffic
accidents. It closes the gap in the use of hybrid models in the field of traffic accident
classification.
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• We extracted 25 no-accident frames and 25 accident frames from each video in the Car
Accident Detection and Prediction (CADP) dataset [29] to make a new CADP dataset
that can be used for traffic accident classification tasks.

• The new CADP dataset was used to experimentally evaluate the effectiveness and
accuracy of the proposed hybrid method, considering road and weather conditions.

• This paper mathematically defines models such as YOLOv5, CNN, and ViT, demon-
strating their interpretability and providing their potential expansion.

The remainder of this paper is organized as follows. In Section 2, the algorithms
used to detect traffic accidents are described. Section 3 proposes a hybrid method for
detecting traffic accidents in CCTV frames using a Trajectory Generator and Traffic Accident
Classifier. Section 4 details the experimental procedure and the results. Section 5 discusses
the differences between the proposed hybrid method and the traditional traffic accident
classification methods. Finally, Section 6 presents the conclusions of this paper.

2. Related Works

This section introduces and compares recent approaches in various industrial fields
that primarily use MOT frameworks with the proposed method. Related research on traffic
accident classification is then reviewed.

2.1. Multi-Object Tracking

With the wide application of deep learning, researchers have utilized deep features to
establish new frameworks for MOT. SORT, introduced by Bewley et al. [30], achieved the best
performance among the MOT algorithms. Subsequently, Wojke et al. [27] developed Deep
SORT to integrate the appearance information of objects and to reduce the difficulty of tracking
occluded objects in the SORT algorithm with a pre-trained association metric. Ricardo et al. [31]
proposed a new approach for tracking and evaluating mobile robotics. Their approach defines
eight new cost matrix formulas for correlating object tracking data. Deep SORT struggles to
distinguish highly similar objects when applied to vehicle or pedestrian tracking and other
fields. However, in the hybrid model, the motion and appearance information of the objects
can be balanced by appropriate data associations. Multi-Class Deep (MCD-SORT) [32] is
a granular computing approach in AlexNet [33]. The trajectory association restriction of
tracked objects is placed in the same category, improving the MOT performance. However,
the scenario’s time information is lost when deriving trajectory features in the object feature
detection stage, which hinders the accuracy of the hybrid model. To avoid the loss of feature
attributes during extraction, the authors of [34] introduced an R-CNN attention mechanism
to extract the scenario’s global features and to make them available to the object detection
stream. The attention mechanism can identify the feature attributes of objects. Similarly,
Bai et al. [14] added an attention mechanism to the feature extraction network at the object
detection stage, and attention mechanism channels were selectively built in the module to
improve the utilization of feature attributes. However, this approach still leaves room for
optimizing the determination of the object’s trajectory.

To enhance the model generalization ability and to address the limitations of object
trajectory determination, Shivani et al. [35] introduced a framework for autonomous track-
ing by unmanned aerial vehicles. The framework combines objects’ appearances and
motion features into the depth correlation matrix; this improves the detection of objects
and the accuracy of the generated trajectory from the perspective of unmanned aerial
vehicles. Additionally, some researchers have focused on establishing a trajectory tracking
framework with consistent spatiotemporal relationships [36]. Fang et al. introduced a new
fusion model based on a first-person view [37], called SSC-TAD, to fuse vehicle appearance,
motion, and context consistency. Here, first person indicates that the camera was placed di-
rectly in front of the person or vehicle. Motion features are enhanced by embedding optical
flow images to help with trajectory determination and object position prediction. However,
the object size and illumination easily affect the SSC-TAD model. Meanwhile, owing to
the limited field of view of the first-person vehicle camera, it is impossible to detect the
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perspectives other than the front perspective, and the detection object is susceptible to
occlusion, which increases the difficulty of trajectory determination and the issue of objects
being ignored during the detection process. Huang et al. [38] introduced a two-stream
convolutional network architecture that integrates spatial and temporal streams. The two-
stream convolutional network architecture is a frame-based spatial pixel segmentation
approach used during object detection to obtain accurate bounding boxes for multiple
objects. The tracking algorithm improved the metric learning approach, strengthened the
trajectory determination, and made the two-stream convolutional network more robust
with regard to its tracking performance. The dataset used in this paper was based on drone
video and fisheye cameras [39] with a top-down view. The fisheye camera has a nearly
180◦ field of view and can record at a high frame rate. However, this increases the data
complexity and raises the requirement for GPU support. Thus, the training efficiency and
accuracy of the network still need to be improved.

2.2. Traffic Accident Classification

Traffic accident classification calculates the probability that a traffic accident has
occurred in each video frame. The scenarios can be classified as an accident or no-accident
scenario by defining a threshold probability. Taccari et al. [40] described a novel approach
for the crash and near-crash accident classification in videos. Their algorithm directly
extracts accident features from an input video based on machine learning. In [41], collision
and non-collision samples were preprocessed using traffic accident data. The long short-
term memory (LSTM)-based LSTMDT model was introduced to detect the evolution of
traffic conditions before a collision, representing the traffic trends across different time
intervals. The performance of the LSTMDT model is better than ordinary machine-learning-
based traffic accident classifiers. Kang et al. [42] proposed the Vision Transformer-Traffic
Accident (ViT-TA) classifier to analyze traffic accidents based on first-person video data
to improve autonomous vehicle safety. Ideally, the ViT-TA would accurately classify key
situations around traffic accidents and automatically point out possible causes based on
attention maps. Singh et al. [43] introduced a new automatic traffic accident classification
framework that uses a denoising autoencoder without applying traditional deep feature
representations from raw pixels. The accident probability was determined based on depth
representation. Inspired by this, Vishnu et al. [44] performed hybrid stop filtering on traffic
accident videos to remove noise and vehicle tracking using SVM [21] to detect accidents
from traffic density and vehicle statistics data. However, this increases computational
resources significantly. These models only focus on deep features that improve classification
while ignoring the connection of accident-related objects or other features that constitute a
traffic accident.

Therefore, the hybrid method proposed in this paper strengthens the connection between
features through the Trajectory Generator and Traffic Accident Classifier stages. In particular,
the Traffic Accident Classifier uses trajectory and frame features. Traffic Accident Classifiers
have two primary advantages. First, not only is the trajectory position learned, but the fusion
features in the frame emphasize objects with a strong correlation to the occurrence of traffic
accidents. Compared to traditional approaches, most of it is trained on carefully selected
datasets, resulting in a model with poor generalization ability. The Traffic Accident Classifier
considers the relationship between trajectory and frame features, fuses the two features, and
uses a large amount of data for learning to improve the accuracy of the classification results.
Table 1 shows the differences between the previous traffic accident classification frameworks
and our method by comparing the dataset, neural network, and model type.
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Table 1. Differences between recent accident classification models and the proposed method.

Recent Related
Research LSTMDTR [41] ViT-TA [42] Stacked Autoencoder [43] The Proposed Method

Dataset Simulator First-Person Video CCTV CCTV

Neural Networks LSTM Vision Transformer Autoencoder CNN,
Vision Transformer

Model Types Single Model Single Model Single Model Hybrid Model

3. Traffic Accident Classification Model

In this section, we describe the proposed hybrid method for traffic accident classifica-
tion utilizing a Trajectory Generator and Traffic Accident Classifier analyzing CCTV frames.
The method extracts object trajectories and determines whether accidents have occurred.

3.1. Overview of Traffic Accident Classification Processes

The proposed hybrid method has two modules: a Trajectory Generator and Traffic
Accident Classifier. The proposed hybrid method classifies traffic accidents by analyzing
the extracted features of the frames and trajectories. The Trajectory Generator consists of
two parts: Bounding Box Detector and Trajectory Tracker. The Bounding Box Detector draws
2D object bounding boxes in CCTV frames using the multi-object detection algorithm You
Only Look Once (YOLO) [26]. The Trajectory Tracker takes 2D object bounding boxes as
input and applies the Deep SORT algorithm [27] to calculate their trajectories.

The Traffic Accident Classifier consists of three parts: Trajectory Analyzer, Frame Analyzer,
and Feature Fusion Network. The Trajectory Analyzer extracts 2D object trajectory features with
a CNN. The Frame Analyzer extracts frame features using the ViT [28]. Next, the trajectory
and frame features are fused, and then, the Feature Fusion Network detects accidents by
superimposing the fused features with attention weights. Figure 1 shows the processes of
using the Trajectory Generator and Traffic Accident Classifier to detect traffic accidents.
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Figure 1. Processes of traffic accident classification with Trajectory Generator and Traffic Accident Classifier.

3.2. Mathematical Definition

The sequence of consecutive CCTV frames used as input is denoted as S. YOLOv5
maps S to a set of 2D object bounding boxes. Bi denotes a 2D object bounding box as a tuple
containing five values

(
xi, yi, wi, hi, vi ×

αi∩βi
αi∪βi

)
, where i is the i-th 2D object bounding box



Mathematics 2023, 11, 1050 6 of 16

in the current CCTV frame and is used to estimate the location of a specific object detected
in the current CCTV frame as expressed in Equation (1):

Bi =

(
xi, yi, wi, hi, vi ×

αi ∩ βi
αi ∪ βi

)
(1)

where xi and yi denote the coordinates of the center of the 2D object bounding box, and wi

and hi denote the width and height of the 2D object bounding box, respectively. vi ×
αi∩βi
αi∪βi

denotes the confidence score, where the 2D object bounding box of the ground truth is
denoted as αi, the predicted 2D object bounding box is denoted as βi, and vi denotes the
variable indicating whether an object is detected or not in the i-th 2D object bounding box
Bi. Specifically, vi is 1 if an object is detected and 0 otherwise. The accuracy of the position
of the predicted 2D object bounding box βi is proportional to the Intersection Over Union
(IOU) score between αi and βi, as a higher IOU score implies a closer match between the
predicted 2D object bounding box βi and 2D object bounding box αi of the ground truth.

Deep SORT maps the set of 2D object bounding boxes to a set of 2D object trajecto-
ries. The equation for defining a 2D object trajectory by Deep SORT is tm, n = λd1(m, n) +
(1− λ)d2(m, n) [27], where λ denotes the hyperparameter that controls the association be-
tween d1(m, n) and d2(m, n) considering the n-th bounding box detection and the m-th track
distribution, d1(m, n) denotes the Mahalanobis distance, and d2(m, n) denotes the smallest
cosine distance. d1(m, n) = (dn − ym)

TS−1
m (dn − ym) calculates the Mahalanobis distance

between the n-th bounding box detection and the mean of the track distribution to associate
the motion features of the corresponding object where dn denotes the n-th bounding box
detection, ym denotes the mean of the track distribution, Sm denotes the covariance matrix,
and (ym, Sm) denotes the m-th track distribution after making ym and Sm be in the same mea-
surement. Motion features are temporal information. d2(m, n) = min

{
1− rT

n rm
k

∣∣ rm
k ∈ Rm

}
,

where the appearance features of each object within the bounding box detection dn is denoted
as rn, rT

n denotes the transposed rn, index k denotes the index of the tracking object, rm
k denotes

the appearance feature of the k-th tracking object, and Rm denotes the appearance features of
all the bounding box detections. Appearance features are spatial information. Therefore, the
2D object trajectory tm,n is obtained by linear weighting the λ of the Mahalanobis distance
and the smallest cosine distance.

The CNN maps the set of 2D object trajectories to a set of one trajectory feature maps.
The one trajectory feature map F by the CNN is Fj of the maximum of j, where Fj denotes
the trajectory feature map of the j-th convolutional layer as expressed in Equation (2):

Fj = Wj ⊗ Fj−1 + bj (2)

where Wj denotes the weight matrix of the j-th convolutional kernel applied to the (j− 1)-
th feature map, bj denotes the bias of the j-th convolutional kernel, and ⊗ denotes the
convolution operation.

The input of the ViT maps the sequence S of consecutive CCTV frames to a set of a
frame feature map. The frame feature map P by ViT is as shown in Equation (3):

P = MLP(LN(MHA(LN(S)))) (3)

where MLP denotes a multi-layer perceptron, LN denotes layer normalization, and MHA
denotes multi-head attention.

The Feature Fusion Network takes as input both a set of trajectory feature maps and a
set of frame feature maps. The output O of the traffic accident classification by the Feature
Fusion Network is as expressed in Equation (4):

O = σ(FC(FC
(

Fj
)T× FC(P))) (4)
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where σ(·) denotes a sigmoid function, which maps the result to a value between 0 and 1,
and FC denotes a fully connected layer. After passing through one fully connected layer, the
transposed trajectory feature map denoted by FC

(
Fj
)T and multiplied by FC(P) is passed

through another fully connected layer to obtain the fusion feature (FC
(

Fj
)T× FC(P)). The

fusion feature is processed by the sigmoid function σ(·) to obtain of the traffic accident
classification result.

3.3. Traffic Accident Classification Models

The proposed hybrid method identifies whether accidents are included by extracting
trajectories. In the Trajectory Generator, the size of the CCTV frame input to the YOLOv5
network is 224 × 224 × 3. A set of CCTV frame features is extracted by the YOLOv5
network, in which all dynamic objects, such as vehicles and pedestrians, are detected on
the road. YOLOv5 is pre-trained on the CADP dataset [29], a dataset for traffic accident
analysis. The dataset comprises 1416 video segments collected from YouTube, including full
spatial and temporal annotations. In this paper, the YOLOv5 network outputs a set of 2D
object bounding boxes using three scales, 20× 20× 255, 40× 40× 255, and 80× 80× 255,
which support the different sizes of objects owing to depth disparity in CCTV frames. A
trajectory is deduced for each object via the Deep SORT algorithm, starting from the second
CCTV frame with 2D object bounding boxes.

The Traffic Accident Classifier uses a CNN to extract a set of trajectory feature, which
are compressed down to 1000 dimensions by the subsequent linear layer. The CNN is
modified based on the VGG16 architecture. In this paper, we modified the VGG16 structure
by removing the softmax layer. The CNN receives a set of 2D object trajectories of size
224× 224 as input. It consists of five collections of convolutional layers, where filters with
small receptive fields are utilized 3× 3. The convolution stride is fixed at 1 pixel, and the
spatial resolution is preserved after convolution. Simultaneously, pooling is carried out by
five max-pooling layers, where each convolutional layer collection is followed by one max-
pooling layer performed over a 2× 2 kernel with a stride of 2 pixels. Three fully connected
layers follow the five collections of convolutional and max-pooling layers. The first two
fully connected layers have 4096 channels, and the first fully connected layer accepts the
output size of the last max-pooling layer as the input. The last fully connected layer has
1000 channels, which compress the feature vector size for processing in the Feature Fusion
Network. In addition, ViT is vanilla ViT and helps determine the location of traffic accidents
along with the Traffic Accident Classifier. CCTV frames with a size of 224× 224 pixels are
flattened into patches and then embedded as input, utilizing ViT to extract a set of frame
features. The multi-head attention mechanism in ViT assigns higher weights to the location
of traffic accidents to aggregate the attention score. The frame features are compressed into
1000 dimensions by the subsequent linear layer for the Feature Fusion Network.

Next, the Feature Fusion Network extracts a set of trajectory features by CNN and
a set of frame features by ViT. The network combines two types of features to improve
the classification accuracy of the proposed method and to enhance the model’s ability to
understand feature maps. The fusion features are obtained by the matrix multiplying the
transposed frame and trajectory features. Finally, the fusion features are compressed to
1 dimension by another fully connected layer, and a traffic accident classification value
is obtained using the sigmoid function. The result of the proposed method is expressed
as an Accident (0) or No Accident (1) case based on the classification value. When the
traffic accident classification value is more than 0.5, considered as 1, the classification result
is not included in the current frame. In contrast, when the traffic accident classification
value is less than or equal to 0.5, considered as zero, a traffic accident has been detected
and included in the current frame. Figure 2 shows the architecture of the proposed hybrid
traffic accident classification method.
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4. Experiment

In this section, we describe the experimental objectives and provide detailed parame-
ters for the hybrid model training and traffic accident classification. This section includes
the details of an ablation experiment, and we compare the results obtained with the classifi-
cation results. Finally, we show the visualization of the attention regions for CCTV frames
extracted using ViT.

4.1. Experimental Objectives and Environment

Experiments were conducted to ascertain the accuracy of traffic accident classifica-
tion utilizing the Trajectory Generator and the Traffic Accident Classifier. An ablation
experiment was conducted to verify whether the proposed hybrid method improves the
classification performance compared to the CNN-based Traffic Accident Classifier.

In the Trajectory Generator, YOLOv5 was chosen as the backbone network. YOLOv5
was the fastest and most accurate detector in the world, beating all SOTA benchmarks
at the time. YOLOv5 was also trained on the COCO dataset of annotated images and
achieved 48.2% average precision at a speed of 13.7 ms. This ensured that it could provide
accurate object detection in the CADP dataset, thus making it well-suited for the Trajectory
Generator in the proposed hybrid model.

We tested the proposed hybrid method using CCTV frames as input. The CCTV
frames were passed to a Trajectory Generator to generate 2D object trajectories, which were
uniformly cropped to 224× 224 pixels and then passed to the CNN in a Traffic Accident
Classifier. At the same time, the ViT in the Traffic Accident Classifier received CCTV frames,
which were also uniformly cropped to 224× 224 pixels. The training parameters for the
proposed hybrid method are listed in Table 2. During the training process, the parameters
were adjusted according to the accuracy and loss values obtained, until they resulted in the
parameters of the proposed hybrid model. The batch size was set to 40, evenly dividing
the total training data of 4000 and ensuring that each training batch contained the same
number of samples. It is a common practice to choose the batch size and learning rate in
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direct proportion. Therefore, based on the smaller batch size of 40, we set a small learning
rate of 1× 10−6, which allowed the model to make small updates to the weights in the
early stages of training. The learning rate decayed according to the cosine method [45],
with a decay rate of 1× 10−4, as represented by Equation (5):

at =
1
2

a0(1 + cos(tπ/T)) (5)

where at is the decayed learning rate, a0 is the initial learning rate, t is the current epoch,
and T is the total number of training epochs. The learning rate decay can help the model
avoid overshooting the optimal solution during the training process. When the training
process exceeded 500 epochs, the proposed hybrid model suffered from overfitting. There-
fore, the total number of training epochs was set to 500 with 100 steps per epoch for the
proposed hybrid model to perform enough updates while preventing overfitting. The
Adam optimizer was used to smooth out the gradients. The sigmoid function was chosen
as the objective function.

Table 2. Parameters for training the proposed hybrid method.

Hyperparameter Value

Input size of CCTV frames 224× 224
Input size of 2D object trajectories 224× 224

Batch size 40
Learning rate 1× 10−6

Decay learning rate 1× 10−4

Total epochs 500
Steps per epoch 100

Optimizer Adam
Objective function sigmoid function

The experiments were conducted on a Windows 10 machine with an Intel i7-6850K
processor and four Nvidia Titan RTX GPUs with 48 GB of memory. CNN, ViT, and the
CNN-based classifier were implemented in Python 3.6, using the PyTorch deep learning
library version 11.3 to exploit the GPU’s computing capabilities.

4.2. Experimental Data

The CADP dataset [29] comprised video data related to car accidents. It was designed
for use in machine learning, deep learning, and data mining research, with a focus on
solving the problem of data labeling in public traffic accident data for detecting and
predicting traffic accidents. The CADP dataset contains 1416 accident detection sample
videos, including information about the car accidents, road conditions, weather conditions,
and traffic flow. The average length of the video data in the CADP dataset was 366 frames,
and the longest comprised 554 frames. We took 100 videos from the CADP dataset, and from
each video, we extracted 25 frames before and 25 frames after the traffic accident. In total,
5000 frames were obtained as inputs for the Trajectory Generator and ViT. Furthermore,
the Trajectory Generator utilized 5000 frames to generate 5000 corresponding 2D object
trajectories as the CNN input. To ensure the reliability and robustness of the proposed
hybrid model and to avoid including validation in the training dataset, the dataset was
split using cross-validation. More specifically, 90% of the input data was used for training,
and the remaining 10% was used as validation datasets. This allowed for the evaluation of
the performance of the proposed hybrid method on unknown data and avoided overfitting.
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4.3. Experimental Results

The accuracy and loss convergence plots are shown in Figure 3 to illustrate the training
and validation results of the proposed hybrid method. The proposed hybrid training
method required 500 epochs. As shown in Figure 3a, the initial training loss of the proposed
hybrid method was approximately 0.73, while the initial validation loss was approximately
0.76. After 500 epochs of training, the training loss gradually converged to 0.007, whereas
the validation loss converged to 0.13. Figure 3b shows the accuracy convergence for the
training and validation datasets over the training. During the first epoch, the training
accuracy was approximately 0.51. After 500 training epochs, the accuracy rate increased
to approximately 0.99. The validation accuracy during the first epoch was similar to the
training accuracy at approximately 0.50. After 500 training epochs, the validation accuracy
reached approximately 0.97. The results show that the accuracy of the proposed hybrid
method improves with more training epochs. Figure 3 indicates that the model could learn
and generalize well on the training and validation datasets.
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Figure 4 presents a confusion matrix that illustrates the proposed hybrid method’s
ability to distinguish “Accident” from “No Accident” in 1000 test CCTV frames. The
confusion matrix was divided into four quadrants, each representing a combination of
the predicted and true labels. In the matrix, we used a blue gradient to indicate the
number of frames that fall into each category. A darker color indicates more frames in that
category. The proposed hybrid model demonstrates strong classification performance on
the test CCTV frames. The majority of the test CCTV frames were accurately classified into
the “Accident” or “No-Accident” category. However, the performance of the proposed
hybrid method was not perfect, and there were few misclassifications. In particular, the
proposed hybrid method was more likely to misclassify a “No-Accident” CCTV frame
as an “Accident.” This suggests that the proposed hybrid method was slightly more
conservative in its decision making and was more likely to predict an accident when there
was uncertainty.

Table 3 shows the traffic accident classification evaluation indicator results for the
proposed hybrid model. Table 3 presents four metrics: accuracy, precision, recall, and
f1-score for evaluating the performance of the proposed hybrid model. Accuracy represents
the proportion of correct predictions made by the proposed hybrid method, while precision
represents the proportion of true positives among all positive predictions. The recall
represents the proportion of true positives among all actual positives. The f1-score is a
combination of precision and recall. These metrics were calculated based on the confusion
matrix. The values of accuracy, precision, and f1-score were all greater than 0.95, and recall
reached 0.943, indicating that the proposed hybrid model was able to accurately classify
the majority of the test CCTV frames. Additionally, four metrics for the proposed hybrid
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method all scored higher than 0.94 on test data, indicating that the classification results of
the hybrid method were reliable and accurate.
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Table 3. Evaluation indicator results for traffic accident classification.

Evaluation Indicators Results

Accuracy 0.950
Precision 0.958

Recall 0.943
F1-score 0.95

4.4. Ablation Experimental Results

The CNN-based traffic accident classifier utilized in the ablation experiments had
a specific architecture and set of parameters optimized for traffic accident classification.
Table 4 lists the parameters used for training the CNN-based classifier; these have un-
dergone modifications based on the parameters of the proposed hybrid method. The
CNN-based classifier utilized 2D object trajectories of size 224× 224 as inputs and consisted
of multiple convolutional layers and max-pooling layers. The convolutional layers utilized
kernels of size 5× 5 instead of 3× 3 to obtain a larger receptive field and were followed by
max-pooling layers with kernel sizes of 2× 2 to preserve the main features while reducing
dimensionality. We used Adam for stochastic optimization of the CNN-based classifier. The
CNN-based classifier model is small and has fewer training parameters than our model.
The loss converged quickly without the need for learning rate decay. The learning rate
was set to 1× 10−5. The batch size was set at 40. The softmax function was used as the
training objective function, allowing the CNN to detect whether accidents were included
in the given 2D object trajectories. The CNN-based traffic accident classifier was trained for
500 epochs, each consisting of 100 training steps.

To assess the importance of the ViT and its impact on the overall performance of the
proposed hybrid method, ablation experiments were performed. In the ablation experiments,
ViT was removed, and the traffic accident classifier based on CNN was evaluated. The results
of the ablation experiments are shown in Figure 5. As shown in Figure 5a, when ViT was
removed, and the CNN-based traffic accident classifier reached a training loss of 0.07 and
a validation loss of 0.15 after 500 epochs of training. Figure 5b shows the accuracy of the
CNN-based traffic accident classifier. Even after 500 epochs of training, the highest training
accuracy was only approximately 0.97, whereas the validation accuracy reached 0.94.
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Table 4. Parameters for training CNN-based traffic accident classifier.

Hyperparameter Value

Kernel size of convolutional layers 5× 5
Kernel size of max-pooling layers 2× 2

Input size 224× 224
Batch size 40

Learning rate 1× 10−5

Total epochs 500
Steps per epoch 100

Optimizer Adam
Objective function softmax function
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The results of the ablation experiments demonstrated the significance of ViT in the overall
performance of the proposed hybrid method for traffic accident classification. When ViT
was removed, the performance was poor. The accuracy of the CNN also decreased when
compared with the proposed hybrid method. The results suggest that the ViT was crucial for
improving the traffic accident classification performance of the proposed hybrid method.

4.5. Visual Interpretation of ViT

ViT was added to the CNN-based traffic accident classification model, and its ability
in improving the classification performance was demonstrated in ablation experiments.
However, we still needed to ascertain how the ViT model utilized a multi-head attention
mechanism to focus on objects in traffic scenes and the area where accidents occurred in
CCTV frames. The multi-head attention mechanism was a critical component of the ViT.
The attention mechanism allows ViT to consider different parts of the input CCTV frames
simultaneously and assign them different attention weights.

As shown in Table 5, the multi-head attention mechanism in ViT was similar for the
no-accident and accident classes. Specifically, for the no-accident visualization results, the
multi-head attention was focused on objects on the road that were potentially dangerous,
which were given high multi-head attention values and which are represented in deep red.
Other objects on the road, such as signs, manhole covers, and streetlights, were given lower
multi-head attention values and are represented in green. Yellow represents intermediate
multi-head attention values. In the accident visualization results, the multi-head attention
was focused on where the accident occurred, giving the area high multi-head attention
values, which are represented as deep red. Other objects on the road were given lower
multi-head attention values and are represented as green or yellow, depending on their
relevance to the accident. Overall, the multi-head attention mechanism in ViT allows the
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traffic accident classification model to focus on the most relevant parts of the input CCTV
frames for the traffic accident classification task.

Table 5. Visualization results of ViT in CCTV frames.

No Accident Accident

CCTV Frames Visualization Result CCTV Frames Visualization Result
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5. Discussion

This paper establishes a new CADP dataset that can be used for traffic accident classi-
fication tasks and details experiments conducted with the new CADP dataset. Although
the experimental process only covered a single dataset, this dataset had low CCTV video
clarity, varying CCTV frame sizes, and poor camera angles. In addition, the new CADP
dataset includes challenging CCTV frames such as snowy, rainy, and nighttime conditions.
The LSTM-based method considering different temporal resolutions (LSTMDTR) [41] uses
CCTV frames as training data, but the CCTV frames are from a fixed camera angle, which
helps LSTMDTR solve traffic accident classification tasks. The Vision Transformer-Traffic
Accident (ViT-TA) [42] method classifies traffic accidents based on a first-person camera
view. However, it is difficult to determine the exact location of traffic accidents. The stacked
autoencoder [43] also uses a large number of CCTV frames for training, increasing its
computational cost and resulting in lower model efficiency. In contrast, our proposed
hybrid method has two main advantages. First, by using CCTV frames from our new
CADP dataset as training data where each accident is captured by a different camera with
its own angle, the proposed hybrid method is enabled to accurately classify whether each
frame contains any traffic accident or not, after determining the location of the traffic
accidents. Second, this paper adopts a hybrid method that uses object trajectories to solve
the traffic accident classification task. The proposed hybrid method analyzes a fusion of
features from a frame and its corresponding object trajectories, enhancing the inference
of the relationship between the frame and the object trajectories. Most existing traffic
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accident classification methods utilize single-camera datasets that are not publicly available
and are sample-limited [41,42]. If multiple cameras are not available, the accuracy of the
proposed hybrid method may be affected, as it is trained to consider multiple camera
angles. However, compared to existing traffic accident classification methods, the proposed
hybrid method remains versatile and capable of handling challenging traffic scenarios and
can effectively prevent overfitting in limited samples. In the absence of multiple cameras,
other training data can be used. For example, simulation data generated by a simulator
can be used to imitate conditions where multiple cameras may be present, and transfer
learning can be employed to fine-tune a pre-trained model on a smaller dataset, reducing
the reliance on large amounts of training data. The proposed hybrid method requires
fewer computational resources than the previous methods, and by relying on novel hybrid
models and better CADP datasets, it remains competitive. This paper addresses the lack
of a hybrid method in the field of traffic accident classification. In the future, we plan
to conduct more experiments to validate the superiority of the proposed hybrid method,
for example, by comparing it to other hybrid models and state-of-the-art traffic accident
classification research.

6. Conclusions

This paper proposes a CCTV frame-based hybrid method for classifying traffic acci-
dents. First, in the Trajectory Generator stage, all dynamic objects on roads in the CCTV
frames are detected through the YOLOv5 network, and 2D object bounding boxes are
drawn around them. Then, the trajectories of all the 2D object bounding boxes are obtained
using the Deep SORT algorithm. Second, in the Traffic Accident Classifier stage, a CNN
extracts high-level features from the trajectories, and the ViT extracts more high-level
features from the CCTV frames. Finally, the proposed hybrid method utilizes the Feature
Fusion Network to extract the fusion features from the output of the second stage. It then de-
termines whether a traffic accident has occurred. An ablation experiment was conducted to
evaluate the contribution of ViT to the proposed hybrid method. The results demonstrated
that the accuracy of the CNN-based traffic accident classification model, without ViT, was
approximately 2% lower than that of the proposed hybrid method. Moreover, the proposed
hybrid method is not limited to the CCTV frames used in this paper. With further research
and development, the proposed hybrid method can be extended to other data sources for
traffic accident classification, such as fish-eye cameras or black boxes in vehicles.
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12. Ćorović, A.; Ilić, V.; Ðurić, S.; Marijan, M.; Pavković, B. The Real-Time Detection of Traffic Participants Using YOLO Algorithm.
In Proceedings of the 2018 IEEE Telecommunications Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4.

13. Ulutan, O.; Rallapalli, S.; Srivatsa, M.; Torres, C.; Manjunath, B.S. Actor Conditioned Attention Maps for Video Action Detection.
In Proceedings of the 2020 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Snowmass Village, CO,
USA, 1–5 March 2020; pp. 527–536.

14. Bai, C.; Gong, Y.; Cao, X. Pedestrian Tracking and Trajectory Analysis for Security Monitoring. In Proceedings of the 5th IEEE
Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 1203–1208.

15. Yang, D.; Wu, Y.; Sun, F.; Chen, J.; Zhai, D.; Fu, C. Freeway Accident Detection and Classification Based on the Multi-Vehicle
Trajectory Data and Deep Learning Model. Transp. Res. Part C Emerg. Technol. 2021, 130, 103303. [CrossRef]

16. Song, W.; Li, D.; Sun, S.; Zhang, L.; Xin, Y.; Sung, Y.; Choi, R. 2D&3DHNet for 3D Object Classification in LiDAR Point Cloud.
Remote Sens. 2022, 14, 3146.

17. Tian, Y.; Song, W.; Chen, L.; Fong, S.; Sung, Y.; Kwak, J. A 3D Object Recognition Method from LiDAR Point Cloud Based on
USAE-BLS. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15267–15277. [CrossRef]

18. Qiu, L.; Li, S.; Sung, Y. 3D-DCDAE: Unsupervised Music Latent Representations Learning Method Based on A Deep 3D
Convolutional Denoising Autoencoder for Music Genre Classification. Mathematics 2021, 9, 2274. [CrossRef]

19. Ramaswamy, S.L.; Chinnappan, J. RecogNet-LSTM+CNN: A Hybrid Network with Attention Mechanism for Aspect Categoriza-
tion and Sentiment Classification. J. Intell. Inf. Syst. 2022, 58, 379–404. [CrossRef]

20. Niu, X.X.; Suen, C.Y. A Novel Hybrid CNN–SVM Classifier for Recognizing Handwritten Digits. Pattern Recognit. 2012, 45,
1318–1325. [CrossRef]

21. Hearst, M.A.; Dumais, S.T.; Osuna, E.; Platt, J.; Scholkopf, B. Support Vector Machines. IEEE Intell. Syst. Appl. 1998, 13, 18–28.
[CrossRef]

22. Yin, D.; Dong, L.; Cheng, H.; Liu, X.; Chang, K.W.; Wei, F.; Gao, J. A Survey of Knowledge-Intensive NLP with Pre-Trained
Language Models. arXiv 2022, arXiv:2202.08772.

23. Chen, R.; Hua, Q.; Chang, Y.S.; Wang, B.; Zhang, L.; Kong, X. A Survey of Collaborative Filtering-Based Recommender Systems:
From Traditional Methods to Hybrid Methods based on Social Networks. IEEE Access 2018, 6, 64301–64320. [CrossRef]

24. Fang, J.; Lin, H.; Chen, X.; Zeng, K. A Hybrid Network of CNN and Transformer for Lightweight Image Super-Resolution. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
19–23 June 2022; pp. 1103–1112.

25. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need.
Adv. Neural Inf. Process. Syst. 2017, 30. Available online: https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4
a845aa-Abstract.html (accessed on 10 August 2022).

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the 2016
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

27. Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Real-Time Tracking with A Deep Association Metric. In Proceedings of the
2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 3645–3649.

28. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

29. Shah, A.P.; Lamare, J.B.; Nguyen-Anh, T.; Hauptmann, A. CADP: A Novel Dataset for CCTV Traffic Camera-Based Accident
Analysis. In Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS),
Auckland, New Zealand, 27–30 November 2018; pp. 1–9.

30. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple Online and Realtime Tracking. In Proceedings of the 2016 IEEE
International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3464–3468.

31. Pereira, R.; Carvalho, G.; Garrote, L.J.; Nunes, U. Sort and Deep-SORT Based Multi-Object Tracking for Mobile Robotics:
Evaluation with New Data Association Metrics. Appl. Sci. 2022, 12, 1319. [CrossRef]

32. Pramanik, A.; Pal, S.K.; Maiti, J.; Mitra, P. Granulated RCNN and Multi-Class Deep SORT for Multi-Object Detection and Tracking.
IEEE Trans. Emerg. Top. Comput. Intell. 2021, 6, 171–181. [CrossRef]

http://doi.org/10.1016/j.dsp.2022.103514
http://doi.org/10.1007/s11390-022-2204-8
http://doi.org/10.1007/s10489-021-02552-7
http://doi.org/10.1109/TCSVT.2022.3186751
http://doi.org/10.1016/j.trc.2021.103303
http://doi.org/10.1109/TITS.2021.3140112
http://doi.org/10.3390/math9182274
http://doi.org/10.1007/s10844-021-00692-3
http://doi.org/10.1016/j.patcog.2011.09.021
http://doi.org/10.1109/5254.708428
http://doi.org/10.1109/ACCESS.2018.2877208
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://doi.org/10.3390/app12031319
http://doi.org/10.1109/TETCI.2020.3041019


Mathematics 2023, 11, 1050 16 of 16

33. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet Classification with Deep Convolutional Neural Networks. Adv. Neural
Inf. Process. Syst. 2012, 25. Available online: https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-
Abstract.html (accessed on 11 September 2022).

34. Le, T.N.; Ono, S.; Sugimoto, A.; Kawasaki, H. Attention R-CNN for Accident Detection. In Proceedings of the 2020 IEEE Intelligent
Vehicles Symposium (IV), Melbourne, Australia, 7–11 September 2020; pp. 313–320.

35. Kapania, S.; Saini, D.; Goyal, S.; Thakur, N.; Jain, R.; Nagrath, P. Multi Object Tracking with UAVs Using Deep SORT and YOLOv3
RetinaNet Detection Framework. In Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems
(AIMS’20), New York, NY, USA, 22 January 2020; pp. 1–6.

36. Fang, J.; Qiao, J.; Bai, J.; Yu, H.; Xue, J. Traffic Accident Detection via Self-Supervised Consistency Learning in Driving Scenarios.
IEEE Trans. Intell. Transp. Syst. 2022, 23, 9601–9614. [CrossRef]

37. Pirsiavash, H.; Ramanan, D. Detecting Activities of Daily Living in First-Person Camera Views. In Proceedings of the 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 2847–2854.

38. Huang, X.; He, P.; Rangarajan, A.; Ranka, S. Intelligent Intersection: Two-Stream Convolutional Networks for Real-Time
Near-Accident Detection in Traffic Video. ACM Trans. Spat. Algorithms Syst. (TSAS) 2020, 6, 1–28. [CrossRef]

39. Wei, J.; Li, C.F.; Hu, S.M.; Martin, R.R.; Tai, C.L. Fisheye Video Correction. IEEE Trans. Vis. Comput. Graph. 2011, 18, 1771–1783.
[CrossRef]

40. Taccari, L.; Sambo, F.; Bravi, L.; Salti, S.; Sarti, L.; Simoncini, M.; Lori, A. Classification of Crash and Near-Crash Events from
Dashcam Videos and Telematics. In Proceedings of the 2018 21st International Conference on Intelligent Transportation Systems,
Maui, HI, USA, 4–7 November 2018; pp. 2460–2465.

41. Jiang, F.; Yuen, K.K.R.; Lee, E.W.M. A Long Short-Term Memory-Based Framework for Crash Detection on Freeways with Traffic
Data of Different Temporal Resolutions. Accid. Anal. Prev. 2020, 141, 105520. [CrossRef]

42. Kang, M.; Lee, W.; Hwang, K.; Yoon, Y. Vision Transformer for Detecting Critical Situations and Extracting Functional Scenario
for Automated Vehicle Safety Assessment. Sustainability 2022, 14, 9680. [CrossRef]

43. Singh, D.; Mohan, C.K. Deep Spatio-Temporal Representation for Detection of Road Accidents Using Stacked Autoencoder. IEEE
Trans. Intell. Transp. Syst. 2018, 20, 879–887. [CrossRef]

44. Maha Vishnu, V.C.; Rajalakshmi, M.; Nedunchezhian, R. Intelligent Traffic Video Surveillance and Accident Detection System
with Dynamic Traffic Signal Control. Clust. Comput. 2018, 21, 135–147. [CrossRef]

45. Gotmare, A.; Keskar, N.S.; Xiong, C.; Socher, R. A Closer Look at Deep Learning Heuristics: Learning Rate Restarts, Warmup and
Distillation. arXiv 2018, arXiv:1810.13243.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://doi.org/10.1109/TITS.2022.3157254
http://doi.org/10.1145/3373647
http://doi.org/10.1109/TVCG.2011.130
http://doi.org/10.1016/j.aap.2020.105520
http://doi.org/10.3390/su14159680
http://doi.org/10.1109/TITS.2018.2835308
http://doi.org/10.1007/s10586-017-0974-5

	Introduction 
	Related Works 
	Multi-Object Tracking 
	Traffic Accident Classification 

	Traffic Accident Classification Model 
	Overview of Traffic Accident Classification Processes 
	Mathematical Definition 
	Traffic Accident Classification Models 

	Experiment 
	Experimental Objectives and Environment 
	Experimental Data 
	Experimental Results 
	Ablation Experimental Results 
	Visual Interpretation of ViT 

	Discussion 
	Conclusions 
	References

