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Abstract: Sun is a basic component of the natural environment and kinetic equations are important
mathematical models to assess the rate of change of chemical composition of a star such as the
sun. In this article, a new fractional kinetic equation is formulated and solved using generalized
Krätzel integrals because the nuclear reaction rate in astrophysics is represented in terms of these
integrals. Furthermore, new identities involving Fox–Wright function are discussed and used to
simplify the results. We compute new fractional calculus formulae involving the Krätzel function by
using Kiryakova’s fractional integral and derivative operators which led to several new identities
for a variety of other classic fractional transforms. A number of new identities for the generalized
Krätzel function are then analyzed in relation to the H-function. The closed form of such results is
also expressible in terms of Mittag-Leffler function. Distributional representation of Krätzel function
and its Laplace transform has been essential in achieving the goals of this work.
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1. Introduction and Motivation

Modern gas theories and astrophysics have significant impacts in the advancement
of environmental sciences. Sun plays a major role in global warming research and the
evolution of stars such as the sun uses a set of differential equations [1]. The three charac-
teristics, namely temperature, pressure, and mass, describe the internal structure of stars,
which is entirely made up of gases. Actually, for the cloud to create a star, there needs be
more gravitational force present than internal pressure. The cloud emits light when nuclear
fusion occurs, and a protostar forms as a result. Mathematical models and structures are
based on equation of state, translucence, and rate of nuclear energy production. Energy in
such stars is produced by the process of nuclear reactions. Hence, the rate of change in the
chemical composition of stars is described by kinetic equations as the rate of reaction for
formation and destruction of each class. Haubold and Mathai [1] used the ordinary kinetic
equation to examine such composition F(t) in terms of the rate of destruction d(F) and the
rate of production p(F) given by

dF
dt

= −d(Ft) + p(Ft), (1)

where Ft is the function labelled as Ft(t∗) = F(t− t∗), t∗ > 0. Hence, if the inhomogeneity
as well as spatial fluctuation of F(t) with species concentration, Fj(t = 0) = F0 is ignored
then we have,

dFj

dt
= −cjFj(t). (2)
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Next, by ignoring subscript j and integrating, Equation (2) yields

F(t)− F0 = −c I−1
0+F(t). (3)

The non-integer kinetic equation was also studied by Haubold and Mathai [1]

F(t)− F0 = −cδ Iδ
0+F(t), (4)

where Iδ
0+, δ > 0 is the R–L fractional integral and c is an arbitrary constant. Then for any

integrable function u(t), they modelled a more general equation given as

F(t)− u(t)F0 = −dδ Iδ
0+F(t). (5)

According to a review of the literature, no such equation containing the generalized
Krätzel function [2] has been developed. This article’s main goal is to formulate and answer
this problem by using the new results involving the generalized Krätzel integral which
is a multipurpose integral of astronomy and physics [2]. For example, thermonuclear
functions of Boltzmann–Gibbs statistical mechanics comprise the Krätzel function and
have basic applications in astrophysics [2]. Particular cases involving the original Krätzel
function and H-function leading to new formulae are also obtained. Whereas mostly in
the literature the original Krätzel function, Zv

ρ(x) is studied with respect to the variable
x but the results presented in this research are with respect to v. Furthermore, different
fractional images including the generalized Krätzel function have been attained under
Kiryakova’s fractional operators (E–K operators with multiplicity m) defined in ([3], p. 9,
Equation (27)). The beauty of these fractional operators lies in the fact that the several
frequently used fractional operators are connected with them or can be obtained as special
cases [3–6]. For the interest of large audience [7–9], more popular and widely used fractional
operators namely Riemann–Liouville (R–L), Saigo as well as Marichev–Saigo–Maeda (M–
S–M) fractional operators are computed in this research. For example, novel boundary-
value problems involving the Euler–Darboux equation are discussed in [7] by using Saigo
fractional operators. Marichev–Saigo–Maeda fractional-calculus operators were used in [8]
to establish several new formulas containing the (p, q)- extended Bessel function. The
results are expressed as the Hadamard product of the (p, q)- extended Gauss hypergeometric
function and the Fox–Wright function. More interesting results can be found in [9]. Similarly,
Krätzel integral transform [10] contains the Laplace and Meijer transforms as special cases.
Therefore, diverse aspects of this transformation have been remained an important subject
of the literature [11]. In particular, Rao and Debnath [12] have analysed the Krätzel integral
with reference to a specific space of distributions. Fractional operators are used by Kilbas
and Shlapakov [13] to study the Krätzel function and these outcomes were extended
in [14,15]. However, the study of this important function remained limited to real positive
variables until the work of Kilbas et al. [16]. They explored the relation of H-function
with the Krätzel function to express it as a function of complex argument. The Krätzel
function is useful in solar neutrino and nuclear astrophysics as the reaction-rate probability
integral [17,18]. The Krätzel function also expresses the inverse Gaussian density and other
interesting generalizations of the Krätzel function are discussed in [19,20]. More recently,
Tassaddiq [21] has investigated a new representation of the generalized Krätzel function
as an infinite series of the complex delta function. As a direct consequence, its response
on a suitably chosen function over a specific domain is easily obtained using standard
properties of delta function. For new representations of other special functions, a keen
reader may like to see [22–29].

This work is organised as follows: Section 2 includes all the necessary preliminary
data relating to Kiryakova’s fractional operators and the generalized Krätzel function. The
generalized Krätzel function is used in computing the fractional images in Section 3.1.
Section 3.2 discusses the corresponding fractional derivatives. The methodology and
solution of a fractional kinetic equation comprising the generalized Krätzel function is
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covered in Section 3.3. New integrals of products of special functions are obtained in
Section 3.4. A detailed discussion and comparison of the results with other researches is a
part of Section 4. Conclusion is given in Section 5.

2. Preliminaries

In this section, we will briefly discuss the basic notions and definitions required for
this research.

Definition 1. Let C denote the set of complex numbers and < denote the real part of any complex
number. Then for ν ∈ C, <(ν)〈 0; ρ ∈ R, ρ ≤ 0 ∧ x >0 the basic Krätzel function [10] Zv

ρ(x)
is defined as

Zv
ρ(x) =

∫ ∞

0
tv−1exp

(
−tρ − x

t

)
dt. (6)

It is related to the McDonald function [10] Kv (t) for ρ = 1; x = t2

4 ,

Zv
1

(
t2

4

)
=

(
t
2

)v
Kv (t). (7)

Definition 2. The Krätzel integral transform [10] defined by

Kv
ρ(f(x)) =

∫ ∞

0
Zv
ρ(xt) f (t)dt; (x > 0; ρ ≥ 1). (8)

Following relations of Krätzel function Zv
ρ(x) and H-function [16] enables Zv

ρ(x) to be the
functions of complex argument

Zv
ρ(s) =

1
ρ

H2,0
0,2

[
s

∣∣∣∣∣
_

(0, 1)
(

v
ρ

,
1
ρ

)]
; (ρ > 0, v ∈ C; s ∈ C, s 6= 0), (9)

Zv
ρ(s) =

1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; (ρ < 0,<(v) < 0; s ∈ C, s 6= 0). (10)

Definition 3. Let R and R+ denote the set of real and positive real numbers respectively then for
ρ ∈ R+; σ ∈ R; s ∈ C and a, b > 0, the generalized Krätzel function, [20], (see also [18,19])
defined by

Za;b
σ,ρ(s) =

∫ ∞

0
ts−1exp

(
−atσ − b

tρ

)
dt. (11)

For a = ρ = 1; σ = ρ; b = x; s = v, it reduces to Equation (6).

The generalized Krätzel function is mainly focused in this research by making use of
its distributional representation given by [21]

Za;b
σ,ρ(s) = 2π

∞

∑
n,r=0

(−a)n(−b)r

n!r!
δ(s + σn− ρr), (12)

and

Za;b
σ,ρ(s) = 2π∑∞

n,r,p=0
(−a)n(−b)r(σn− ρr)p

n!r!p!
δ(p)(s). (13)

whereas, for an appropriate function ℘ and the constant τ, delta function is defined by the
following properties [30]:

〈δ(s− τ),℘(s)〉 = ℘(ω); δ(−s) = δ(s); δ(τs) =
δ(s)
|τ| , where τ 6= 0. (14)
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The Krätzel function Zv
ρ(x) is a well-studied function but its Laplace transform w.r.t

variable v was unkown untill the investigation of [21] as a special case of the following result

L
(

Za;b
σ,ρ(s); ω

)
= 2π ∑∞

n,r,p=0
(−a)n(−b)r(σn−ρr)p

n!r!p! ωp = 2π exp(−aeσω − be−ρω). (15)

The purpose of the current research is achieved by making use of the above
Equation (15).

Definition 4. [31] For αεC;<(α) > 0), the Mittag-Leffler function is defined as follows:

Eα(z) = ∑∞
r=0

zr

Γ(αr + 1)
. (16)

However, for α = 1, it reduces to the exponential function and Γ(z) symbolizes the basic gamma
function. Similarly, the Mittag-Leffler function of parameters 2 and 3 i.e., (α, β, γεC,<(α) > 0),
is defined as

Eα,β(z) = ∑∞
r=0

zr

Γ(αr + β)
; Eγα,β(z) = ∑∞

r=0
(γ)rz

r

Γ(αr + β)
. (17)

Definition 5. [32] The Fox–Wright function symbolized by pΨq is well-defined in the following
form

pΨq

[
(ai, Ai)
(bj, Bj)

; z
]
=

∞
∑

m=0

∏
p
i=1 Γ(ai+Aim)

∏
q
j=1 Γ((bj+Bjm)

zm

m!(
aiεR+(i = 1, . . . .p); BjεR+(j = 1, . . . .q); 1 + ∑

q
i=1 Bi −∑

p
j=1 Aj > 0

)
.

(18)

Definition 6. [32] The Fox H-function is defined as

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (ai, Ai)(

bj, Bj
)] = Hm,n

p,q

[
z
∣∣∣∣(a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ]
= 1

2πi
∫
L

∏m
j=1 Γ

(
bj+Bjs

)
∏n

i=1 Γ
(
1− aj−Ajs

)
∏

q
j=m+1 Γ

(
1− bj−Bjs

)
∏

p
i=n+1 Γ

(
aj+Ajs

) z−s ds,
(19)

(1 ≤ m ≤ q∧; 0 ≤ n ≤ p∧ Ai > 0 ( i = 1, ·· , p)∧ Bj > 0 ( j = 1, ·· , q)∧ ai ∈ C (i = 1 ,
··· , p) ∧ bj ∈ C (j = 1, ·· , q)). L is a suitable contour (namely Mellin–Barnes form) having the
property to split up the poles of

{
Γ
(
bj + Bjs

)}m
j=1 and

{
Γ
(
1− aj − Ajs

)}n
j=1. H-function turn

into Meijer G-function [32] for Ap = Bq = 1 in (14)

Hm,n
p,q

[
z
∣∣∣∣(a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ] = ∞
∑

m=0

∏m
j=1 Γ

(
bj+Bjm

)
∏n

i=1 Γ
(
1− ai−Aim

)
∏

q
j=m+1 Γ

(
1− bj−Bjm

)
∏

p
i=n+1 Γ

(
ai+im

) zm

m!

Hm,n
p,q

[
z
∣∣∣∣(a1, 1), . . . , (ai, 1)
(b1, 1), . . . ,

(
bj, 1

) ] = Gm,n
p,q

[
z
∣∣∣∣ a1 . . . , ai
b1, . . . , bj

∣∣∣∣ ].

(20)

and

pΨq

[
(ai, Ai)
(bj, Bj)

; z
]
= H1,p

p,q+1

[
−z
∣∣∣∣ (1− a1, A1), . . . , (1− ai, Ai)
(0, 1), (1− b1, B1), . . . ,

(
(1− bj, Bj

) ].

and also to the hypergeometric functions as

pΨq

[
(ai, 1)
(bj, 1)

; z
]
= G1,p

p,q+1

[
−z
∣∣∣∣ (1− a1, 1), . . . , (1− ai, 1)
0, (1− b1, 1), . . . ,

(
1− bj, 1

) ] = pFq

[
ai
bj

; z
]

. Γ(a1)...Γ(ai)

Γ(b1)...Γ(bj)
;(

ai > 0; bj /∈ Z−0
)
,

(21)

where Z−0 , is the set of negative integers including 0.
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Definition 7. [1] Kiryakova’s fractional operators (E–K operators with multiplicity m) are defined as

I(γk),(vk)
(βk),m

f (z) =



∫ 1
0 f (zσ) Hm,0

m,m

σ

∣∣∣∣∣∣
(

γk + vk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dσ; ∑k vk > 0,

z−1
∫ z

0 f (ξ) Hm,0
m,m

 ξ
z

∣∣∣∣∣∣
(

γk + vk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dξ; ∑k vk > 0.

(22)

Here, v′ks represent the fractional order of integration, γ′ks are used only as weights whereas β′ks are

supplementary parameters and for vk = 1 we have I(γk),(vk)
(βk),m

f (z) = f (z). Since, Hm,0
m,m vanishes for

|σ| > 1 therefore it is evident to use the limits from 0 to ∞.

Definition 8. [1] In compliance with (22), the fractional derivative (R–L type) with order
v = (v1 ≥ 0, . . . , vm ≥ 0)is defined as

D(γk)
m
1 ,(vk)

(βk),m
( f (z)) = Dη I(γk+vk),(ηk−vk)

(βk),m
f (z) = Dη

∫ 1

0
f (zσ)Hm,0

m,m

σ

∣∣∣∣∣∣
(

γk + ηk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dσ. (23)

where Dη , is defined and stated as [1]

Dη = ∏m
r=1 ∏ηr

j=1
1
βr

z
d
dz

+ γr + j; ηk =

{
[vk] + 1; vk /∈ Z

vk; vk ∈ Z . (24)

Similarly, the fractional derivative of Caputo type is defined and stated as [1]

∗D(γk)m
1 ,(vk)

(βk),m f(z) = I(γk+vk ),(ηk−vk )
(βk ),m Dη f(z). (25)

The fractional operators defined in (22) transform the power function as follows:

I(γk),(vk)
(βk),m {zp} = ∏m

i=1

Γ
(
γi + 1 + p

βi

)
Γ
(
γi + vi + 1 + p

βi

)zp; ([−βk(1 + γk)] < p; vk ≥ 0; k = 1, . . . , m). (26)

It is important to note that the following fractional operators (see Table 1) can be
obtained by specifying (m = 1,2,3) in (22), such as R–L and Erdélyi–Kober (E–K) for (m = 1);
Saigo fractional operators for (m = 2) and Marichev–Saigo–Maeda (M–S–M) fractional
operators for (m = 3).

Table 1. Important cases of Kiryakova’s fractional operators [1].

Cases of (22) Relation between the Kernels of Popular Fractional Transforms and (22)(
m = 1;β = 1; σ = t

x ∧ σ = x
t
)

Riemann–Liouville (R–L) H1,1
1,0

[
σ

∣∣∣∣(γ+ v, 1)
(γ, 1)

]
= G1,1

1,0

[
t
x

∣∣∣∣γ+ v
γ

]
= (x−t)v−1tγ

Γ(v)

(m = 1)
Erdélyi–Kober (E–K) H1,1

1,0

σ
∣∣∣∣∣∣
(
γ+ v, 1

β

)(
γ, 1
β

)  = βσβ−1G1,1
1,0

[
σβ
∣∣∣∣γ+ v
γ

]
= β

σβγ+β−1(1 − σβ)
v−1

Γ(v)

(
m = 2;β1 = β2 = β > 0;σ = t

x ∧ σ = x
t

)
Saigo [33–35]

H2,0
2,2

σ
∣∣∣∣∣∣
(

γ1 + v1 + 1− 1
β , 1

β

)
,
(

γ2 + v2 + 1− 1
β , 1

β

)(
γ1 + 1− 1

β , 1
β

)
,
(

γ2 + 1− 1
β , 1

β

)  = G2,0
2,2

[
σβ
∣∣∣∣γ1 + v1, γ2 + v2

γ1, γ2

]
=

β
σβγ2 (1 − σβ)

v1+v2−1

Γ(v1+v2) 2F1
(
γ2 + v2 − γ1, v1; v1 + v2; 1− σβ

)
(m = 3;β1 = β2 = β3 = β = 1)

Marichev–Saigo–Maeda (M–S–M) [33–35]
H3,0

3,3
( t

x

)
= G3,0

3,3

[
t
x

∣∣∣∣γ′1 + γ′2, v− γ1, v − γ2
γ′1, γ′2, v− γ1 − γ2

]
=

x−γ1
Γ(v) (x− t)δ−1t−γ′1 F3

(
γ1, γ′1, γ2, γ′2, v; 1− t

x ; 1− x
t

)
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Except as otherwise specified, the variables’ restrictions will be equivalent to those in
Section 2 and the reference materials thereof.

3. Main Results
3.1. New Identities Containing the Fractional Calculus Images of Generalized Krätzel Function

Lemma 1. For ρ ∈ R+; σ ∈ R; s ∈ C and a, b > 0, the following identity for the Fox–Wright
function can be proved

∑∞
n,r=0

(−a)n(−b)r

n!r! 0Ψ0

[
−
−

∣∣∣∣(σn− ρr)ω
]
= 0Ψ0

[
−
−

∣∣∣∣− aeσω − be−ρω

]
. (27)

Proof. Let us consider Equation (15) then the Laplace transform of the generalized Krätzel
function can be modified as

L
(

Za;b
σ,ρ(s); ω

)
= 2π ∑∞

n,r=0
(−a)n(−b)r

n!r! 0Ψ0

[
−
−

∣∣∣∣(σn− ρr)ω
]

, (28)

and

L
(

Za;b
σ,ρ(s); ω

)
= 2π exp

(
−aeσω − be−ρω

)
= 2π0Ψ0

[
−
−

∣∣∣∣− aeσω − be−ρω
]

. (29)

Hence from both of the above Equations (28) and (29), the required result is proved. �

Remark 1. It is to be remarked that a general result is obvious from Equation (27) as follows

∑∞
n,r=0

(−a)n(−b)r

n!r! pΨq

[
(ai, Ai)
(bj, Bj)

∣∣∣∣(σn− ρr)ω
]
= pΨq

[
(ai, Ai)
(bj, Bj)

∣∣∣∣− aeσω − be−ρω

]
. (30)

Similar results will hold for the Mittag-Leffler and other special functions due to the relation
between them.

Theorem 1. The Kiryakova’s fractional transform of the generalised Krätzel function Za;b
σ,ρ(s) is

given by

I(γk),(δk)
(βk),m

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωχ−1

mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

;−aeσω − be−ρω

;

([−βk(1 + γk)]< p; δk ≥ 0; k = 1, . . . , m; ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

(31)

Proof. Let us first consider the action of Equation (22) on Equation (15)

I(γk),(δk)
(βk),m

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= I(γk),(δk)

(βk),m

(
ωχ−12π∑∞

n,r,p=0
(−a)n(−b)r(σn− ρr)p

n!r!p!
ωp
)

, (32)

then exchanging the summation and integration

I(γk),(δk)
(βk),m

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2π∑∞

n,r,p=0
(−a)n(−b)r(σn− ρr)p

n!r!p!
I(γk),(δk)
(βk),m

(
ωχ−1ωp

)
, (33)

and then by using Equation (26) yields

I(γk),(δk)
(βk),m

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2π∑∞

n,r,p=0
(−a)n(−b)r(σn− ρr)p

n!r!p! ∏m
i=1

Γ
(

γi + 1 + χ+p−1
βi

)
Γ
(

γi + δi + 1 + χ+p−1
βi

)ωp+χ−1, (34)
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which after modifications by using Equation (18) leads to the following

I(γk),(δk)
(βk),m

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωχ−1

∞
∑

n,r=0

(−a)n(−b)r

n!r! mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

; (σn− ρr)ω

;

([−βk(1 + γk)]< p; δk ≥ 0; k = 1, . . . , m; ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

(35)

Lastly, an application of Lemma 1, leads to the required simplified form. �

Corollary 1. For(ρ > 0, v ∈ C; s ∈ C, s 6= 0), the Kiryakova’s fractional transform of the H-
Function is given by

I(γk),(δk)
(βk),m

(
ωχ−1L

{
1
ρH2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1
ρ

)]
; ω

})
= 2πωχ−1

mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

;−eρω − xe−ω

;

([−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m).

(36)

Proof. It can be proved by taking a = ρ = 1; σ = ρ; b = x in Equation (31) and then using
Equation (9). �

Corollary 2. For (ρ < 0,<(v) < 0; s ∈ C, s 6= 0),the Kiryakova’s fractional transform of the
H-Function is given by

I(γk),(δk)
(βk),m

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−1

mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

;−eρω − xe−ω


([−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m).

(37)

Proof. It can be proved by taking a = ρ = 1; σ = ρ; b = x in Equation (31) and then using
Equation (9). �

Continuing in this way, we obtain the following Table 2 of fractional integrals formulae
involving the generalised Krätzel function Za;b

σ,ρ(s) and H-Function for the Marichev–Saigo–
Maeda (m = 3), Saigo (m = 2), Erdélyi–Kober and Riemann–Liouville (R–L) (m = 1)
fractional integrals

Table 2. Fractional integrals formulae involving the generalised Krätzel function Za;b
σ,ρ(s) and

H-function.

m = 3 Marichev–Saigo–Maeda Fractional Integrals

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0+

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(χ, 1) (χ+ δ− γ1 − γ′1 − γ2, 1) (χ+ γ′2 − γ′1, 1)

(χ+ γ′2, 1) (χ+ δ− γ1 − γ′1, 1) (χ+ δ− γ′1 − γ2, 1);−aeσω − be−ρω
]

(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0+

(
ωχ−1L

{
1
ρH2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1
ρ

) ]
; ω

})
=

2πωδ+χ−γ1−γ′1−1
3Ψ3

[
(χ, 1) (χ+ δ− γ1 − γ′1 − γ2, 1) (χ+ γ′2 − γ′1, 1)

(χ+ γ′2, 1) (χ+ δ− γ1 − γ′1, 1) (χ+ δ− γ′1 − γ2, 1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0+

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
=

2πωδ+χ−γ1−γ′1−1
3Ψ3

[
(χ, 1) (χ + δ− γ1 − γ′1 − γ2, 1) (χ + γ′2 − γ′1, 1)

(χ + γ′2, 1) (χ + δ− γ1 − γ′1, 1) (χ + δ− γ′1 − γ2, 1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0).
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Table 2. Cont.

m = 3 Marichev–Saigo–Maeda Fractional Integrals

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0−

(
ωχ−1L

{
Za;b
σ,ρ(s)

}
; ω
)
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1− χ− δ+ γ1 + γ′1,−1) (1− χ+ γ1 + γ′2 − δ,−1) (1− χ− γ1,−1)

(1− χ,−1) (1− χ+ γ1 + γ′1 + γ2 + γ′2 − δ,−1) (1− χ+ γ1 − γ2,−1);−aeσω − be−ρω
]

(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0−

(
ωχ−1L

{
1
ρH2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1
ρ

) ]
; ω

})
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1− χ− δ+ γ1 + γ′1,−1) (1− χ+ γ1 + γ′2 − δ,−1) (1− χ− γ1,−1)

(1− χ,−1) (1− χ+ γ1 + γ′1 + γ2 + γ′2 − δ,−1) (1− χ+ γ1 − γ2,−1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

I
γ1 ,γ′1 ,γ2 ,γ′2 ,δ
0−

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1− χ− δ+ γ1 + γ′1,−1) (1− χ+ γ1 + γ′2 − δ,−1) (1− χ− γ1,−1)

(1− χ,−1) (1− χ+ γ1 + γ′1 + γ2 + γ′2 − δ,−1) (1− χ+ γ1 − γ2,−1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

m = 2 Saigo fractional integrals

Iγ1 ,γ2 ,δ
0+

(
ωχ−1L

{
Za;b

σ,ρ(z); ω
})

= 2πωχ−γ1−1
2Ψ2

[
(χ, 1) (χ + γ2 − γ1, 1)

(χ− γ2, 1) (χ + δ + γ2)
;−aeσω − be−ρω

]
(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

Iγ1 ,γ2 ,δ
0+

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1
ρ

) ]
; ω

})
= 2πωχ−γ1−1

2Ψ2

[
(χ, 1) (χ + γ2 − γ1, 1)

(χ− γ2, 1) (χ + δ + γ2, 1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iγ1 ,γ2 ,δ
0+

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−γ1−1

2Ψ2

[
(χ, 1) (χ + γ2 − γ1, 1)

(χ− γ2, 1) (χ + δ + γ2, 1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Iγ1 ,γ2 ,δ
−

(
ωχ−1L

{
Za;b

σ,ρ(s); ω
})

= 2πωχ−γ1−1
2Ψ2

[
(γ1 − χ + 1,−1) (γ2 − χ + 1,−1)

(1− χ,−1) ((γ1 + γ2 + δ− χ + 1,−1);−aeσω − be−ρω

]
Iγ1 ,γ2 ,δ
−

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

})
= 2πωχ−γ1−1

2Ψ2

[
(γ1 − χ + 1,−1) (γ2 − χ + 1,−1)

(1− χ,−1) ((γ1 + γ2 + δ− χ + 1,−1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iγ1 ,γ2 ,δ
−

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−γ1−1

2Ψ2

[
(γ1 − χ + 1,−1) (γ2 − χ + 1,−1)

(1− χ,−1) ((γ1 + γ2 + δ− χ + 1,−1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

m = 1 Erdélyi–Kober fractional integrals

Iγ,δ
0+

(
ωχ−1L

{
Za;b

σ,ρ(s); ω
})

= 2πωχ−1
1Ψ1

[
(χ + γ, 1)

(χ + γ + δ, 1);−aeσω − be−ρω

]
(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

Iγ,δ
0+

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

})
= 2πωχ−1

1Ψ1

[
(χ + γ, 1)

(χ + γ + δ, 1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iγ,δ
0+

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−1

1Ψ1

[
(χ + γ, 1)

(χ + γ + δ, 1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Iγ,δ
0−

(
ωχ−1L

{
Za;b

σ,ρ(s); ω
})

= 2πωχ−1
1Ψ1

[
(γ− χ + 1,−1)

(γ + δ− χ + 1,−1);−aeσω − be−ρω

]
Iγ,δ
0−

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

})
= 2πωχ−1

1Ψ1

[
(γ− χ + 1,−1)

(γ + δ− χ + 1,−1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iγ,δ
0−

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−1

1Ψ1

[
(γ− χ + 1,−1)

(γ + δ− χ + 1,−1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)
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Table 2. Cont.

m = 1 Riemann–Liouville (R–L) Fractional Integrals

Iδ
0+

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωχ+δ−1

1Ψ1

[
(χ, 1)

(δ+ χ, 1);−aeσω − be−ρω
]
= Γ(χ)Eχ1,δ+χ(−aeσω − be−ρω)

(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0)

Iδ
0+

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

})
= 2πωχ+δ−1

1Ψ1

[
(χ, 1)

(δ+ χ, 1);−eρω − xe−ω

]
= Γ(χ)Eχ1,δ+χ(−eρω − xe−ω)

(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iδ
0+

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ+δ−1

1Ψ1

[
(χ, 1)

(δ+ χ, 1);−eρω − xe−ω

]
= Γ(χ)Eχ1,δ+χ(−eρω − xe−ω)

(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Iδ
−

(
ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωχ+δ−1

1Ψ1

[
(1− δ− χ,−1)
(1− χ,−1) ;−aeσω − be−ρω

]
(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0)

Iδ
−

(
ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

})
= 2πωχ+δ−1

1Ψ1

[
(1− δ− χ,−1)
(1− χ,−1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Iδ
−

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ+δ−1

1Ψ1

[
(1− δ− χ,−1)
(1− χ,−1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

3.2. New Identities Containing the Fractional Calculus Derivatives of Generalized
Krätzel Function

One can find the generalized fractional derivatives involving the generalized Krätzel
function by following the steps of the proof of Theorem 1 and using the new representation
of the generalized Krätzel function. This fact is significant that we compute these fractional
derivatives using the wide-ranging result ([3], Theorem 4) stated as

D(γk)m
1 ,(δk)

(βk),m

{
zc

pΨq

[
(ai, αi)

p
1

(bj, β j)
q
1

; λzµ

]}
= zc

p+mΨq+m

(ai, αi)
p
1 ,
(

γk + δk + 1 + c
βk

, 1
βk

)m

1

(bj, β j)
q
1,
(

γk + 1 + c
βk

, 1
βk

)m

1

; λzµ

. (38)

Theorem 2. The Kiryakova’s fractional derivative of the generalised Krätzel function Za;b
σ,ρ(s) is

given by

(
D(γk)m

1 ,(δk)
(βk),m ωχ−1L

{
Za;b
σ,ρ(s); ω

})
= 2πωχ−1

mΨm

(γk + δk + 1 + c
βk

, 1
βk

)m

1(
γk + 1 + c

βk
, 1
βk

)m

1

;−aeσω − be−ρω

;

(ρ ∈ R+; σ ∈ R; s ∈ C ; a, b > 0).

(39)

Proof. These generalized fractional derivatives involving the generalized Krätzel function
can be obtained by using Equations (27–29) and (38). �

Corollary 3. For(ρ > 0, v ∈ C; s ∈ C, s 6= 0), the following result containing H-Function holds true:

D(γk)m
1 ,(δk)

(βk),m

(
ωχ−1L

{
1
ρ

H2,0
0,2

[
s

∣∣∣∣∣
_

(0, 1)
(

v
ρ

,
1
ρ

)]
; ω

})
= 2πωχ−1

mΨm

(γi + δi + 1 + χ−1
βi

, 1
βi

)m

1(
γi + 1 + χ−1

βi
, 1

βi

)m

1

;−eρω − xe−ω

. (40)

Proof. It can be proved by taking a = ρ = 1; σ = ρ; b = x in Equation (39) and then using
Equation (9). �

Corollary 4. For (ρ < 0,<(v) < 0; s ∈ C, s 6= 0), the following result containing the H-Function
holds true:
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D(γk)m
1 ,(δk)

(βk),m

(
ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

})
= 2πωχ−1

mΨm

(γi + δi + 1 + χ−1
βi

, 1
βi

)m

1(
γi + 1 + χ−1

βi
, 1

βi

)m

1

;−eρω − xe−ω

. (41)

Proof. It can be proved by taking a = ρ = 1; σ = ρ; b = x in Equation (39) and then using
Equation (9). �

Continuing in this way, we obtain the following Table 3 of fractional derivatives for-
mulae involving the generalised Krätzel function Za;b

σ,ρ(s) and H-Function for the Marichev–
Saigo–Maeda (m = 3), Saigo (m = 2), Erdélyi–Kober and Riemann–Liouville (R–L) (m = 1)
fractional derivatives.

Table 3. Fractional derivatives formulae involving the generalised Krätzel function Za;b
σ,ρ(s) and

H-function.

m = 3 Marichev–Saigo–Maeda Fractional Derivatives

D
γ1,γ′1,γ2,γ′2,δ
0+ ωχ−1L

{
Za;b
σ,ρ(s); ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(χ, 1) (χ−γ2 +γ1, 1) (χ− δ+γ1+γ1

′ +γ2
′ , 1)

(χ−γ2, 1) (χ− δ+γ1 ++γ2
′ , 1) (χ− δ+γ1 +γ1

′ , 1) ;−aeσω − be−ρω
]

(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0).

D
γ1,′,γ2,γ′2,δ
0+ ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(χ, 1) (χ+ δ− γ1 − γ′1 − γ2, 1) (χ+ γ′2 − γ′1, 1)

(χ+ γ′2, 1) (χ+ δ− γ1 − γ′1, 1) (χ+ δ− γ′1 − γ2, 1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

D
γ1,′,γ2,γ′2,δ
0+ ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ

,− 1
ρ

)
(0, 1)

]
; ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(χ, 1) (χ + δ− γ1 − γ′1 − γ2, 1) (χ + γ′2 − γ′1, 1)

(χ + γ′2, 1) (χ + δ− γ1 − γ′1, 1) (χ + δ− γ′1 − γ2, 1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0).

D
γ1,′,γ2,γ′2,δ
− ωχ−1L

{
Za;b
σ,ρ(s); ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1−χ+γ2

′ ,−1) (1 +γ2
′ −χ−γ2 +γ1,−1) (1 + δ−χ−γ1−γ1

′ ,−1)
(1−χ,−1) (1−χ−γ1

′ +γ2
′ ,−1) (1−χ+ δ−γ1 −γ1

′ −γ2,−1);−aeσω − be−ρω
]

(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0).

D
γ1,′,γ2,γ′2,δ
− ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1−χ+γ2

′ ,−1) (1 +γ2
′ −χ−γ2 +γ1,−1) (1 + δ−χ−γ1−γ1

′ ,−1)
(1−χ,−1) (1−χ−γ1

′ +γ2
′ ,−1) (1−χ+ δ−γ1 −γ1

′ −γ2,−1);−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

D
γ1,′,γ2,γ′2,δ
− ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωδ+χ−γ1−γ′1−1

3Ψ3

[
(1−χ+γ2

′ ,−1) (1 +γ2
′ −χ−γ2 +γ1,−1) (1 + δ−χ−γ1−γ1

′ ,−1)
(1−χ,−1) (1−χ−γ1

′ +γ2
′ ,−1) (1−χ+ δ−γ1 −γ1

′ −γ2,−1);−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

m = 2 Saigo fractional derivatives

Dγ1,γ2,δ
0+ ωχ−1L

{
Za;b
σ,ρ(s); ω

}
= 2πωχ−γ1−1

2Ψ2

[
(χ, 1) (χ+ δ+γ2 +γ1, 1)

(χ+γ2, 1) (χ+ δ, 1) ;−aeσω − be−ρω
]

(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0).

Dγ1,γ2,δ
0+ ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−γ1−1

2Ψ2

[
(χ, 1) (χ+ δ+γ2 +γ1, 1)

(χ+γ2, 1) (χ+ δ, 1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dγ1,γ2,δ
0+ ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−γ1−1

2Ψ2

[
(χ, 1) (χ+ δ+γ2 +γ1, 1)

(χ+γ2, 1) (χ+ δ, 1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Dγ1,γ2,δ
− ωχ−1L

{
Za;b
σ,ρ(s); ω

}
= 2πωχ−γ1−1

2Ψ2

[
(1−χ−γ2,−1) (1−χ+ δ+γ1,−1)

(1−χ+ δ−γ2,−1) (1−χ,−1) ;−aeσω − be−ρω
]

Dγ1,γ2,δ
− ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−γ1−1

2Ψ2

[
(1−χ−γ2,−1) (1−χ+ δ+γ1,−1)

(1−χ+ δ−γ2,−1) (1−χ,−1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dγ1,γ2,δ
− ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−γ1−1

2Ψ2

[
(1−χ−γ2,−1) (1−χ+ δ+γ1,−1)

(1−χ+ δ−γ2,−1) (1−χ,−1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)
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Table 3. Cont.

m = 1 Erdélyi–Kober fractional derivatives

Dγ,δ
0+ωχ−1 L

{
Za;b

σ,ρ(s); ω
}
= 2πωχ−γ1−1

1Ψ1

[
(γ + δ + χ, 1)
(γ + χ, 1) ;−aeσω − be−ρω

]
(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0).

Dγ,δ
0+ ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−γ1−1

1Ψ1

[
(γ+ δ+χ, 1)
(γ+χ, 1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dγ,δ
0+ ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−γ1−1

1Ψ1

[
(γ+ δ+χ, 1)
(γ+χ, 1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Dγ,δ
− ωχ−1L

{
Za;b
σ,ρ(s); ω

}
= 2πωχ−1

1Ψ1

[
(1−χ+γ+ δ,−1)
(1−χ+γ,−1) ;−aeσω − be−ρω

]
(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0).

Dγ,δ
− ωχ−1L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−1

1Ψ1

[
(1−χ+γ+ δ,−1)
(1−χ+γ,−1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dγ,δ
− ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−1

1Ψ1

[
(1−χ+γ+ δ,−1)
(1−χ+γ,−1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

m = 1 Riemann–Liouville (R–L) Fractional Derivatives

Dδ
0+ωχ−1 L

{
Za;b

σ,ρ(s); ω
}
= 2πωχ−1

1Ψ1

[
(χ, 1)

(χ− δ, 1);−aeσω − be−ρω

]
= Γ(χ)Eχ1,δ+χ(−aeσω − be−ρω)

(ρ ∈ R+ ; σ ∈ R; s ∈ C ; a, b > 0)

Dδ0+ωχ−1L
{

1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−1

1Ψ1

[
(χ, 1)

(χ− δ, 1);−eρω − xe−ω

]
= Γ(χ)Eχ1,δ+χ(−eρω − xe−ω)

(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dδ0+ωχ−1L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−1

1Ψ1

[
(χ, 1)

(χ− δ, 1);−eρω − xe−ω

]
= Γ(χ)Eχ1,δ+χ(−eρω − xe−ω)

(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

Dδ−ωχ−1L
{

Za;b
σ,ρ(s); ω

}
= 2πωχ−1

1Ψ1

[
(δ−χ+ 1,−1)
(1−χ,−1) ;−aeσω − be−ρω

]
Dδ
−ωχ−1 L

{
1
ρ H2,0

0,2

[
s
∣∣∣∣ _

(0, 1)
(

v
ρ , 1

ρ

) ]
; ω

}
= 2πωχ−1

1Ψ1

[
(δ− χ + 1,−1)
(1− χ,−1) ;−eρω − xe−ω

]
(ρ > 0, v ∈ C; s ∈ C, s 6= 0)

Dδ
−ωχ−1 L

{
1
|ρ|H

1,1
1,1

[
s

∣∣∣∣∣
(

1− v
ρ ,− 1

ρ

)
(0, 1)

]
; ω

}
= 2πωχ−1

1Ψ1

[
(δ− χ + 1,−1)
(1− χ,−1) ;−eρω − xe−ω

]
(ρ < 0,<(v) < 0; s ∈ C, s 6= 0)

3.3. Non-Integer order Kinetic Equation Comprising of the Generalized Krätzel Function

Srivastava and collaborators have significant contributions [36–39] for fractional calcu-
lus. Various general families of fractional kinetic equations were investigated earlier in the
references [40–42]. In [41,42] Srivastava investigated much more general functions than the
various multi-parameter extensions of the Mittag-Leffler function and the Hurwitz–Lerch
function. According to a review of the literature, no such equation containing the gener-
alized Krätzel function has been developed. This section’s main goal is to formulate and
answer this problem. Next, by following Equations (1)–(5), we state and prove Theorem 3.

Theorem 3. Forσ ∈ R; ρ ∈ R+ ∧ a, b, d, δ > 0, the subsequent fractional kinetic equation
comprising the generalized Krätzel function

F(t)− F0Za;b
σ,ρ(t) = −dδ Iδ

0+F(t), (42)

has a solution given by

F(t) =
2πF0

t ∑∞
n,r,p=0

(−a)n(−b)r
(

σn−ρr
t

)p

n!r!p!
Eδ,−p

(
−dδtδ

)
. (43)
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Proof. In the first step, let us apply the Laplace transform (see [1]) on both sides of
Equation (42)

L{F(t)} − F0L
{

Za;b
σ,ρ(t)

}
= L

{
−dδ Iδ

0+F(t)
}

, (44)

where
F(s) = L[F(t) : s] =

∫ ∞

0
e−stF(t)dt,<(s) > 0, (45)

and
L
{

Iδ
0+F(t); ω

}
= ω−δF(ω). (46)

Next, by making use of Equation (15)

F(ω) = 2πF0 ∑∞
n,r,p=0

(−a)n(−b)r(σn− ρr)p

n!r!p!
ωp −

(ω

d

)−δ
F(ω), (47)

implies that

F(ω)

[
1 +

( s
d

)−δ
]
= 2πF0 ∑∞

n,r,p=0
(−a)n(−b)r(σn− ρr)p

n!r!p!
ωp. (48)

After some simple calculation, one can obtain

F(ω) = 2πF0 ∑∞
n,r,p=0

(−a)n(−b)r(σn− ρr)p

n!r!p!
ωp ∑∞

m=0

[
−
(ω

d

)−δ
]m

. (49)

Additionally, suppose that δm− p > 0; δ > 0 and use L−1{ω−δ; t
}
= tδ−1

Γ(δ) to calculate L−1

(the inverse Laplace transform) of Equation (49) as follows

F(t) = 2πF0 ∑∞
n,r,p=0

(−a)n(−b)r(σn− ρr)p

n!r!p!
t−p−1 ×∑∞

m=0

(
−dδtδ

)m

Γ(δm− p)
. (50)

Lastly, Equation (43) can be obtained by using Equation (17) in Equation (50). �

Proof. This can be obtained by using Equation (6) and taking a = ρ = 1∧ σ = ρ ∧ b = x in
Equations (42)–(43). �

Corollary 5. The fractional kinetic equation comprising of the H function when ρ > 0

F(t)− F0
1
ρ

H2,0
0,2

[
z

∣∣∣∣∣ −
(0, 1)

(
t
ρ , 1

ρ

)] = −dδ Iδ
0+F(t); (z, ρ > 0, d, δ > 0), (51)

has the solution

F(t) =
2πF0

t ∑∞
n,r,p=0

(−)n(z)r
(

ρn−r
t

)p
Eδ,−p(−dvtv)

n!p!
. (52)

Proof. This is obtainable by using (9) and taking a = ρ = 1 ∧ σ = ρ ∧ b = x in
Equations (42) and (43). �

Corollary 6. The fractional kinetic equation comprising of the H function when ρ < 0

F(t)− F0
1
|ρ|H

1,1
1,1

[
z

∣∣∣∣∣
(

1− t
ρ ,− 1

ρ

)
(0, 1)

]
= −dδ Iδ

0+F(t); (ρ< 0; x, d, δ >0), (53)
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has the solution

F(t) =
2πF0

t ∑∞
n,r,p=0

(−)n(z)r
(

ρn−r
t

)p
Eδ,−p

(
−dδtδ

)
n!p!

. (54)

Proof. This is obtainable by using Equation (9) and taking a = ρ = 1 ∧ σ = ρ ∧ b = x in
Equations (42) and (43). �

Remark 2. One can note that the solution procedure is classical [1] as well as the reaction rate
F(t) is the function of fractional parameter δ. Usually, it is represented in terms of Mittag-Leffler
function [1] and the same can be observed in the above solution. Hence, it is remarkable that the
subsequent infinite triple summation of the coefficients Ca;b

σ,ρ(t) in Equation (43) has a closed form

Ca;b
σ,ρ(t) = ∑∞

n,r,p=0

(−a)n(−b)r
(

σn−ρr
t

)p

n!r!p!
= exp

(
−ae

σ
t − be−

ρ
t

)
. (55)

Similarly,
lim
t→∞

Ca;b
σ,ρ(t) = exp(−a− b); (a, b > 0), (56)

and
lim

t→ ∞
b→ ∞

Ca;b
σ,ρ(t) = 0 = lim

t→ ∞
k→ ∞

Ca;b
σ,ρ(t) = lim

t→0
Ca;b

σ,ρ(t) = 0.

3.4. New Integrals of Products Involving Special Functions

It is worth noting that the subsequent results involving the products of a wide range
of special functions are evaluated by taking Equations (10) and (39)

∫ ω
0 ξχ−1 exp

(
−aeσξ − be−ρξ

)
Hm,0

m,m

 ξ
ω

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

dξ

= 2πωχ−2
mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

;−aeσω − be−ρω

,

(57)

and ∫ ω
0 ξχ−1 exp

(
−eρξ − xe−ξ

)
Hm,0

m,m

 ξ
ω

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

dξ

= 2πωχ−2
mΨm

 (
γi + 1 + χ−1

βi
, 1

βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1

βi

)m

1

;−eρξ − xe−ξ

.

(58)
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By making use of Equations (12) and (22) along with the characterization of the Dirac
delta function, subsequent new integrals of products of special functions are calculated:

∫ 1
0 Za;b

σ,ρ(ωξ)Hm,0
m,m

ξ

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

dξ

= 2πω−1 ∑∞
n,r=0

(−a)n(−b)r

n!r!

∫ 1
0 δ(ωξ + σn− ρr)Hm,0

m,m

ξ

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

dξ

= 2πω−1 ∑∞
n,r=0

(−a)n(−b)r

n!r! Hm,0
m,m

 ρr−σn
ω

∣∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1



= 2πω−1Hm,0
m,m

−ae−σ/ω − beρ/ω

∣∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

.

(59)
and

∫ 1

0
Zξ
ρ(ωξ)Hm,0

m,m

ξ

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

dξ =
2π
ω

Hm,0
m,m

−e−ρ/ω − xe1/ω

∣∣∣∣∣∣
(

γi + δi + 1− 1
βi

, 1
βi

)m

1(
γi + 1− 1

βi
, 1

βi

)m

1

. (60)

and further new integrals of products of special functions are computable by using the

relation of Fox-H function Hm,0
m,m

 ξ
ω

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk , 1

βk

)m

1(
γk + 1− 1

βk , 1
βk

)m

1

with other special functions

as mentioned in Equations (11)–(16) for G-function, Fox–Wright function and Mittag-Leffler
function. For example,∫ 1

0 Za;b
σ,ρ(ωξ)Gm,0

m,m

[
ξ

∣∣∣∣(γk + δk)
m
1

(γk)
m
1

]
dξ = 2πω−1

∞
∑

n,r=0

(−a)n(−b)r

n!r!

∫ 1
0 δ(ωξ + σn− ρr)Gm,0

m,m

[
ξ

∣∣∣∣(γk + δk)
m
1

(γk)
m
1

]
dξ

= 2πω−1 ∑∞
n,r=0

(−a)n(−b)r

n!r! Gm,0
m,m

[
ρr−σn

ω

∣∣∣∣(γk + δk)
m
1

(γk)
m
1

]
= 2πω−1Gm,0

m,m

[
−ae−σ/ω − beρ/ω

∣∣∣∣(γk + δk)
m
1

(γk)
m
1

]
.

(61)

Similarly, ([27], Equation (32)) can be rewritten, by using Equation (22), as

∫ 1
0

(zω)ρ−1

exp(ezω)−1 Hm,0
m,m

ω

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dω

= ω−1
∫ ω

0
zρ−1

exp(ez)−1 Hm,0
m,m

 z
ω

∣∣∣∣∣∣
(

γk + δk + 1− 1
βk

, 1
βk

)m

1(
γk + 1− 1

βk
, 1

βk

)m

1

dz

= ωρ−1 ∑∞
n=0 mΨm

 (
γk + 1− 1

βk
, 1

βk

)m

1(
γk + δk + 1− 1

βk
, 1

βk

)m

∣∣∣∣∣∣−(n + 1)eω

.

4. Discussion

In this research, we have followed the recommendations of [3] to compute various
fractional formulae containing the generalized Krätzel functions Za;b

σ,ρ(ξ) and their simpler
cases by using Kiryakova’s fractional operators in the form of Theorem 1. Specifications of
these results are discussed as a consequence of Kiryakova’s fractional operators, consid-
ering multiplicity m = 3∧ m = 2∧ m = 1 separately. It produced generalized fractional
calculus images of the Krätzel function. Following the conclusion of [3] one needs to check
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if the considered special function can be presented as a Wright g.h.f. pΨq or as simpler pFq-
function; in more complicated cases, or if it is a Fox H-function or a Meijer G-function. It is
worth noting that the Krätzel function can only be expressed in the form of these functions,
as shown in Equations (9) and (10), for different domains, with no relationship between
them for the entire domain. However, as suggested in [3] apply a general result such
as ([3], Theorems 3 and 4) (or, more broadly, ([3], Theorem 2) and their special cases ([3],
Lemmas 1–4). It can be seen that it is not the case. If it is the case then integration will be pos-

sible only w.r.t the power series variable z of H-function Hm,n
p,q

[
z
∣∣∣∣(a1, A1), . . . ,

(
ap, Ap

)
(b1, B1), . . . ,

(
bq, Bq

) ]
and here first time in this research the integration is performed with respect to the co-
efficients Ai; Bi. For example, the above Equations (51)–(53) involve the integration with

respect to co-efficient variable t of H1,1
1,1

[
z

∣∣∣∣∣
(

1− t
ρ ,− 1

ρ

)
(0, 1)

]
and H2,0

0,2

[
z
∣∣∣∣ _

(0, 1)
(

t
ρ , 1

ρ

)]
in con-

trast to the existing literature where mostly the integration is performed with respect
to the variable z. Similarly, the involved Laplace transform used throughout in this pa-
per is with respect to this co-efficient variable. Hence it is concluded that the results of
this article became possible only due to a new representation [29] of Krätzel functions
Za;b
σ,ρ(ξ) as a series of complex delta functions. Hence after, a general result such as ([3],

Theorems 3 and 4) (or more generally, ([3], Theorem 2)) and their special cases ([3],
Lemmas 1–4) is applicable. It is easy to check that the foremost outcome (31) and its
quite a few special cases are entirely confirmable with the above-mentioned theorems.

5. Conclusions

The new fractional transformations of the generalized Krätzel function have been
computed by using the multiple E–K operators of the generalized fractional calculus.
Hence, the novel fractional images for the widespread non-integer operators are gained by
considering the specific cases. It became possible only because the Laplace transform of
the generalized Krätzel function is investigated in recent research [21]. Furthermore, while
quite a lot of researchers have looked into this family of functions no research has been
performed on the fractional kinetic equation. Non-integer phenomena have recently become
popular in various engineering and physical science domains due to memory effects. This
practice may open an avenue to put up changes in typical solar model. The generalized
Krätzel function is used to formulate and solve a new fractional kinetic equation [1]. Specific
cases concerning the original Krätzel function are discussed as corollaries. Thereafter, the
connection of the generalized Krätzel function with H-function is used to study novel
results. A novel representation of Krätzel function as well as the Laplace transform of
Krätzel function have played a fundamental role to accomplish the goal of this study. It can
be concluded that this work is substantial to develop the application of Krätzel function
beyond its original domain and the considered fractional operators and equations can be
extensively used for scientific modelling of evolutionary systems by means of memory
effects on their dynamics. Furthermore, by using the fractional derivatives of delta function
the solution for fractional kinetic equation can be obtained in a larger domain. It gives
insights that the used approach will enhance the further applications of delta function, for
example authors may use it to improve the fractional-order fuzzy control technique [43]
and will also be applicable to the other trending sciences such as big data, machine learning
and artificial intelligence [44].

Author Contributions: Conceptualization, A.T. and R.S.; methodology, A.T. and R.S.; software,
A.T. and R.S.; validation, A.T. and R.S.; formal analysis, A.T. and R.S.; investigation, A.T. and R.S.;
resources, A.T. and R.S.; data curation, A.T. and R.S.; writing—original draft preparation, A.T. and
R.S.; writing—review and editing, A.T. and R.S.; supervision, R.S.; project administration, A.T. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.



Mathematics 2023, 11, 1060 16 of 17

Acknowledgments: Asifa Tassaddiq would like to thank Deanship of Scientific Research at Majmaah
University for supporting this work under Project Number No. R-2023-3. The authors are also
thankful to the worthy reviewers and editors for their useful and valuable suggestions for the
improvement of this paper which led to a better presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haubold, H.; Mathai, A. The fractional kinetic equation and thermonuclear functions. Astrophys. Space Sci. 2000, 273, 53–63.

[CrossRef]
2. Mathai, A.M.; Haubold, H.J. A versatile integral in physics and astronomy and Fox’s H-function. Axioms 2019, 8, 122. [CrossRef]
3. Kiryakova, V. Unified Approach to Fractional Calculus Images of Special Functions—A Survey. Mathematics 2020, 8, 2260.

[CrossRef]
4. Kiryakova, V. Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus. J. Comput. Appl.

Math. 2000, 118, 241–259. [CrossRef]
5. Kiryakova, V. The multi-index Mittag-Leffler functions as important class of special functions of fractional calculus. Comput. Math.

Appl. 2010, 59, 1885–1895. [CrossRef]
6. Kiryakova, V. A Guide to Special Functions in Fractional Calculus. Mathematics 2021, 9, 106. [CrossRef]
7. Srivastava, H.M.; Saigo, M. Multiplication of fractional calculus operators and boundary value problems involving the Euler-

Darboux equation. Math. Anal. Appl. 1987, 121, 325–369. [CrossRef]
8. Srivastava, H.M.; Alomari, A.-K.N.; Saad, K.M.; Hamanah, W.M. Some Dynamical Models Involving Fractional-Order Derivatives

with the Mittag-Leffler Type Kernels and Their Applications Based upon the Legendre Spectral Collocation Method. Fractal Fract.
2021, 5, 131. [CrossRef]

9. Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-Functions and the Incomplete
_
H-Functions and

Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116–138.
[CrossRef]

10. Krätzel, E. Integral transformations of Bessel-type. In Generalized Functions and Operational, Proceedings of the Conference on
Generalized Functions and Operational Calculi, Varna, September 29-October 6, 1975; Publishing House of the Bulgarian Academy of
Sciences: Sofia, Bulgaria, 1975; pp. 148–155.

11. Mathai, A.M.; Haubold, H.J. Mathematical Aspects of Krätzel Integral and Krätzel Transform. Mathematics 2020, 8, 526. [CrossRef]
12. Rao, G.L.; Debnath, L. A generalized Meijer transformation. Int. J. Math. Math. Sci. 1985, 8, 359–365. [CrossRef]
13. Kilbas, A.A.; Shlapakov, S.A. The compositions of a Bessel-type integral operator with fractional integro-differentiation operators

and its applications to solving differential equations. Differ. Equ. 1994, 30, 235–246.
14. Glaeske, H.-J.; Kilbas, A.A. Bessel-type integral transforms on L_(ν;r)-spaces. Result. Math. 1998, 34, 320–329. [CrossRef]
15. Kilbas, A.A.; Bonilla, B.; Rivero, M.; Rodríguez, J.; Trujillo, J.J. Compositions of Bessel type integral transform with fractional

operators on spaces Fp, µ and Fp, µ. Frac. Calc. Appl. Anal. 1998, 1, 135–150.
16. Kilbas, A.A.; Saxena, R.; Trujillo, J.J. Kratzel function as the function of hypergeometric type. Frac. Calc. Appl. Anal. 2006, 9,

109–131.
17. Mathai, A.M.; Haubold, H.J. Erdélyi-Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics;

Springer: Singapore, 2018.
18. Critchfield, C.L. Analytic forms of the thermonuclear function. In Cosmology, Fusion & Other Matters: George Gamow Memorial

Volume; Reines, F., Ed.; Colorado Associated University Press: Boulder, CO, USA, 1972; pp. 186–191.
19. Dernek, N.; Dernek, A.; Yürekli, O. A Generalization of the Krätzel Function and Its Applications. J. Math. 2017, 2017, 2195152.

[CrossRef]
20. Kilbas, A.A.; Kumar, D. On generalized Krätzel Function. Integral Transform. Spec. Funct. 2009, 20, 835–846. [CrossRef]
21. Tassaddiq, A. A New Representation of the Generalized Krätzel Function. Mathematics 2020, 8, 2009. [CrossRef]
22. Chaudhry, M.A.; Qadir, A. Fourier transform and distributional representation of gamma function leading to some new identities.

Int. J. Math. Math. Sci. 2004, 37, 2091–2096. [CrossRef]
23. Al-Lail, M.H.; Qadir, A. Fourier transform representation of the generalized hypergeometric functions with applications to the

confluent and gauss hypergeometric functions. Appl. Math. Comput. 2015, 263, 392–397. [CrossRef]
24. Tassaddiq, A.; Safdar, R.; Kanwal, T. A distributional representation of gamma function with generalized complex domain.

Adv. Pure Math. 2017, 7, 441–449. [CrossRef]
25. Al-Omari, S.K.Q.; Jumah, G.; Al-Omari, J.; Saxena, D. A New Version of the Generalized Krätzel–Fox Integral Operators.

Mathematics 2018, 6, 222. [CrossRef]
26. Tassaddiq, A. An application of theory of distributions to the family of λ-generalized gamma function. AIMS Math. 2020, 5,

5839–5858. [CrossRef]
27. Tassaddiq, A. A new representation of the extended k-gamma function with applications. Math. Meth. Appl. Sci. 2021, 44,

11174–11195. [CrossRef]

http://doi.org/10.1023/A:1002695807970
http://doi.org/10.3390/axioms8040122
http://doi.org/10.3390/math8122260
http://doi.org/10.1016/S0377-0427(00)00292-2
http://doi.org/10.1016/j.camwa.2009.08.025
http://doi.org/10.3390/math9010106
http://doi.org/10.1016/0022-247X(87)90251-4
http://doi.org/10.3390/fractalfract5030131
http://doi.org/10.1134/S1061920818010119
http://doi.org/10.3390/math8040526
http://doi.org/10.1155/S0161171285000370
http://doi.org/10.1007/BF03322058
http://doi.org/10.1155/2017/2195152
http://doi.org/10.1080/10652460902819024
http://doi.org/10.3390/math8112009
http://doi.org/10.1155/S016117120430743X
http://doi.org/10.1016/j.amc.2015.04.083
http://doi.org/10.4236/apm.2017.78029
http://doi.org/10.3390/math6110222
http://doi.org/10.3934/math.2020374
http://doi.org/10.1002/mma.7480


Mathematics 2023, 11, 1060 17 of 17

28. Tassaddiq, A.; Srivastava, R. New Results Involving Riemann Zeta Function Using Its Distributional Representation. Fractal Fract.
2022, 6, 254. [CrossRef]

29. Al-Omari, S.K. A Study on a Class of Modified Bessel-Type Integrals in a Frechet Space of Boehmians. Bol. Soc. Paran. Mat. 2020,
4, 145–156. [CrossRef]

30. Gel’fand, I.M.; Shilov, G.E. Generalized Functions: Properties and Operations; Academic Press: New York, NY, USA, 1969; Volume 1-V.
31. Mittag-Leffler, M.G. Sur la nouvelle fonction E(x). CR Acad. Sci. Paris 1903, 137, 554–558.
32. Kilbas, A.A.; Saigo, M. H-Transforms: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2004. [CrossRef]
33. Marichev, O.I. Volterra equation of Mellin convolutional type with a Horn function in the kernel. Izv. AN BSSR, Ser. Fiz.-Mat.

Nauk 1974, 1, 128–129. (In Russian)
34. Saigo, M.; Maeda, N. More generalization of fractional calculus. In Transform Methods & Special Functions, Varna’96 (Proc. Second

Internat. Workshop); Rusev, P., Dimovski, I., Kiryakova, V., Eds.; Science Culture Technology Publishing: Singapore, 1998;
pp. 386–400.

35. Saigo, M. A remark on integral operators involving the Gauss hypergeometric functions. Math. Rep. Coll. Gen. Ed. Kyushu Univ.
1978, 11, 135–143.

36. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halstead Press: Chichester, UK; New York, NY, USA, 1985.
37. Kilbas, A.A.; Srivastava, H.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematical

Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204.
38. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions

and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520.
39. Sirvastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (Survey). TWMS J.

Pure Appl. Math. 2016, 7, 123–145.
40. Srivastava, H.M. Fractional-order derivatives and integrals: Introductory overview and recent developments. Kyungpook Math. J.

2020, 60, 73–116.
41. Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher

transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [CrossRef]
42. Srivastava, H.M. A Survey of Some Recent Developments on Higher Transcendental Functions of Analytic Number Theory and

Applied Mathematics. Symmetry 2021, 13, 2294. [CrossRef]
43. Mohammadzadeh, A.; Kaynak, O. A novel fractional-order fuzzy control method based on immersion and invariance approach.

Appl. Soft Comput. 2020, 88, 106043. [CrossRef]
44. Niu, H.; Chen, Y.; West, B.J. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? Entropy 2021, 23, 297.

[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/fractalfract6050254
http://doi.org/10.5269/bspm.v38i4.37463
http://doi.org/10.1201/9780203487372
http://doi.org/10.55579/jaec.202153.340
http://doi.org/10.3390/sym13122294
http://doi.org/10.1016/j.asoc.2019.106043
http://doi.org/10.3390/e23030297
http://www.ncbi.nlm.nih.gov/pubmed/33671047

	Introduction and Motivation 
	Preliminaries 
	Main Results 
	New Identities Containing the Fractional Calculus Images of Generalized Krätzel Function 
	New Identities Containing the Fractional Calculus Derivatives of Generalized Krätzel Function 
	Non-Integer order Kinetic Equation Comprising of the Generalized Krätzel Function 
	New Integrals of Products Involving Special Functions 

	Discussion 
	Conclusions 
	References

