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Abstract: In this paper, we propose and study a Middle East respiratory syndrome coronavirus
(MERS-CoV) infection model with cytotoxic T lymphocyte (CTL) immune response and intracellular
delay. This model includes five compartments: uninfected cells, infected cells, viruses, dipeptidyl
peptidase 4 (DPP4), and CTL immune cells. We obtained an immunity-inactivated reproduction
number R0 and an immunity-activated reproduction number R1. By analyzing the distributions
of roots of the corresponding characteristic equations, the local stability results of the infection-
free equilibrium, the immunity-inactivated equilibrium, and the immunity-activated equilibrium
were obtained. Moreover, by constructing suitable Lyapunov functionals and combining LaSalle’s
invariance principle and Barbalat’s lemma, some sufficient conditions for the global stability of the
three types of equilibria were obtained. It was found that the infection-free equilibrium is globally
asymptotically stable if R0 ≤ 1 and unstable if R0 > 1; the immunity-inactivated equilibrium is locally
asymptotically stable if R0 > 1 > R1 and globally asymptotically stable if R0 > 1 > R1 and condition
(H1) holds, but unstable if R1 > 1; and the immunity-activated equilibrium is locally asymptotically
stable if R1 > 1 and is globally asymptotically stable if R1 > 1 and condition (H1) holds.

Keywords: MERS-CoV infection; CTL immune response; global stability; Lyapunov functionals;
intracellular delay

MSC: 92B05; 34K20

1. Introduction

Middle East respiratory syndrome (MERS) is a viral respiratory disease caused by the
Middle East respiratory syndrome coronavirus (MERS-CoV), which has a high mortality
rate (approximately 35%) and has become an important public health problem in many
countries since it was first reported in Saudi Arabia in 2012 [1,2]. There is no vaccine or
specific treatment for MERS, and treatment is mainly supportive based on the clinical status
of MERS patients [2]. It is important to study MERS-CoV dynamics in the host to provide
insights into the pathogenesis and treatment of MERS-CoV. In [3], the authors provide a
systematic review and meta-analysis of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), SARS-CoV, and MERS-CoV host virus dynamics. In [4], the authors used
mathematical models combined with published viral load data to compare in detail the
similarities and differences in the within-host viral dynamics of SARS-CoV-2, MERS-CoV,
and SARS-CoV.

Dipeptidyl peptidase-4 (DPP4, also known as CD26) is the functional receptor for
MERS-CoV [5]. The engagement of MERS-CoV spike proteins with DPP4 mediates viral
attachment to host cells and virus–cell membrane fusion, thus playing a key role in MERS-
CoV infection [6,7]. DPP4 receptors are present on the epithelial surfaces of various human
organs (such as the kidney, intestine, liver, thymocytes), and their systematic distribution
facilitates the transmission of viruses in the human body [8,9]. In the last decades, some
classical virus dynamics models have been proposed to explore the relationship between

Mathematics 2023, 11, 1066. https://doi.org/10.3390/math11041066 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11041066
https://doi.org/10.3390/math11041066
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1564-6405
https://orcid.org/0000-0001-8204-6448
https://orcid.org/0000-0003-0098-0865
https://doi.org/10.3390/math11041066
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11041066?type=check_update&version=2


Mathematics 2023, 11, 1066 2 of 26

uninfected cells (target cells), infected cells, and viral load (see, e.g., [10–13]). These studies
have been of great help to understanding the virus dynamics in the host and to devising
effective virus control strategies. Based on some classical works related to the modeling of
virus dynamics in [14], to describe the effect of DPP4 on MERS-CoV infection in the host, the
authors constructed the following four-dimensional ordinary differential equation model:

Ṫ(t) =λ− βD(t)v(t)T(t)− dT(t),

İ(t) =βD(t)v(t)T(t)− d1 I(t),

v̇(t) =d1MI(t)− cv(t),

Ḋ(t) =λ1 − β1βD(t)v(t)T(t)− γD(t).

(1)

Here, T(t), I(t), v(t), and D(t) denote the concentrations of uninfected cells, infected cells,
free virus, and DPP4 on the surface of uninfected cells at time t, respectively. The constant
λ > 0 is the rate at which uninfected cells are produced. The constant β > 0 is the rate
at which uninfected cells are infected by the free virus (i.e., infected cells are increased
at a mount of βD(t)v(t)T(t) because uninfected cells are infected by the free virus). The
constants d > 0 and d1 > 0 denote the death rates of uninfected cells and infected cells,
respectively. The constant M > 0 denotes the number of the free viruses released by the
lysis of each infected cell after death. The constant c > 0 denotes the death rate of the free
viruses. The constant λ1 > 0 denotes the rate at which DPP4 is produced on the surface
of uninfected cells. The constant β1 > 0 denotes the rate at which DPP4 is decreased (i.e.,
DPP4 is decreased at a mount of β1βD(t)v(t)T(t), because uninfected cells are infected
by the free virus). The constant γ > 0 denotes the hydrolysis rate of DPP4. In [14], the
authors mainly studied the local and global stability of the infection-free equilibrium and
the infected equilibrium of model (1). In addition, in [15], the authors further extend
model (1) to its periodic case and obtain sufficient conditions for the existence of positive
periodic solutions of the model by using the continuation theorem of the coincidence degree
theory and constructing the appropriate auxiliary function.

Based on the important role of the CTL immune response in the control and clearance
of MERS-CoV (CTL immune cells can attack virus-infected cells [16]), in [17], the authors
further considered the existence of positive periodic solutions of the periodic model with
CTL immune response. Several studies of viral infection models have also shown that
the CTL immune response plays a positive role in reducing viral load, such as in the HIV
model [10] and HCV model [18]. To incorporate the intracellular phase of the viral life
cycle, in [19], the authors assumed that virus production lags by a delay τ behind the
infection of a cell. The intracellular delay refers to the time between the entry of the virus
into the target cell and the production of new viral particles. Viral infection models with
intracellular delay have been studied by many scholars and have yielded many excellent
results (e.g., [20–27]). Motivated by the above studies, in this paper, we will consider the
following MERS-CoV infection model with CTL immune response and intracellular delay
(see Figure 1):

Ṫ(t) = λ− βD(t)v(t)T(t)− dT(t),

İ(t) = e−d1τ βD(t− τ)v(t− τ)T(t− τ)− d1 I(t)− pI(t)Z(t),

v̇(t) = d1MI(t)− cv(t),

Ḋ(t) = λ1 − β1βD(t)v(t)T(t)− γD(t),

Ż(t) = qI(t)Z(t)− bZ(t).

(2)

In model (2), the state variables T(t), I(t), v(t), and D(t) as well as the parameters λ, β, d,
d1, M, c, λ1, β1, and γ have the same biological meanings as in model (1). Z(t) denotes
the concentration of CTL immune cells at time t. CTL immune cells increase at a rate of
qI(t)Z(t) by the viral antigen of the infected cells and decay at rate bZ(t), and infected cells
are killed by the CTL immune response at rate pI(t)Z(t). The constant τ ≥ 0 denotes the
time between viral entry into an uninfected cell and the production of new virions. The
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term e−d1τ denotes the surviving rate of infected cells before they become productively
infected [24]. All the parameters of model (2) are assumed to be positive constants except
for the delay τ. The main purpose of this paper is to study the local and global dynamics of
model (2).

Figure 1. A schematic diagram of MERS-CoV infection with CTL immune response and intracellu-
lar delay.

The rest of the paper is organized as follows. The boundedness of the solutions
of model (2), and the classification of equilibria of model (2) are described in Section 2.
Section 3 shows how by analyzing the distributions of roots of the corresponding charac-
teristic equations, the local stability of the infection-free equilibrium, and the immunity-
inactivated equilibrium, the immunity-activated equilibrium can be obtained. Section 4
mainly includes the following: (i) The global stability result of the infection-free equilibrium
is obtained by constructing suitable Lyapunov functional and using LaSalle’s invariance
principle. (ii) By some ingenious analytical techniques, explicit estimates of the ultimate
lower bounds for the concentrations of viruses and infected cells are obtained. (iii) The
global stability results of the immunity-inactivated equilibrium and the immunity-activated
equilibrium are obtained by constructing suitable Lyapunov functionals and using Bar-
balat’s lemma. The last section presents a few numerical simulations and the conclusions
of this paper.

2. Preliminaries

Let X = C([−τ, 0],R5) be the Banach space of continuous functions mapping from
[−τ, 0] to R5

+ equipped with the sup-norm ‖φ‖ = sup−τ≤θ≤0 |φ(θ)|. The initial condition
of (2) is given as follows:

T(θ) = φ1(θ), I(θ) = φ2(θ), v(θ) = φ3(θ), D(θ) = φ4(θ), Z(θ) = φ5(θ), θ ∈ [−τ, 0], (3)

where φ = (φ1, φ2, φ3, φ4, φ5)
T ∈ X+ := {φ ∈ X : φ ≥ 0}.

2.1. The Well-Posedness and Dissipativeness

By the standard theory of functional differential equations (see [28]), it is easy to ascer-
tain that the solution (T(t), I(t), v(t), D(t), Z(t))T of model (2) with the initial condition (3)
is existent, unique, and nonnegative.
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Theorem 1. The solution (T(t), I(t), v(t), D(t), Z(t))T of model (2) with the initial condition (3)
satisfies

lim sup
t→+∞

T(t) ≤ λ

d
:= T0,

lim sup
t→+∞

I(t) ≤ λ

µ1
e−d1τ := Imax,

lim sup
t→+∞

v(t) ≤ d1MImax

c
:= vmax,

lim sup
t→+∞

D(t) ≤ λ1

γ
:= D0,

lim sup
t→+∞

Z(t) ≤ qβe−d1τ D0T0vmax

pµ2
:= Zmax,

(4)

where µ1 = min{d, d1} and µ2 = min{d1, b}.

Proof. From the first and fourth equations of model (2), it follows that for t ≥ 0,

Ṫ(t) ≤ λ− dT(t), Ḋ(t) ≤ λ1 − γD(t),

which implies that

lim sup
t→+∞

T(t) ≤ λ

d
= T0, lim sup

t→+∞
D(t) ≤ λ1

γ
= D0. (5)

Define the following:

S1(t) = e−d1τT(t− τ) + I(t).

From the first and second equations of model (2), it follows that for t ≥ τ,

Ṡ1(t) =e−d1τλ− e−d1τdT(t− τ)− d1 I(t)− pI(t)Z(t)

≤e−d1τλ− µ1S1(t),

which implies that

lim sup
t→+∞

S1(t) ≤
λe−d1τ

µ1
.

Thus, we have

lim sup
t→+∞

I(t) ≤ λe−d1τ

µ1
= Imax. (6)

From (6) and the third equation of model (2), it is not difficult to ascertain the following:

lim sup
t→+∞

v(t) ≤ d1MImax

c
= vmax. (7)

From (5), (6), and (7), it follows that for any positive constant ε < min{T0, vmax, D0},
there exists a ς0(ε) > 0 such that, for t ≥ ς0(ε),

T(t) < T0 + ε, v(t) < vmax + ε, D(t) < D0 + ε.

We define the following:
S2(t) = qI(t) + pZ(t).
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Then, from the second and last equation of model (2), it follows that for t ≥ ς0(ε) + τ,

S2(t) =qe−d1τ βD(t− τ)v(t− τ)T(t− τ)− qd1 I(t)− pbZ(t)

≤qe−d1τ β(D0 + ε)(vmax + ε)(T0 + ε)− µ2S2(t),

which implies that

lim sup
t→+∞

S2(t) ≤
qe−d1τ β(D0 + ε)(vmax + ε)(T0 + ε)

µ2
.

Since, the above inequality holds for any sufficiently small ε > 0, we have

lim sup
t→+∞

S2(t) ≤
qe−d1τ βD0vmaxT0

µ2
,

which leads to lim supt→+∞ Z(t) ≤ Zmax.

Theorem 1 shows that the solution of model (2) is ultimately bounded. Biologically, it
indicates that the viral load in the host varies within a finite range with the evolution of
time t.

2.2. The Equilibria

It is clear that model (2) always has an infection-free equilibrium E0 = (T0, 0, 0, D0, 0).
By using the next generation method in [29], we can obtain the immunity-inactivated

reproduction number R0 of model (2) as follows. First, we define the following matrices:

F =

 0 e−d1τβD0T0 0
0 0 0
0 0 0

, V =

 d1 0 0
−d1M c 0

0 0 b

.

Then, we define the following:

R0 = ρ(FV−1) =
e−d1τ βD0T0M

c
=

e−d1τ βλλ1M
cdγ

,

where ρ(FV−1) is the spectrum radius of FV−1.
Suppose (T, I, v, D, 0) (T > 0, I > 0, v > 0, D > 0) is an immunity-inactivated equilib-

rium of model (2). From model (2), it is not difficult to obtain the following relationships:

DT =
ed1τc
Mβ

, v =
d1M

c
I,

T =
1
d

(
λ− β

ed1τc
Mβ

v

)
=

1
d

(
λ− ed1τd1 I

)
,

D =
1
γ

(
λ1 − β1β

ed1τc
Mβ

v

)
=

1
γ

(
λ1 − ed1τ β1d1 I

)
.

(8)

From (8) and the second equation of model (2), we can ascertain that I satisfies the following
equation:

F1(I) ≡R0

(
1− ed1τd1 I

λ

)(
1− ed1τ β1d1 I

λ1

)
− 1 = 0. (9)

Let

σ0 = min
{

λ

ed1τd1
,

λ1

ed1τ β1d1

}
.
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If I > σ0, then min{T, D} < 0. Thus, we only need to consider whether F1(I) = 0 has a
positive root on interval [0, σ0]. Clearly, F1(I) is monotonically decreasing with respect to I
on the interval [0, σ0], and

F1(0) = R0 − 1, F(σ0) = −1 < 0.

If R0 ≤ 1, then F1(I) = 0 has no positive root, and if R0 > 1, then F1(I) = 0 has a unique
positive root I = I1 ∈ (0, σ0), where

I1 =
Mβ(λ1 + λβ1)−

√
∆

2d1Mββ1ed1τ
=

2cdγ(R0 − 1)
d1[Mβ(λ1 + λβ1) +

√
∆]

,

∆ = M2β2(λ1 − λβ1)
2 + 4Mβ1βcdγed1τ .

Thus, if R0 > 1, model (2) has a unique immunity-inactivated equilibrium E1 =
(T1, I1, v1, D1, 0), where

T1 =
1
d
(λ− ed1τd1 I1) =

Mβ(λβ1 − λ1) +
√

∆
2dMββ1

D1 =
ed1τc
MβT1

, v1 =
d1M

c
I1.

Define the immune-activated reproduction number as follows:

R1 =
2qe−d1τ βλλ1M

2qcdγ + bd1[Mβ(λ1 + λβ1) +
√
4]

.

Then, it is not difficult to obtain the following lemma.

Lemma 1. Assume that R0 > 1, then the following statements are true:
(i) Clearly,

R1 =
2qcdγR0

2qcdγ + bd1[Mβ(λ1 + λβ1) +
√
4]

< R0.

(ii) Note that

I1 −
b
q
=

2qcdγ(R0 − 1)− bd1[Mβ(λ1 + λβ1) +
√
4]

qd1[Mβ(λ1 + λβ1) +
√
4]

= Θ(R1 − 1),

where

Θ =
2qcdγ + bd1[Mβ(λ1 + λβ1) +

√
4]

qd1[Mβ(λ1 + λβ1) +
√
4]

> 0.

Thus, R1 − 1 has the same sign as I1 − b
q .

Suppose (T̃, Ĩ, ṽ, D̃, Z̃) (T̃ > 0, Ĩ > 0, ṽ > 0, D̃ > 0, Z̃ > 0) is an immunity-activated
equilibrium (positive equilibrium) of model (2). From model(2), it is not difficult to obtain
the following relationships:

Ĩ =
b
q

, ṽ =
d1Mb

cq
,

T̃ =
1
d
(λ− ed1τd1 Ĩ − ed1τ pĨZ̃) =

1
d

(
λ− ed1τd1b

q
− ed1τ pb

q
Z̃

)
:= Γ1(Z̃),

D̃ =
1
γ
(λ1 − ed1τ β1d1 Ĩ − ed1τ β1 pĨZ̃) =

1
γ

(
λ1 −

ed1τ β1d1b
q

− ed1τ β1 pb
q

Z̃

)
:= Γ2(Z̃).

(10)
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Define the following condition:

(H)
b
q
< σ0.

Obviously, condition (H) is necessary to ensure that T̃ > 0 and D̃ > 0. Thus, if condition
(H) does not hold, model (2) has no positive equilibrium.

If condition (H) holds, let

σ1 = min

{
q

ed1τ pb

(
λ− ed1τd1b

q

)
,

q
ed1τ β1 pb

(
λ1 −

ed1τ β1d1b
q

)}
,

R̂1 = R0

(
1− ed1τd1b

λq

)(
1− ed1τ β1d1b

qλ1

)
,

then σ1 > 0 and R̂1 > 0. From (8) and the second equation of model (2), we can ascertain
that Z̃ satisfies the following equation:

F2(Z̃) ≡ e−d1τ βM
cdγ

(
λ− ed1τd1b

q
− ed1τ pb

q
Z̃

)(
λ1 −

ed1τ β1d1b
q

− ed1τ β1 pb
q

Z̃

)
− 1− p

d1
Z̃

=0.

If Z̃ > σ1, then min{T̃, D̃} < 0. Thus, we only need to consider whether F2(Z̃) = 0 has a
positive root on interval [0, σ1]. Clearly, if condition (H) holds, then F2(Z̃) is monotonically
decreasing with respect to Z̃ on the interval [0, σ1], and

F2(0) = R̂1 − 1, F2(σ1) = −1− p
d1

σ1 < 0.

If R̂1 ≤ 1, then F2(Z̃) = 0 has no positive root, and if R̂1 > 1, then F2(Z̃) = 0 has a unique
positive root Z = Z∗ ∈ (0, σ1).

Therefore, if condition (H) holds and R̂1 > 1, then model (2) has a unique immunity-
activated equilibrium E∗ = (T∗, I∗, V∗, D∗, Z∗), where

T∗ = Γ1(Z∗), I∗ =
b
q

, v∗ =
d1Mb

cq
, D∗ = Γ2(Z∗). (11)

Note that

Mβ(λ1 + λβ1) +
√
4 ≥ Mβ(λ1 + λβ1) + Mβ|λ1 − λβ1| = 2Mβ max{λ1, λβ1}.

If R1 > 1, then 2qe−d1τ βλλ1M > 2bd1Mβ max{λ1, λβ1}, which implies that condition (H)
holds. From Lemma 1, if R1 > 1, then

I1 >
b
q

, R̂1 − 1 = F1(
b
q
) > 0.

Thus, if R1 > 1, then condition (H) holds and R̂1 > 1, then model (2) has a unique
immunity-activated equilibrium E∗ = (T∗, I∗, v∗, D∗, Z∗).

Based on the above discussion, we have the following results.

Theorem 2. The following statements are true:

(i) Model (2) always has an infection-free equilibrium E0 = (T0, 0, 0, D0, 0).
(ii) If R0 > 1, then model (2) has a unique immunity-inactivated equilibrium E1 = (T1, I1, v1, D1, 0).
(iii) If R1 > 1, then model (2) has a unique immunity-activated equilibrium E∗ = (T∗, I∗, v∗, D∗, Z∗).
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3. Local Stability

In this section, we will study the local stability of the infection-free equilibrium E0, the
immunity-inactivated equilibrium E1, and the immunity-activated equilibrium E∗.

3.1. Local Stability of the Infection-Free Equilibrium E0

Theorem 3. The following statements are true:

(i) If R0 < 1, then the infection-free equilibrium E0 of model (2) is locally asymptotically stable.
(ii) If R0 > 1, then the infection-free equilibrium E0 of model (2) is unstable.

Proof. The characteristic equation of model (2) at the infection-free equilibrium E0 is given
by the following:

(ρ + b)(ρ + γ)(ρ + d)[(ρ + c)(ρ + d1)− d1Me−d1τ βT0D0e−ρτ ] = 0. (12)

We can see that Equation (12) has 3 negative real roots ρ1 = −b < 0, ρ2 = −γ < 0,
ρ3 = −d < 0, and the other roots are determined by the following equation:

L0(ρ) ≡ (ρ + c)(ρ + d1)− d1Me−d1τ βT0D0e−ρτ = 0, (13)

which is equivalent to

(ρ + c)(ρ + d1) = d1Me−d1τ βT0D0e−ρτ . (14)

Assume that ρ = x0 + iy0 is a root of Equation (14). We will show that x0 < 0 if R0 < 1.
Otherwise, if x0 ≥ 0, then we have the following:

|(ρ + c)(ρ + d1)| = |ρ + c||ρ + d1| ≥ cd1.

Note that

cd1 ≤ |(ρ + c)(ρ + d1)| =
∣∣∣d1Me−d1τ βT0D0e−ρτ

∣∣∣≤d1Me−d1τ βT0D0 = cd1R0 < cd1,

which is a contradiction. Thus, all roots of Equation (12) have negative real parts if R0 < 1.
This implies that the infection-free equilibrium E0 is locally asymptotically stable.

Assume that R0 > 1. We note that

L0(0) = cd1(1− R0) < 0, lim
ρ→+∞

L0(ρ) = +∞.

Thus, there exists at least a positive real constant ρ∗ such that L1(ρ
∗) = 0. This implies that

Equation (12) has a positive root, and then the infection-free equilibrium E0 is unstable.

3.2. Local Stability of the Immunity-Inactivated Equilibrium E1

Theorem 4. The following statements are true:

(i) If R0 > 1 > R1, then the immunity-inactivated equilibrium E1 of model (2) is locally
asymptotically stable.

(ii) If R1 > 1, then the immunity-inactivated equilibrium E1 of model (2) is unstable.

Proof. For simplicity of presentation, we define the following matrices:

A1 =


ρ + βD1v1 + d 0 βD1T1 βv1T1
−βD1v1e−d1τe−ρτ ρ + d1 −βD1T1e−d1τe−ρτ −βv1T1e−d1τe−ρτ

0 −d1M ρ + c 0
ββ1D1v1 0 ββ1D1T1 ρ + ββ1v1T1 + γ

,
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A2 =


ρ + d (ρ + d1)ed1τeρτ 0 0

−βD1v1e−d1τe−ρτ ρ + d1 −βD1T1e−d1τe−ρτ −βv1T1e−d1τe−ρτ

0 −d1 M ρ + c 0
0 (ρ + d1)β1ed1τeρτ 0 ρ + γ

.

The characteristic equation of model (2) at the immunity-inactivated equilibrium E1 is
given as follows:

(ρ + b− qI1)× det(A1) = (ρ + b− qI1)× det(A2) = 0. (15)

We can see that Equation (15) has one real root ρ̃1 = qI1 − b, and the other roots are
determined by the following equation:

(ρ + d)
[
(ρ + d1)(ρ + c)(ρ + γ)− d1MβD1T1e−d1τe−ρτ(ρ + γ) + ββ1v1T1(ρ + d1)(ρ + c)

]
+ βD1v1(ρ + d1)(ρ + c)(ρ + γ) = 0.

(16)
Assume that R0 > 1 > R1. From Lemma 1, we have ρ̃1 = qI1 − b < 0. Note that as

D1T1 = ed1τc
Mβ , then Equation (16) can be rewritten as follows:

(ρ + d1)(ρ + c)
(

1 +
ββ1v1T1

ρ + γ
+

βD1v1

ρ + d

)
= d1MβD1T1e−d1τe−ρτ = d1ce−ρτ . (17)

Clearly, ρ = 0 is not a root of Equation (17). Assume that ρ = x1 + iy1 (x2
1 + y2

1 > 0) is
a root of Equation (17). We will show that x1 < 0. Otherwise, if x1 ≥ 0, then we have
|ρ + d1| > d1, |ρ + c| > c and

Ξ1 :=
∣∣∣∣1 + ββ1v1T1

ρ + γ
+

βD1v1

ρ + d

∣∣∣∣
=

∣∣∣∣∣1 + ββ1v1T1[(x1 + γ)− iy1]

(x1 + γ)2 + y2
1

+
βD1v1[(x1 + d)− iy1]

(x1 + d)2 + y2
1

∣∣∣∣∣
>1.

Then, from Equation (17), we have

d1c1≥|d1ce−ρτ |

=

∣∣∣∣(ρ + d1)(ρ + c)
(

1 +
ββ1v1T1

ρ + γ
+

βD1v1

ρ + d

)∣∣∣∣
=|ρ + d1||ρ + c|Ξ1

>d1c1,

which is a contradiction. Thus, all roots of Equation (15) have negative real parts if R0 >
1 > R1. This implies that the immunity-inactivated equilibrium E1 is locally asymptotically
stable.

From Lemma 1, if R1 > 1, then ρ̃1 = qI1 − b > 0, which implies that the immunity-
inactivated equilibrium E1 is unstable.

3.3. Local Stability of the Immunity-Activated Equilibrium E∗

We give the following lemma, which will be used in the proof of Theorem 5.

Lemma 2. Assume ρ = x + iy (x ≥ 0, x2 + y2 > 0). For any θ1 > 0, θ2 > 0, it the case that

|ρ(ρ + θ1) + θ2| ≥ θ1|ρ|.
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Proof. We note that

ρ(ρ + θ1) + θ2 = (x + iy)(x + θ1 + iy) + θ2 = x(x + θ1)− y2 + θ2 + iy(2x + θ1).

Thus, we have

|ρ(ρ + θ1) + θ2|2 =(x2 − y2 + θ2 + xθ1)
2 + y2(2x + θ1)

2

=(x2 − y2 + θ2)
2 + x2θ2

1 + 2xθ1(x2 − y2 + θ2) + y2θ2
1 + y2(4x2 + 4xθ1)

≥(x2 + y2)θ2
1 = |ρ|2θ2

1 .

Theorem 5. If R1 > 1, then the immunity-activated equilibrium E∗ of model (2) is locally
asymptotically stable.

Proof. For simplicity of presentation, we define the following matrices:

A3 =


ρ + βD∗v∗ + d 0 βD∗T∗ βv∗T∗ 0
−βD∗v∗e−d1τe−ρτ ρ + d1 + pZ∗ −βD∗T∗e−d1τe−ρτ −βv∗T∗e−d1τe−ρτ pI∗

0 −d1M ρ + c 0 0
ββ1D∗v∗ 0 ββ1D∗T∗ ρ + ββ1v∗T∗ + γ 0

0 −qZ∗ 0 0 ρ

,

A4 =


ρ + d (ρ + d1 + pZ∗)ed1τeρτ 0 0 pI∗ed1τeρτ

−βD∗v∗e−d1τe−ρτ ρ + d1 + pZ∗ −βD∗T∗e−d1τe−ρτ −βv∗T∗e−d1τe−ρτ pI∗

0 −d1M ρ + c 0 0
0 β1(ρ + d1 + pZ∗)ed1τeρτ 0 ρ + γ β1 pI∗ed1τeρτ

0 −qZ∗ 0 0 ρ

,

A5 =


ρ + d (ρ + d1 + pZ∗)ed1τeρτ 0 0

−βD∗v∗e−d1τe−ρτ ρ + d1 + pZ∗ −βD∗T∗e−d1τe−ρτ −βv∗T∗e−d1τe−ρτ

0 −d1M ρ + c 0
0 β1(ρ + d1 + pZ∗)ed1τeρτ 0 ρ + γ

,

A6 =

 ρ + d 0 ed1τeρτ

−βD∗v∗e−d1τe−ρτ −βv∗T∗e−d1τe−ρτ 1
0 ρ + γ β1ed1τeρτ

.

Note that if I∗ = b
q , then the characteristic equation of model (2) at the immunity-

activated equilibrium E∗ is given as follows:

det(A3) = det(A4) = ρ× det(A5)− qZ∗(ρ + c)pI∗ × det(A6) = 0. (18)

Equation (18) can be rewritten as follows:

[ρ(ρ + d1 + pZ∗) + qZ∗pI∗](ρ + c)[(ρ + d)(ρ + γ) + (ρ + d)ββ1v∗T∗ + βD∗v∗(ρ + γ)]

− d1MβD∗T∗(ρ + d)(ρ + γ)ρe−d1τe−ρτ = 0,
(19)

which is equivalent to
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[ρ(ρ + d1 + pZ∗) + qZ∗pI∗](ρ + c)
{

1 +
ββ1v∗T∗

ρ + γ
+

βD∗v∗

ρ + d

}
= d1MβD∗T∗ρe−d1τe−ρτ . (20)

From the second equation of model (2), we have d1MβD∗T∗e−d1τ = c(d1 + pZ∗). Then,
Equation (20) can be rewritten as follows:

1 +
ββ1v∗T∗

ρ + γ
+

βD∗v∗

ρ + d
=

c(d1 + pZ∗)ρe−ρτ

[ρ(ρ + d1 + pZ∗) + qZ∗pI∗](ρ + c)
. (21)

Clearly, ρ = 0 is not a root of Equation (21). Assume that ρ = x2 + iy2 (x2
2 + y2

2 > 0) is a
root of Equation (21). We will show that x2 < 0. Otherwise, if x2 ≥ 0, then we have the
following:

Ξ2 :=
∣∣∣∣1 + ββ1v∗T∗

ρ + γ
+

βD∗v∗

ρ + d

∣∣∣∣
=

∣∣∣∣∣1 + ββ1v∗T∗[(x2 + γ)− iy2]

(x2 + γ)2 + y2
2

+
βD∗v∗[(x2 + d)− iy2]

(x2 + d)2 + y2
2

∣∣∣∣∣
>1.

In addition, from Lemma 2, we have the following:

Ξ3 :=
∣∣∣∣ c(d1 + pZ∗)ρe−ρτ

[ρ(ρ + d1 + pZ∗) + qZ∗pI∗](ρ + c)

∣∣∣∣
≤
∣∣∣∣ (d1 + pZ∗)ρ
[ρ(ρ + d1 + pZ∗) + qZ∗pI∗]

∣∣∣∣
≤1.

Thus, Ξ2 > Ξ3, which contradicts Equation (21). This implies that all roots of Equation (21)
have negative real parts if R1 > 1, and the immunity-activated equilibrium E∗ is locally
asymptotically stable.

4. Global Stability

In this section, we will study the global stability of the infection-free equilibrium
E0, the immunity-inactivated equilibrium E1, and the immunity-activated equilibrium
E∗ by constructing appropriate Lyapunov functionals. Some construction techniques of
Lyapunov functionals (functions) can be found in [22–27,30–33] and the references therein.

For convenience, let
f (x) = x− 1− ln x, x > 0.

The function f (x) ≥ 0 for any x > 0 and f (x) = 0 if and only if x = 1.

4.1. Global Stability of the Infection-Free Equilibrium E0

Theorem 6. If R0 ≤ 1, then the infection-free equilibrium E0 of model (2) is globally asymptotically
stable in X1 := {φ ∈ X+ | 0 < φ1(0) ≤ T0, 0 < φ4(0) ≤ D0}.

Proof. According to Theorem 3, we only need to prove that the infection-free equilibrium
E0 is globally attractive. It is easy to show that the set X1 is positively invariant for model (2).
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Define the Lyapunov functional as follows:

U0 =T0 f
(

φ1(0)
T0

)
+ ed1τ(1 + β1)φ2(0) +

ed1τ(1 + β1)

M
φ3(0) + D0 f

(
φ4(0)

D0

)
+ (1 + β1)

ed1τ p
q

φ5(0) + (1 + β1)β
∫ 0

−τ
φ1(s)φ3(s)φ4(s)ds.

It is clear that U0 is continuous on X1 and satisfies the condition (ii) of Lemma 3.1 in [34]
on ∂X1 = X1 \ X1.

In calculating the derivative of U0 along the solution (T(t), I(t), v(t), D(t), Z(t))T of
model (2), it follows that for t ≥ 0,

U̇0 =

(
1− T0

T(t)

)
(λ− βD(t)v(t)T(t)− dT(t)) + (1 + β1)βD(t− τ)v(t− τ)T(t− τ)

− ed1τ(1 + β1)d1 I(t)− ed1τ(1 + β1)pI(t)Z(t) +
ed1τ(1 + β1)

M
(d1MI(t)− cv(t))

+

(
1− D0

D(t)

)
(λ1 − β1βD(t)v(t)T(t)− γD(t))

+ (1 + β1)
ed1τ p

q
(qI(t)Z(t)− bZ(t))

+ (1 + β1)β[D(t)v(t)T(t)− D(t− τ)v(t− τ)T(t− τ)]

=

(
1− T0

T(t)

)
(λ− dT(t)) + βD(t)v(t)T0 −

ed1τ(1 + β1)c
M

v(t)

+

(
1− D0

D(t)

)
(λ1 − γD(t)) + β1βD0v(t)T(t)− ed1τ(1 + β1)pb

q
Z(t).

Note that

T(t) ≤ λ

d
= T0, D(t) ≤ λ1

γ
= D0, R0 =

e−d1τ βT0D0M
c

,

then we have

U̇0 ≤−
d

T(t)
(T(t)− T0)

2 + βD0T0v(t)− ed1τ(1 + β1)c
M

v(t)

− γ

D(t)
(D(t)− D0)

2 + β1βD0T0v(t)− ed1τ(1 + β1)pb
q

Z(t)

=− d
T(t)

(T(t)− T0)
2 − γ

D(t)
(D(t)− D0)

2

+
ed1τ(1 + β1)c

M
(R0 − 1)v(t)− ed1τ(1 + β1)pb

q
Z(t).

(22)

It follows from R0 ≤ 1 that U̇0 ≤ 0 for t ≥ 0. Thus, the infection-free equilibrium E0 is
stable. Moreover, U̇0 = 0 implies T(t) = T0, D(t) = D0, and Z(t) = 0.

Let M0 be the largest invariant set in the set Ω0 := {φ ∈ X1 : U0 < ∞ and U̇0 = 0}.
From model (2) and the invariance of M0, we can easily see that M0 = {E0}. Thus, it follows
from Lemma 3.1 in [34] that the infection-free equilibrium E0 is globally attractive.

4.2. Global Stability of the Immunity-Inactivated Equilibrium E1

In order to prove Theorems 7 and 8, we need the following Lemma 3. In this subsection,
we assume that R0 > 1.

Let θ1 > 1 be a positive constant. Note that

R0 =
e−d1τ βλλ1M

cdγ
, T1 =

λ

d + βD1v1
<

λ

d
, D1 =

λ1

γ + β1βT1v1
<

λ1

γ
,
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then there exists a δ > 0 such that

T1 <
λ

d + βθ1D0δ
:= Tδ

1 , D1 <
λ1

γ + β1βθ1T0δ
:= Dδ

1, Iδ
1 :=

c
2d1M

δ <
b
q

, (23)

and
e−d1τ βDδ

1Tδ
1

M
c

> 1. (24)

Clearly, δ < v1 ≤ vmax. For convenience, we define the following:

α0 = −1
c

ln
(

δ

4θ1vmax − 2δ

)
> 0, α1 = max{α̂1, α̃1},

where

α̂1 =− 1
d + 3

4 βθ1D0δ
ln

(
1−

d + 3
4 βθ1D0δ

d + βθ1D0δ

)
> 0,

α̃1 =− 1
γ + 3

4 β1βθ1T0δ
ln

(
1−

γ + 3
4 β1βθ1T0δ

γ + β1βθ1T0δ

)
> 0.

Furthermore, from (24), there exists a positive constant α2 > 0 such that

e−d1τ βDδ
1Tδ

1
d1M

c
(1− e−cα2) > d1 + pθ1Zmaxe−(b−qIδ

1 )α2 . (25)

Using the methods and techniques in [35,36], we can obtain the following conclusion.

Lemma 3. If R0 > 1, then the solution (T(t), I(t), v(t), D(t), Z(t))T of model (2) with with any
φ ∈ X2 := {φ ∈ X+ | φi(0) > 0, i = 1, 2, 3, 4} satisfies

lim inf
t→+∞

T(t) ≥ λγ

dγ + βλ1vmax
:= Tmin,

lim inf
t→+∞

D(t) ≥ λ1d
γd + β1βλvmax

:= Dmin,

lim inf
t→+∞

I(t) ≥ Iδ
1 e−(d1+pθ1Zmax)α := Imin,

lim inf
t→+∞

v(t) ≥ d1M
c

Imin =
δ

2
e−(d1+pθ1Zmax)α := vmin,

where α = max{α0 + α1, α2}+ τ.

Proof. Let (T(t), I(t), v(t), D(t), Z(t))T be the solution of model (2) with any initial func-
tion φ ∈ X2. Clearly, T(t) > 0, I(t) > 0, v(t) > 0 and D(t) > 0. By Theorem 1, we can
easily obtain the following:

lim inf
t→+∞

T(t) ≥ λ

d + βD0vmax
= Tmin > 0, lim inf

t→+∞
D(t) ≥ λ1

γ + β1βT0vmax
= Dmin > 0.

From (4), it follows that there exists a T1 > τ such that for t ≥ T1,

T(t) < θ1T0, D(t) < θ1D0, v(t) < θ1vmax Z(t) < θ1Zmax. (26)

Claim For any t0 ≥ T1, it is impossible to satisfy I(t) ≤ Iδ
1 for t ≥ t0.
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In the following, let us prove that the claim is true. If the claim is not true, then there
exists a t0 ≥ T1 such that I(t) ≤ Iδ

1 for t ≥ t0. From the third equation of model (2), we have

lim sup
t→+∞

v(t) ≤ d1M
c

Iδ
1 =

δ

2
.

Then, from (26) and the first and fourth equations of model (2), we have the following:

lim inf
t→+∞

T(t) ≥ λ

d + βθ1D0
δ
2

> Tδ
1 , lim inf

t→+∞
D(t) ≥ λ1

γ + β1βθ1T0
δ
2

> Dδ
1. (27)

From (23), we note that qIδ
1 < b. From the last equation of model (2), we have the following:

Ż(t) ≤ qIδ
1 Z(t)− bZ(t) = −(b− qIδ

1)Z(t),

which implies that
lim

t→+∞
Z(t) = 0. (28)

By (24), there exists a sufficiently small positive constant ε > 0 such that

Π1 := e−d1τ βDδ
1Tδ

1 −
c

d1M
(d1 + pε) > 0.

By (27) and (28), there exists a T2 > t0 such that for t ≥ T2,

T(t) > Tδ
1 , D(t) > Dδ

1, Z(t) < ε. (29)

Define the following auxiliary function:

A(t) = I(t) +
d1 + pε

d1M
v(t) + e−d1τ β

∫ t

t−τ
D(s)v(s)T(s)ds.

From (29), we have for t ≥ T2,

Ȧ(t) =e−d1τ βD(t)v(t)T(t)− pI(t)Z(t) + pI(t)ε− c
d1M

(d1 + pε)v(t)

≥e−d1τ βDδ
1Tδ

1 v(t)− c
d1M

(d1 + pε)v(t)

=Π1v(t) ≥ 0.

This implies that for t ≥ T2, A(t) is monotonically increasing with respect to t. It follows
from Theorem 1 that A(t) is bounded for t ≥ T2. Thus, there exists a positive constant
A∗ ≥ I(T2) > 0 such that limt→+∞ A(t) = A∗ > 0. Moreover, according to Theorem 1, we
have that for t ≥ T2, Ä(t) is also bounded. This implies that A(t) is uniformly continuous
for t > T2. Thus, it follows from Barbalat’s lemma [37] that limt→+∞ Ȧ(t) = 0, which
implies that limt→+∞ v(t) = 0. Then, from the second equation of model (2), it is not
difficult to obtain limt→+∞ I(t) = 0. Thus, limt→+∞ A(t) = 0, which is a contradiction to
limt→+∞ A(t) = A∗ > 0. This proves the claim.

By the claim, there are two cases that need to be considered:

(i) I(t) ≥ Iδ
1 for all sufficiently large t;

(ii) I(t) oscillates about Iδ
1 for all sufficiently large t.

Clearly, we only need to consider case (ii). Let t1, t2 > T1 + τ be sufficiently large
such that

I(t1) = I(t2) = Iδ
1 , I(t) < Iδ

1 (t1 < t < t2).

If t2 − t1 ≤ α, from (26) and the second equation of model (2), we have for t1 ≤ t ≤ t2,

İ(t) ≥ −(d1 + pZ(t))I(t) ≥ −(d1 + pθ1Zmax)I(t),
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which implies that for t1 ≤ t ≤ t2,

I(t) ≥ Iδ
1 e−(d1+pθ1Zmax)(t−t1) ≥ Iδ

1 e−(d1+pθ1Zmax)(t2−t1) ≥ Iδ
1 e−(d1+pθ1Zmax)α = Imin.

Assume that t2 − t1 > α. It is easy to obtain t1 ≤ t ≤ t1 + α, I(t) ≥ Imin. Then, let
us prove that, for t1 + α ≤ t ≤ t2, I(t) ≥ Imin. Otherwise, there exists a α∗ ≥ 0 such that
for t1 + α ≤ t ≤ t1 + α + α∗ := ω, I(t) ≥ Imin, I(ω) = Imin and İ(ω) ≤ 0. From the third
equation of model (2), we have for t1 ≤ t ≤ t2,

v̇(t) ≤ d1MIδ
1 − cv(t) =

cδ

2
− cv(t),

which implies that for t1 ≤ t ≤ t2,

v(t) ≤ δ

2
+

(
v(t1)−

δ

2

)
e−c(t−t1) ≤ δ

2
+

(
θ1vmax −

δ

2

)
e−c(t−t1). (30)

From (30), we have for t1 + α0 ≤ t ≤ t2,

v(t) ≤ δ

2
+

(
θ1vmax −

δ

2

)
e−cα0 =

3
4

δ. (31)

From (26) and (31), we have for t1 + α0 ≤ t ≤ t2,

Ṫ(t) ≥ λ−
(

βθ1D0
3
4

δ + d
)

T(t), Ḋ(t) ≥ λ1 −
(

β1βθ1T0
3
4

δ + γ

)
T(t),

which implies that for t1 + α0 ≤ t ≤ t2,

T(t) ≥ λ

βθ1D0
3
4 δ + d

+

(
T(t1 + α0)−

λ

βθ1D0
3
4 δ + d

)
e−(βθ1D0

3
4 δ+d)(t−t1−α0)

≥ λ

βθ1D0
3
4 δ + d

(
1− e−(βθ1D0

3
4 δ+d)(t−t1−α0)

)
,

(32)

D(t) ≥ λ1

β1βθ1T0
3
4 δ + γ

+

(
D(t1 + α0)−

λ1

β1βθ1T0
3
4 δ + γ

)
e−(β1βθ1T0

3
4 δ+γ)(t−t1−α0)

≥ λ1

β1βθ1T0
3
4 δ + γ

(
1− e−(β1βθ1T0

3
4 δ+γ)(t−t1−α0)

)
.

(33)

From (32) and (33), we have for t1 + α0 + α1 ≤ t ≤ t2,

T(t) ≥ λ

βθ1D0
3
4 δ + d

(
1− e−(βθ1D0

3
4 δ+d)α1

)
≥ λ

βθ1D0
3
4 δ + d

(
1− e−(βθ1D0

3
4 δ+d)α̂1

)
= Tδ

1 ,
(34)

D(t) ≥ λ1

β1βθ1T0
3
4 δ + γ

(
1− e−(β1βθ1T0

3
4 δ+γ)α1

)
≥ λ1

β1βθ1T0
3
4 δ + γ

(
1− e−(β1βθ1T0

3
4 δ+γ)α̃1

)
= Dδ

1.
(35)

From the last equation of model (2), it follows that for t1 ≤ t ≤ t2,

Ż(t) ≤ qIδ
1 Z(t)− bZ(t) = −(b− qIδ

1)Z(t),

which implies that
Z(t) ≤ Z(t1)e−(b−qIδ

1 )(t−t1). (36)
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From (26) and (36), we have for t1 + α2 ≤ t ≤ t2,

Z(t) ≤ θ1Zmaxe−(b−qIδ
1 )α2 . (37)

Note that for t1 ≤ t ≤ ω, I(t) ≥ Imin. From the third equation of model (2), we have for
t1 ≤ t ≤ ω,

v̇(t) ≥ d1MImin − cv(t),

which implies that for t1 ≤ t ≤ ω,

v(t) ≥ d1MImin
c

+

(
v(t1)−

d1MImin
c

)
e−c(t−t1) ≥ d1MImin

c
(1− e−c(t−t1)). (38)

From (38), we have for t1 + α2 ≤ t ≤ ω,

v(t) ≥ d1MImin
c

(1− e−cα2). (39)

From (25), (34), (35), (37), (39), and the second equation of model (2), we have the following:

İ(ω) =e−d1τ βD(ω− τ)v(ω− τ)T(ω− τ)− d1 Imin − pIminZ(ω)

≥e−d1τ βDδ
1Tδ

1
d1MImin

c
(1− e−cα2)− d1 Imin − pIminθ1Zmaxe−(b−qIδ

1 )α2

=

(
e−d1τ βDδ

1Tδ
1

d1M
c

(1− e−cα2)− d1 − pθ1Zmaxe−(b−qIδ
1 )α2

)
Imin

>0,

which is a contradiction. Thus, for t1 ≤ t ≤ t2, I(t) ≥ Imin.
Since the interval t1 ≤ t ≤ t2 is arbitrary chosen, we can conclude that I(t) ≥ Imin

for all sufficiently large t. Thus, lim inft→+∞ I(t) ≥ Imin. Then, from the third equation of
model (2), the following can easily be obtained: lim inft→+∞ v(t) ≥ d1 MImin

c = vmin

Remark 1. According to Lemma 3, the viruses are persistent in the host if the immunity-inactivated
reproduction number R0 > 1. Lemma 3 gives an explicit estimate of the ultimate lower bound on
the viral load.

For convenience, we define the following condition:

(H1) 4
(

d2

λ
+

dβ1βvmax

d + γ

)(
γ2

λ1
+

γβvmax

d + γ

)
> β1β2v2

max.

Theorem 7. If R0 > 1 > R1 and condition (H1) holds, then the immunity-inactivated equilibrium
E1 of model (2) is globally asymptotically stable in X2.

Proof. According to Theorem 4, we only need to prove that the immunity-inactivated
equilibrium E1 is globally attractive. Let (T(t), I(t), v(t), D(t), Z(t))T be the solution of
model (2) with any initial function φ ∈ X2. Clearly, T(t) > 0, I(t) > 0, v(t) > 0, and
D(t) > 0 for t ≥ 0.
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Let U1(t) = W10(t) + W11(t) + W12(t), where

W10(t) =β1e−d1τT1 f
(

T(t)
T1

)
+ e−d1τ D1 f

(
D(t)
D1

)
+ β1 I1

(
I(t)
I1

)
+

β1

M
v1 f
(

v(t)
v1

)
+ β1

p
q

Z(t),

W11(t) =β1βD1v1T1e−d1τ
∫ t

t−τ
f
(

D(s)v(s)T(s)
D1v1T1

)
ds,

W12(t) =
βvmaxe−d1τ

2(d + γ)
[β1(T(t)− T1)− (D(t)− D1)]

2.

In calculating the derivative of W10(t) along the solution (T(t), I(t), v(t), D(t), Z(t))T

of model (2), it follows that for t ≥ 0,

Ẇ10(t) =β1e−d1τ

(
1− T1

T(t)

)
[βD1v1T1 − βD(t)v(t)T(t)− d(T(t)− T1)]

+ e−d1τ

(
1− D1

D(t)

)
[β1βD1v1T1 − β1βD(t)v(t)T(t)− γ(D(t)− D1)]

+ β1

(
1− I1

I(t)

)[
βe−d1τ D(t− τ)v(t− τ)T(t− τ)− d1 I(t)− pI(t)Z(t)

]
+

β1

M

(
1− v1

v(t)

)
(d1MI(t)− cv(t)) + β1 pI(t)Z(t)− β1

pb
q

Z(t)

=− dβ1e−d1τ

T(t)
(T(t)− T1)

2 − γe−d1τ

D(t)
(D(t)− D1)

2

+ 2β1βe−d1τ(D1v1T1 − D(t)v(t)T(t))− β1βe−d1τ D1v1T1
T1

T(t)

+ β1βe−d1τ D(t)v(t)T1 − ββ1e−d1τ D1v1T1
D1

D(t)
+ β1βe−d1τ D1v(t)T(t)

+ β1βe−d1τ D(t− τ)v(t− τ)T(t− τ)− β1βe−d1τ I1

I(t)
D(t− τ)v(t− τ)T(t− τ)

+ β1d1 I1 − β1d1 I(t)
v1

v(t)
+

β1

M
cv1 −

β1

M
cv(t) + β1 p

(
I1 −

b
q

)
Z(t),

(40)

where λ = βD1v1T1 + dT1 and λ1 = β1βD1v1T1 + γD1 are used. Note that

β1βe−d1τ D1v1T1 = β1d1 I1 =
β1

M
cv1,

thus, we have for t ≥ 0,

Ẇ10(t) =−
dβ1e−d1τ

T(t)
(T(t)− T1)

2 − γe−d1τ

D(t)
(D(t)− D1)

2 + β1 p
(

I1 −
b
q

)
Z(t)

+ β1βe−d1τ D1v1T1

[
4− T1

T(t)
− D1

D(t)
− D(t− τ)v(t− τ)T(t− τ)I1

D1v1T1 I(t)
− I(t)v1

I1v(t)

]
− β1βe−d1τ [D(t)T(t) + D1T1 − D1T(t)− D(t)T1]v(t)

+ β1βe−d1τ(D(t− τ)v(t− τ)T(t− τ)− D(t)v(t)T(t)).

(41)
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In calculating the derivative of W11(t) and W12(t) along the solution (T(t), I(t), v(t),
D(t), Z(t))T of model (2), it follows that for t ≥ 0,

Ẇ11(t) =β1βe−d1τ [D(t)v(t)T(t)− D(t− τ)v(t− τ)T(t− τ)]

+ β1βe−d1τ D1v1T1 ln
(

D(t− τ)v(t− τ)T(t− τ)

D(t)v(t)T(t)

)
=β1βe−d1τ [D(t)v(t)T(t)− D(t− τ)v(t− τ)T(t− τ)]

+ β1βe−d1τ D1v1T1

{
ln
(

T1

T(t)

)
+ ln

(
D1

D(t)

)
+ ln

(
D(t− τ)v(t− τ)T(t− τ)I1

D1v1T1 I(t)

)
+ ln

(
I(t)v1

I1v(t)

)}
,

(42)

Ẇ12(t) =
βvmaxe−d1τ

d + γ
[β1(T(t)− T1)− (D(t)− D1)]

{
β1(βD1v1T1 − βD(t)v(t)T(t) + dT1 − dT(t))

− (β1βD1v1T1 − β1βD(t)v(t)T(t) + γD1 − γD(t))
}

=
βvmaxe−d1τ

d + γ
[β1(T(t)− T1)− (D(t)− D1)][β1d(T1 − T(t))− γ(D1 − D(t))]

=−
dβ2

1βvmaxe−d1τ

d + γ
(T(t)− T1)

2 − γβvmaxe−d1τ

d + γ
(D(t)− D1)

2

+ β1βe−d1τvmax(T(t)− T1)(D(t)− D1).

(43)

From (41), (42), and (43), we have for t ≥ 0,

U̇1(t) =−
(

dβ1e−d1τ

T(t)
+

dβ2
1βvmaxe−d1τ

d + γ

)
(T(t)− T1)

2

−
(

γe−d1τ

D(t)
+

γβvmaxe−d1τ

d + γ

)
(D(t)− D1)

2

+ β1βe−d1τ(vmax − v(t))(T(t)− T1)(D(t)− D1)

+ β1 p
(

I1 −
b
q

)
Z(t)− β1βe−d1τ D1v1T1Π(t),

(44)

where

Π(t) = f
(

T1

T(t)

)
+ f

(
D1

D(t)

)
+ f

(
D(t− τ)v(t− τ)T(t− τ)I1

D1v1T1 I(t)

)
+ f

(
I(t)v1

I1v(t)

)
≥ 0.

If condition (H1) holds, then there exists a sufficiently small ε > 0 such that

4
(

d
T0 + ε

+
dβ1βvmax

d + γ

)(
γ

D0 + ε
+

γβvmax

d + γ

)
> β1β2v2

max,

which implies that the matrix

J :=

 dβ1
T0+ε +

dβ2
1βvmax
d+γ − β1βvmax

2

− β1βvmax
2

γ
D0+ε +

γβvmax
d+γ


is positive definite. It follows from Theorem 1 that for the above ε > 0, there exists a
T̂1(ε) > τ such that for t > T̂1(ε),

T(t) < T0 + ε, D(t) < D0 + ε, |vmax − v(t)| < vmax. (45)
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From Lemma 1, (44), and (45), we have for t > T1(ε),

U̇1(t) ≤−
(

dβ1e−d1τ

T0 + ε
+

dβ2
1βvmaxe−d1τ

d + γ

)
(T(t)− T1)

2

−
(

γe−d1τ

D0 + ε
+

γβvmaxe−d1τ

d + γ

)
(D(t)− D1)

2

+ β1βe−d1τvmax|(T(t)− T1)||(D(t)− D1)|
+ β1 pΘ(R1 − 1)Z(t)− β1βe−d1τ D1v1T1Π(t)

=− e−d1τ(|T(t)− T1|, |D(t)− D1|)J
(
|T(t)− T1|
|D(t)− D1|

)
+ β1 pΘ(R1 − 1)Z(t)− β1βe−d1τ D1v1T1Π(t).

(46)

Note that as the matrix J is positive definite and R1 < 1, we have for t > T̂1(ε), U1(t) ≤ 0,
which implies that limt→+∞ U1(t) exists. Moreover, according to Theorem 1 and Lemma 3,
we have that for t ≥ T̂1(ε), Ä(t) is bounded. This implies that U1(t) is uniformly continuous
for t > T̂1(ε). Then, it follows from Barbalat’s lemma [37] that

lim
t→+∞

T(t) = T1, lim
t→+∞

D(t) = D1, lim
t→+∞

Z(t) = 0, lim
t→+∞

I(t)v1

I1v(t)
= 1.

Furthermore, from the first and third equations of model (2), we can obtain limt→+∞ v(t) =
v1 and limt→+∞ I(t) = I1. Thus, the immunity-inactivated equilibrium E1 is globally
attractive.

Remark 2. Assume that τ = 0. Let a ∈ (0, 1), µ3 = min{d, (1− a)d1, c}, and v̂max = λM
aµ3

.
In [14], Tang et al. proved that the set

Ω :=
{
(T, I, v, D) | 0 < T ≤ T0, I ≥ 0, v ≥ 0, 0 < D ≤ D0, T + I +

a
M

v ≤ λ

µ3

}
is attractive and positively invariant with respect to model (1), and the infected equilibrium
(T1, I1, v1, D1) of model (1) is globally asymptotically stable in Ω if R0 > 1 and β1β2λ1λ(v̂max)2 ≤
4d2γ2. By using the Lyapuonv function

Û1(t) =β1T1 f
(

T(t)
T1

)
+ D1 f

(
D(t)
D1

)
+ β1 I1

(
I(t)
I1

)
+

β1

M
v1 f
(

v(t)
v1

)
+

βv̂max

2(d + γ)
[β1(T(t)− T1)− (D(t)− D1)]

2,

the result for the global stability of the infected equilibrium (T1, I1, v1, D1) of model (1) in [14] can
be greatly improved (see Theorem 2 in [14]).

4.3. Global Stability of the Immunity-Activated Equilibrium E∗

Theorem 8. If R1 > 1 and condition (H1) holds, then the immunity-activated equilibrium E∗ of
model (2) is globally asymptotically stable in X3 := {φ ∈ X+ | φi(0) > 0, i = 1, 2, 3, 4, 5}.

Proof. By Theorem 5, we only need to prove that the immunity-activated equilibrium E∗ is
globally attractive. Let (T(t), I(t), v(t), D(t), Z(t))T be the solution of model (2) with any
initial function φ ∈ X3. Clearly, T(t) > 0, I(t) > 0, v(t) > 0, D(t) > 0, and Z(t) > 0 for
t ≥ 0.
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Let U2(t) = W20(t) + W21(t) + W22(t), where

W20(t) =β1e−d1τT∗ f
(

T(t)
T∗

)
+ e−d1τ D∗ f

(
D(t)
D∗

)
+ β1 I∗

(
I(t)
I∗

)
+

β1(d1 + pZ∗)
d1M

v∗ f
(

v(t)
v∗

)
+ β1

p
q

Z∗ f
(

Z(t)
Z∗

)
,

W21(t) =ββ1D∗v∗T∗e−d1τ
∫ t

t−τ
f
(

D(s)v(s)T(s)
D∗v∗T∗

)
ds,

W22(t) =
βvmaxe−d1τ

2(d + γ)
[β1(T(t)− T∗)− (D(t)− D∗)]2.

Calculating the derivative of W20(t) along the solution (T(t), I(t), v(t), D(t), Z(t))T of
model (2), it follows that for t ≥ 0,

Ẇ20(t) =β1e−d1τ

(
1− T∗

T(t)

)
[λ− βD(t)v(t)T(t)− dT(t)]

+e−d1τ

(
1− D∗

D(t)

)
[λ1 − ββ1D(t)v(t)T(t)− γD(t)]

+β1

(
1− I∗

I(t)

)[
βe−d1τ D(t− τ)v(t− τ)T(t− τ)− (d1 + pZ∗)I(t) + p(Z∗ − Z(t))I(t)

]
+

β1(d1 + pZ∗)
d1M

(
1− v∗

v(t)

)
(d1MI(t)− cv(t)) + β1

p
q

(
1− Z∗

Z(t)

)
(qI(t)− b)Z(t).

(47)

From λ = βD∗v∗T∗ + dT∗, λ1 = β1βD∗v∗T∗ + γD∗, I∗ = b
q and (47), we have for t ≥ 0,

Ẇ20(t) =β1e−d1τ

(
1− T∗

T(t)

)
[βD∗v∗T∗ − βD(t)v(t)T(t)− d(T(t)− T∗)]

+ e−d1τ

(
1− D∗

D(t)

)
[ββ1D∗v∗T∗ − ββ1D(t)v(t)T(t)− γ(D(t)− D∗)]

+ β1

(
1− I∗

I(t)

)[
βe−d1τ D(t− τ)v(t− τ)T(t− τ)− (d1 + pZ∗)I(t)

]
+β1 p(I(t)− I∗)(Z∗ − Z(t)) +

β1(d1 + pZ∗)
d1M

(
1− v∗

v(t)

)
(d1MI(t)− cv(t))

+β1
p
q
(Z(t)− Z∗)(qI(t)− qI∗)

=− dβ1e−d1τ

T(t)
(T(t)− T∗)2 − γe−d1τ

D(t)
(D(t)− D∗)2

+ 2β1βe−d1τ(D∗v∗T∗ − D(t)v(t)T(t))

− β1βe−d1τ D∗v∗T∗
T∗

T(t)
+ β1βe−d1τ D(t)v(t)T∗ − ββ1e−d1τ D∗v∗T∗

D∗

D(t)

+ β1βe−d1τ D∗v(t)T(t) + β1βe−d1τ D(t− τ)v(t− τ)T(t− τ)

− β1βe−d1τ I∗

I(t)
D(t− τ)v(t− τ)T(t− τ) + β1(d1 + pZ∗)I∗

− β1(d1 + pZ∗)I(t)
v∗

v(t)
+

β1(d1 + pZ∗)
d1M

cv∗ − β1(d1 + pZ∗)
d1M

cv(t).

(48)

Note that

β1βe−d1τ D∗v∗T∗ = β1(d1 + pZ∗)I∗ =
β1(d1 + pZ∗)

d1M
cv∗,

then we have for t ≥ 0,
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Ẇ20(t) =−
dβ1e−d1τ

T(t)
(T(t)− T∗)2 − γe−d1τ

D(t)
(D(t)− D∗)2

+ β1βe−d1τ D∗v∗T∗
[

4− T∗

T(t)
− D∗

D(t)
− D(t− τ)v(t− τ)T(t− τ)I∗

D∗v∗T∗ I(t)
− I(t)v∗

I∗v(t)

]
− β1βe−d1τ [D(t)T(t) + D∗T∗ − D∗T(t)− D(t)T∗]v(t)

+ β1βe−d1τ(D(t− τ)v(t− τ)T(t− τ)− D(t)v(t)T(t)).

(49)

In calculating the derivative of W21(t) and W22(t) along the solution (T(t), I(t), v(t), D(t), Z(t))T

of model (2), it follows that for t ≥ 0,

Ẇ11(t) =β1βe−d1τ [D(t)v(t)T(t)− D(t− τ)v(t− τ)T(t− τ)]

+β1βe−d1τ D∗v∗T∗ ln
(

D(t− τ)v(t− τ)T(t− τ)

D(t)v(t)T(t)

)
=ββ1e−d1τ [D(t)v(t)T(t)− D(t− τ)v(t− τ)T(t− τ)]

+ ββ1e−d1τ D∗v∗T∗
{

ln
(

T∗

T(t)

)
+ ln

(
D∗

D(t)

)
+ ln

(
D(t− τ)v(t− τ)T(t− τ)I∗

D∗v∗T∗ I(t)

)
+ ln

(
I(t)v∗

I∗v(t)

)}
,

(50)

Ẇ12(t) =
βvmaxe−d1τ

d + γ
[β1(T(t)− T∗)− (D(t)− D∗)]

{
β1(βD∗v∗T∗ − βD(t)v(t)T(t) + dT∗ − dT(t))

−(β1βD∗v∗T∗ − β1βD(t)v(t)T(t) + γD∗ − γD(t))
}

=
βvmaxe−d1τ

d + γ
[β1(T(t)− T∗)− (D(t)− D∗)][β1d(T∗ − T(t))− γ(D∗ − D(t))]

=−
dβ2

1βvmaxe−d1τ

d + γ
(T(t)− T∗)2 − γβvmaxe−d1τ

d + γ
(D(t)− D∗)2

+ β1βe−d1τvmax(T(t)− T∗)(D(t)− D∗).

(51)

From (49), (50), and (51), we have for t ≥ 0,

U̇2(t) =−
(

dβ1e−d1τ

T(t)
+

dβ2
1βvmaxe−d1τ

d + γ

)
(T(t)− T∗)2

−
(

γe−d1τ

D(t)
+

γβvmaxe−d1τ

d + γ

)
(D(t)− D∗)2

+ β1βe−d1τ(vmax − v(t))(T(t)− T∗)(D(t)− D∗)− β1βe−d1τ D∗v∗T∗Π̂(t),

(52)

where

Π̂(t) = f
(

T∗

T(t)

)
+ f

(
D∗

D(t)

)
+ f

(
D(t− τ)v(t− τ)T(t− τ)I∗

D∗v∗T∗ I(t)

)
+ f

(
I(t)v∗

I∗v(t)

)
≥ 0.

We claim that the immunity-inactivated equilibrium E1 is globally attractive if R1 > 1
and condition (H1) holds. The rest of the proof is very similar to the proof of Theorem 7.
We omit the details here to avoid repetition.

5. Numerical Simulations and Conclusions

We present some numerical simulations to illustrate our main theoretical results. Here,
we fix λ = 4, β = 0.0001, d = 0.015, d1 = 0.1, M = 100, p = 0.0025, c = 6.5, λ1 = 1,
β1 = 0.01, b = 0.5, and τ = 1 and change the values of γ and q.
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If we choose q = 0.01 and γ = 0.42, then we have R0 ≈ 0.8838460738 < 1, and
model (2) has an infection-free equilibrium E0 ≈ (266.6666667, 0, 0, 2.380952381, 0). Accord-
ing to Theorem 6, the infection-free equilibrium E0 ≈ (266.6666667, 0, 0, 2.380952381, 0) is
globally asymptotically stable (see Figure 2), and the viral load eventually converges to 0.

If we choose q = 0.01 and γ = 0.16, then we have R0 ≈ 2.320095944 > 1 and
R1 ≈ 0.5444124848 < 1, and the model (2) has two equilibria: the infection-free equi-
librium E0 ≈ (266.6666667, 0, 0, 6.25, 0) and the immunity-inactivated equilibrium E1 ≈
(117.5671563, 20.2366224, 31.13326522, 6.110219209, 0). The calculation shows that condition
(H1) is satisfied. Thus, it follows from Theorem 3 and Theorem 7 that the infection-free
equilibrium E0 ≈ (266.6666667, 0, 0, 6.25, 0) is unstable, the immunity-inactivated equilib-
rium E1 ≈ (117.5671563, 20.2366224, 31.13326522, 6.110219209, 0) is globally asymptotically
stable (see Figure 3), and the viral load eventually converges to v1 ≈ 31.13326522.
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Figure 2. The solution curves of the model (2). Here, the infection-free equilibrium E0 ≈
(266.6666667, 0, 0, 2.380952381, 0) is globally asymptotically stable.

If we choose q = 0.2 and γ = 0.16, then we have R1 ≈ 1.994781846 > 1, and model (2)
has three equilibria: the infection-free equilibrium E0 ≈ (266.6666667, 0, 0, 6.25, 0), the
immunity-inactivated equilibrium E1 ≈ (117.5671563, 20.2366224, 31.13326522, 6.110219209,
0) and the immunity-activated equilibrium E∗ ≈ (230.0089421, 2.5, 3.846153846, 6.215633383,
39.60627404). The calculation shows that condition (H1) is satisfied. Thus, it follows from
Theorems 3, 4, and 8 that the infection-free equilibrium E0 ≈ (266.6666667, 0, 0, 6.25, 0)
and the immunity-inactivated equilibrium E1 ≈ (117.5671563, 20.2366224, 31.13326522,
6.110219209, 0) are unstable, and the immunity-activated equilibrium E∗ ≈ (230.0089421,
2.5, 3.846153846, 6.215633383, 39.60627404) is globally asymptotically stable (see Figure 4),
and the viral load eventually converges to v∗ ≈ 3.846153846 < v1 ≈ 31.13326522.
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Figure 3. The solution curves of the model (2). Here, the immunity-inactivated equilibrium E1 ≈
(117.5671563, 20.2366224, 31.13326522, 6.110219209, 0) is globally asymptotically stable.
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Figure 4. The solution curves of model (2). Here, the immunity-activated equilibrium E∗ ≈
(230.0089421, 2.5, 3.846153846, 6.215633383, 39.60627404) is globally asymptotically stable.

In this paper, we propose a MERS-CoV infection model with CTL immune response
and intracellular delay based on model (1). By analyzing the characteristic equations of the
infection-free equilibrium E0, the immunity-inactivated equilibrium E1, and the immunity-
activated equilibrium E∗ of model (2), we establish the complete results of local stability
for three types of equilibria (see Theorems 3, 4, and 5). The results also show that the
intracellular delay τ does not change the local stability of the equilibria of model (2) (i.e.,
intracellular delay τ is harmless) and do not cause Hopf bifurcation.
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Moreover, we investigated the global properties of model (2). The main results of
this paper improve and extend the main results in [14]. Our main result shows that the
infection-free equilibrium E0 is globally asymptotically stable if the immunity-inactivated
reproduction number

R0 =
e−d1τ βλλ1M

cdγ
≤ 1.

The infection-free equilibrium E0 is globally asymptotically stable, meaning that the viruses
in the host are eventually cleared. Note that R0 is monotonically decreasing with respect
to the delay τ. According to the expression for R0 and the global stability results for the
infection-free equilibrium E0, increasing the intracellular delay τ, reducing the expression
rate λ1 of DPP4, and increasing the hydrolysis rate γ of DPP4 are beneficial for controlling
MERS-CoV infection. By constructing suitable Lyapunov functionals and using Barbalat’s
lemma, we ascertain that if condition (H1) holds, the immunity-inactivated equilibrium
E1 is globally asymptotically stable when R0 > 1 > R1, and the immunity-activated
equilibrium E∗ is globally asymptotically stable when R1 > 1. The immunity-inactivated
equilibrium E1 and immunity-activated equilibrium E∗ are globally asymptotically stable
indicating that the viral load in the host eventually converges to the positive constant values
v1 and v∗, respectively. Condition (H1) in Theorems 7 and 8 is a technical assumption
that may be weakened or even eliminated if more suitable Lyapunov functionals can
be constructed.

Note that the immune-activated reproduction number

R1 =
2qe−d1τ βλλ1M

2qcdγ + bd1[Mβ(λ1 + λβ1) +
√

M2β2(λ1 − λβ1)2 + 4Mβ1βcdγed1τ ]

is positively correlated to the parameter q and

v∗ =
d1Mb

cq

v∗ < v1 =
2Mdγ(R0 − 1)

Mβ(λ1 + λβ1) +
√

M2β2(λ1 − λβ1)2 + 4Mβ1βcdγed1τ


is negatively correlated to the parameter q. If the immunity-inactivated reproduction num-
ber R0 > 1, then it is advantageous to reduce the viral load by increasing the parameter q
such that the immune-activated reproduction number R1 > 1. Therefore, both intracellular
delay τ and CTL immune response play critical roles in controlling MERS-CoV infection.
Our Lemma 3 shows that if the immunity-inactivated reproduction number R0 > 1, the
viruses are persistent in the host. Moreoever, Lemma 3 gives a specific estimate of the
ultimate lower bound on viral load. The result also suggests that the CTL immune response,
while reducing the viral load in the host, does not ultimately clear the virus.
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