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Abstract: We study the dynamics of classical solutions of a two-stage structured population model
with nonlocal dispersal in a spatially heterogeneous environment and address the question of
the persistence of the species. In particular, we show that the species’ persistence is completely
determined by the sign of the principal spectrum point, λp, of the linearized system at the trivial
solution: the species goes extinct if λp ≤ 0, while it persists uniformly in space if λp > 0. Sufficient
conditions are provided to guarantee the existence, uniqueness, and stability of a positive steady
state when the parameters are spatially heterogeneous. Furthermore, when the model parameters are
spatially homogeneous, we show that the unique positive equilibrium is globally stable with respect
to positive perturbations.
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1. Introduction

In this work, we study the dynamics of solutions of the nonlocal system of partial
differential equations (PDE){

∂tu1 = µ1
∫

Ω κ(x, y)(u1(t, y)− u1(t, x))dy + ru2 − su1 − (a + bu1 + τcu2)u1 x ∈ Ω, t > 0,
∂tu2 = µ2

∫
Ω κ(x, y)(u2(t, y)− u2(t, x))dy + su1 − (e + f u2 + τgu1)u2 x ∈ Ω, t > 0,

(1)

where u(t, x) = (u1(t, x), u2(t, x)) represents the density function of a single species struc-
tured into two stages (juveniles and adults) and living in a bounded habitat Ω ⊂ Rn:
u1(t, x) denotes the density function of the juveniles and u2(t, x) that of the adults who
have reached reproductive maturity age. The adults have local reproductive rate r(x) and
the juveniles attain reproductive maturity at the rate s(x). The juveniles have local death
rate a(x) and self-limitation rate b(x) due to their size in space. The adults have a local
death rate e(x) and local self-limitation rate f (x) induced by their size. Due to the inter-
action between the adults and the juveniles, there may exist an interspecific competition
for local resources. Then, we denote by τc(x) and τg(x) the interspecific local competi-
tion rates of the adults and juveniles, respectively. Here, τ is a non-negative number and
measures the strength of the interspecific competition. See Figure 1 below for a schematic
illustration of the model. Throughout this work, we shall suppose that the kernel function
κ is uniformly continuous, positive, and symmetric, i.e., κ(x, y) = κ(y, x) > 0 for every
x, y ∈ Ω. Furthermore, we suppose that the parameters of system (1) satisfy the following
standing hypothesis.

Hypothesis 1. The functions a, b, c, e, f , g, r, and s are Hölder continuous on Ω and non-negative,
r and s are non-identically zero, and b and f are strictly positive.
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Figure 1. Illustrative diagram of the dynamics of a population structured in two stages, where u1 is
the density of the juveniles and u2 is the density of the adults.

System (1) is the nonlocal dispersal counterpart of the following population system
with random (local) dispersal and Neumann boundary conditions

∂tu1 = µ1∆u1 + ru2 − su1 − (a + bu1 + τcu2)u1 x ∈ Ω, t > 0,
∂tu2 = µ2∆u2 + su1 − (e + f u2 + τgu1)u2 x ∈ Ω, t > 0,
∇u1 · ν = ∇u2 · ν = 0 on ∂Ω, t > 0,

(2)

where ν is the outward unit normal to ∂Ω. The parameters of system (2) have the same
meaning as those of system (1). The models (1) and (2) describe the population dynamics of
a dispersing species structured into two-stage subpopulations. The authors in [1,2] studied
the model (2) as a problem in optimal control. Most studies on population models typically
investigate different species competing for shared resources under the assumption that
each species has similar characteristics among its kind. However, it is natural for species
to involve individuals at different maturity stages who exhibit varying characteristics
which significantly influence their survival or extinction. Consequently, several authors
have studied the population dynamics of stage-structured species with a random dispersal
mechanism (see for example [1–7] and the references therein). Typically, their analysis
on the dynamics of the system depends on the sign of the principal eigenvalue of the
linearization of the system at the zero solution. In particular, it was shown in [3] that when
b = τc and f = τg are positive constants, system (2) has a positive steady state if and only
if the principal eigenvalue of its linearization at the zero solution is positive.

For unstructured population models for which species dispersal is modeled by pure
diffusion, it is known that slow diffusion is advantageous for species’ survival (see [8–11]
and the references therein). Recently, in [4], the authors examined the influence of diffusion
rates on the persistence and extinction of the stage-structured model with random disper-
sal (2). Their theoretical results indicated that the persistence and extinction of the species
depend on the spatial distribution of favorable habitats for the different subpopulations.
Essentially, if the regions where adults can reproduce are the same as those where juve-
niles can mature, typically slow diffusion guarantees persistence, but if those regions are
separated, then faster diffusion may be advantageous for the species’ survival.

It is typical to assume that a species’ dispersal is governed by random walking between
adjacent spatial locations. Such an assumption give rise to local dispersal models such as (2).
However, some organisms can move between non-adjacent spatial locations, exhibiting
long-range dispersal. Nonlocal dispersal equations of the form (1) have been employed to
model the population dynamics of such species (see [12–17]). For the nonlocal dispersal
operator

∫
Ω κ(x, y)(ui(t, y) − ui(t, x))dy in (1), κ(x, y) is a probability density function

that gives the probability of jumping from location y to x. Thus, since ui(t, x) gives the
population density at time t and location x,

∫
Ω κ(x, y)ui(t, y)dy gives the rate at which
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individuals from other places arrive at location x and −
∫

Ω κ(x, y)ui(t, x)dy gives the rate
at which they leave location x.

Typical examples of such kernel function include the probability density function of
the normal distribution

κ(x, y) = κ(x− y) =
1√
(2π)n

e−
|x−y|2

2 x, y ∈ Rn.

In [16], the authors established the relationship between such random dispersal equations
such as (2) with Neumann boundary conditions and the nonlocal dispersal Equation (1).
Hence, Equation (1) can be said to have a Neumann-type boundary condition. The tech-
niques developed in the current work hold for general kernel functions having singularities
at x = y. Depending on the strength of the singularity in the later types of kernels at x = y,
they can be used to approximate solutions of fractional Laplacian operators (see [16,18–21]
and the references therein ).

Our goal in this study is to examine to what extent the results obtained for model (2)
extend to (1); hence, we study the dynamics of the model (1). Our analysis is based on
the spectral bound of the linearization of the model (1) at the zero solution. Our results
show that the principal spectrum point (see Definition 2 below) completely determines
the persistence or extinction of the species modeled by (1) in the sense that the species die
out if the principal spectrum point is nonpositive, but persist uniformly in time when it is
positive (see Theorem 1). When persistence occurs, it is appropriate to examine the existence
of a strictly positive steady state for the model and its stability with respect to positive
perturbations. Understandably, such a steady state depends on the interaction magnitude
τ. In the case of a spatially homogeneous environment, our studies show that for any τ ≥ 0,
the system (1) has a unique positive steady state which attracts every positive solution
(see Theorem 2). It is pertinent to mention that due to the lack of compactness induced
by the nonlocal operators, the analysis of nonlocal dispersal systems pose extra challenge
than their local dispersal counterparts. Nevertheless, for the spatially heterogeneous
environment, we obtained sufficient conditions for the existence, uniqueness and local
stability of a positive stationary solution of (1) when τ > 0 (see Theorems 3 and 4). Given
that the persistence of the species modeled by (1) depends on the sign of the principal
spectrum point, we established some criteria on the model parameters for the positivity or
otherwise of the principal spectrum point. Thus, Theorem 5 provides sufficient conditions
on the parameters for the persistence or extinction of the species.

The rest of the paper is organized as follows. Section 2 contains notations, definitions,
and the main results. In Section 3, we provide a brief discussion of our theoretical results on
model (1), compare them to some related results on model (2), and highlight some future
directions. The proof of our main results are presented in Appendices A–C.

2. Notations, Definitions and Main Results
2.1. Notations and Definitions

Before stating our main results on the classical solutions of (1), we first introduce a few
notations and definitions. Let X := C(Ω) denote the Banach space of uniformly continuous
and bounded functions on Ω endowed with the sup-norm; ‖u‖∞ = sup

x∈Ω
|u(x)| for every

u ∈ X. Since the density functions are non-negative, we will be interested in the following
subsets of X:

X+ = {u ∈ X | u(x) ≥ 0, x ∈ Ω̄},

and
X++ = {u ∈ X+ | inf

x∈Ω̄
u(x) > 0}.

We shall use bold-face letters to represent vectors. In particular, we use u = (u1, u2) to
denote vectors in R2. For convenience, we also use u = (u1, u2) for elements of X × X.
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Hence, any vector in R2 can be understood as a constant vector valued function on Ω; this
would not cause any confusion in the paper. We endow X× X with the norm

‖u‖ := max{‖u1‖∞, ‖u2‖∞} ∀ u = (u1, u2) ∈ X× X.

Hence, X× X is also a Banach space. Given a function l ∈ X, we set

lmin := min
x∈Ω

l(x) and lmax = max
x∈Ω

l(x).

We consider the following ordering in X× X :

u ≤1 v if vi − ui ∈ X+, i = 1, 2 and u <1 v if vi − ui ∈ X++, i = 1, 2. (3)

We adopt the following definition for classical solutions of (1).

Definition 1. Let τ ≥ 0, u0 = (u1,0, u2,0) ∈ X+ × X+ and T ∈ (0, ∞]. We say that a function
u(·, ·; τ, u0) ∈ C([0, T)×Ω) is a classical solution of (1) with initial data u0 if it is continuously
differentiable with respect to t on [0, T), satisfies (1) in the classical sense, u(t, ·; τ, u0) ∈ X+ × X+

for every t ∈ [0, T) and
lim

t→0+
‖u(t, ·; τ, u0)− u0‖ = 0.

When T = ∞, we say that the classical solution u(·, ·; τ, u0) is globally defined in time.

Thanks to the type of nonlinearity in (1), the following result on the existence and
uniqueness of classical solutions of system (1) follows from standard arguments from
the literature on semigroup theory and positivity of semigroup generated by nonlocal
operators [22,23].

Proposition 1. Let τ ≥ 0. Given any initial data u0 ∈ X+ × X+, there is a unique corresponding
global and bounded classical solution u(t, ·; τ, u0). Moreover, if u0 is not identically null, then
u(t, ·; τ, u0) ∈ X++ × X++ for all t > 0.

It is clear that the null function 0 ≡ (0, 0), called the trivial solution, is an equilibrium
solution of (1). To study the stability of the trivial solution, the sign of the "principal
spectrum point" of the linearization of model (1) at 0 will be essential. For convenience, we
first recall the following definition.

Definition 2 (Principal spectrum point). Let E be a Banach space and B : dom(B) → E be a
linear map where dom(B) is a linear subspace of E. Let σ(B) denote the spectrum of B. The principal
spectrum point (PSP) of B, denoted by λp(B), is defined as

λp(B) :=

{
sup{Re(λ) : λ ∈ σ(B)} if σ(B) 6= ∅,
−∞ if σ(B) = ∅.

For our purpose in the current work, the Banach space in Definition 2 will be either
E = X or E = X× X, while the linear operator B will always be a bounded linear map on
E. Hence, in the current work, σ(B) will always be nonempty and bounded, so that the
PSP λp(B) is a real number.

Given h ∈ X, consider the bounded linear operators K, I , hI : X → X

Ku(x) =
∫

Ω
κ(x, y)(u(y)− u(x))dy ∀ u ∈ X, x ∈ Ω, (4)

Iu(x) = u(x) ∀ u ∈ X, x ∈ Ω, (5)
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and
(hI)u(x) = h(x)u(x) ∀ u ∈ X, x ∈ Ω. (6)

Next, given a bounded linear operator B on X and a real vector z = (z1, z2) ∈ R2, we
denote by z ◦ B the bounded linear operator on X× X given by

z ◦ Bu =

(
z1Bu1
z2Bu2

)
∀ u ∈ X× X. (7)

For convenience, set

A(x) =
(
−(a(x) + s(x)) r(x)

s(x) −e(x)

)
∀x ∈ Ω, (8)

and define the bounded linear operator A : X× X → X× X,

(Au)(x) = A(x)u(x) =
(

r(x)u2(x)− (a(x) + s(x))u1(x)
s(x)u1(x)− e(x)u2(x)

)
∀ u ∈ X× X, x ∈ Ω. (9)

Note that by the Perron–Frobenius theorem, for every x ∈ Ω, the cooperative matrix A(x)
has a maximal eigenvalue, which we shall denote by Λ(x).

2.2. Main-Results

We state our main results in the current subsection. Our first result is on the global
stability of the trivial solution 0.

Theorem 1. Let τ ≥ 0 and λp(µ ◦ K+A) be the PSP of the bounded linear map µ ◦ K+A. Let
u(·, ·; τ, u0) be a classical solution of (1) with a positive initial data u0 ∈ X+ × X+ \ {0}.
(i) If λp(µ ◦ K+A) < 0, then for every ξ ∈ (0, 1), there is tξ > 0, independent of initial data

and τ such that
‖u(t, ·; τ, u0)‖ ≤ etξλp(µ◦K+A)‖u0‖, ∀ t > tξ . (10)

(ii) If λp(µ ◦ K+A) = 0, then

lim
t→∞

sup
τ≥0
‖u(t, ·; τ, u0)‖ = 0. (11)

(iii) If λp(µ ◦ K+A) > 0, then there is η∗ > 0, independent of initial data, such that

lim sup
t→∞

‖u(t, ·; τ, u0)‖ ≥ η∗. (12)

Furthermore if r ∈ X++ and s ∈ X++, then there is η∗ > 0 which depends on the initial data
u0 and τ, such that

ui(t, x; τ, u0) ≥ η∗, t ≥ 1, x ∈ Ω, i = 1, 2. (13)

It follows from Theorem 1 that the sign of λp(µ ◦ K+A) determines completely the
persistence of the species. Indeed, if λp(µ ◦ K+A) ≤ 0, then by Theorem 1 (i)–(ii), every
classical solution eventually goes extinct in the long run uniformly in space. However,
if λp(µ ◦ K+A) > 0, then the species persists uniformly in the sense of (13). It is important
to note that λp(µ ◦ K+A) is independent of the non-negative parameter τ ≥ 0. Hence,
the persistence or extinction of the species is independent of the magnitude of τ.

A natural quest is to understand the long-time behavior of classical solutions of (1)
when λp(µ ◦ K+A) > 0. In particular, we are interested in whether (1) has a stable steady-
state solution which attracts all positive solutions whenever λp(µ ◦ K +A) > 0. In this
direction, when all the parameters are independent of x, our next result shows that (1) has a
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unique positive equilibrium point which attracts every classical solution. More specifically,
the following result holds.

Theorem 2. Suppose that λp(µ ◦ K+A) > 0 and a, b, c, e, f , r, and s are spatially homogeneous.
Then for every τ ≥ 0, (1) has a unique constant positive steady-state solution uτ . Moreover, given
any positive initial data u0, u(t, ·; τ, u0) converges to uτ as t tends to infinity in the sense that

lim
t→∞
‖u(t, ·; τ, u0)− uτ‖ = 0. (14)

Thanks to Theorems 1 and 2, the global dynamics of classical solutions of system (1) are
well understood when the parameters in the model are spatially homogeneous. However,
when these parameters depend on x and λp(µ ◦ K+A) > 0, the existence and uniqueness
of a positive steady state remain unclear. This is due to the lack of compactness induced by
the nonlocal operators used to describe the dispersal modes of the species and the fact that
the flow of classical solutions induced by (1) is not monotone when τ > 0.

When the parameters depend on x and τ = 0, system (1) is cooperative, and some
standard methods, based on the theory of monotone dynamical systems from the literature,
can be employed to study the global dynamics of the classical solutions (see [24]). Our next
result provides some sufficient conditions, which guarantees the existence, uniqueness,
and local stability of a positive steady state of system (1) when τ > 0. In the next two
results, we suppose that the parameter functions depend on the variable x.

Theorem 3. (i) Let µ > 0 such that λp(µ ◦ K +A) > 0. Then there is τ∗ ∈ (0, ∞] such
that for every τ ∈ [0, τ∗), (1) has a unique positive steady state solution uτ ∈ X++ × X++.
Moreover, for every τ ∈ [0, τ∗), uτ is linearly stable.

(ii) If Λmin > 0, then for every τ > 0, there is µτ > 0 such that for every diffusion rate
µ = (µ1, µ2) satisfying 0 < µi < µτ , (1) has a unique positive steady state solution
uµ,τ ∈ X++ × X++. Furthermore, uµ,τ is linearly stable.

For each µ for which λp(µ ◦ K+A) > 0, Theorem 3 (i) shows that system (1) has a
unique and linearly stable positive steady state for every τ ∈ [0, τ∗). Note from Theorem 2
that τ∗ = ∞ when the parameters are spatially homogeneous. In general, when the
parameters depend on the spatial variable, it is unclear whether τ∗ = ∞. Our next result is
concerned with the global stability of the positive steady state given by Theorem 3.

Theorem 4. Suppose that λp(µ ◦ K+A) > 0. The following conclusions hold.

(i) If τ = 0, then the unique strictly positive steady state u0 of (1) is globally stable with respect
to positive perturbations in the sense of (14).

(ii) If rmin > 0 and smin > 0, then there is τ∗∗ ∈ (0, τ∗], where τ∗ is given by Theorem 3 (i) such
that for every τ ∈ [0, τ∗∗) the unique positive steady state uτ of (1) is globally stable with
respect to positive perturbations in the sense of (14).

Next, we examine some sufficient conditions on the spatial heterogeneity of model (1)
to determine the sign of λp(µ ◦ K+A) for any diffusion rate µ = (µ1, µ2). First, note that
λp(µ ◦ K+A) is independent of the diffusion rate µ when all the parameters are spatially
homogeneous. In this case, λp(µ ◦K+A) equals the maximal eigenvalue of the cooperative
matrix A. In general, when the parameters depend on the space variable x, λp(µ ◦ K+A)
may not be an eigenvalue (see [25,26] for examples). Moreover, in such a case, there is
no explicit variational characterization formula for λp(µ ◦ K+A). From the application
viewpoint, it is of particular importance to find sufficient conditions to determine the sign
of λp(µ ◦ K+A). Inspired by the results in [4], we have the following result.

Theorem 5. Suppose that (a + s)min > 0 and emin > 0.
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(i) If either
( s

e
)

max

( r
s+a
)

max < 1 or
(

4(r+s)2

e(a+s)

)
max

< 1 , then λp(µ ◦ K +A) < 0 for any

diffusion rate µ = (µ1, µ2).
(ii) If either

( s
e
)

min

( r
s+a
)

min > 1 or
∫

Ω
√

rs > 1
2

∫
Ω(a + s + e), then λp(µ ◦ K+A) > 0 for

any diffusion rate µ = (µ1, µ2).

Theorem 5 provides sufficient hypotheses on the parameters which guarantee that the
sign of λp(µ ◦ K+A) is independent of the diffusion rate µ of the species. Note that, when
the parameters are spatially homogeneous, Λ := Λ(x) is independent of µ and Λ > 0 if
sr > (a + s)e, Λ = 0 if rs = (a + s)e, and Λ < 0 if rs < (a + s). Hence, the first assumption
in Theorem 5 (i) and (ii) are consistent with that of the ODE model. Next, observe that
s
e (resp. r

s+a ) is the ratio of the growth rate to the self-limitation rate of the adults (resp.
juveniles). Hence, on one hand, Theorem 5 (i) indicates that if the product of the maximum
of these ratios is smaller than one, then species cannot survive and will go extinct in the long
run irrespective of the diffusion rate. On the other hand, if the product of the minimum of
these ratios is greater than one, Theorem 5 (ii) indicates that the species will always persist
uniformly in space for any diffusion rate.

3. Conclusions and Future Directions

In this study , we examined the dynamics of classical solutions of a population adopt-
ing a long-range dispersal migration and structured in two stages, juveniles and adults.
In particular, we addressed the question of the persistence of the species. In this direction,
Theorem 1 indicates that the sign of the principal spectrum point λp of the linearization of
system (1) at the trivial solution completely determines the species’ persistence or extinc-
tion. More precisely, if λp ≤ 0, the species eventually goes extinct uniformly in space while
it persists uniformly in space if λp > 0. This result agrees with the dynamics of classical
solutions of model (2) where a random local dispersal is used to describe the evolution
of the species. Indeed, Cantrell, Cosner, and Martinez (Lemma 2 in [4]) showed that if
the principal eigenvalue, λeig,p, of the linearization of system (2) at the trivial solution is
positive, then the species persists uniformly in space while it goes extinct otherwise. Note
that the analyses of system (2) rely largely on the compactness of its solution operator;
however, the semiflow generated by classical solutions of (1) is not compact. Consequently,
λp might not be an eigenvalue. This lack of compactness of the semiflow generated by
classical solutions of system (1) induces some difficulties, and several techniques developed
for system (2) cannot be applied to system (1).

When λp > 0 and the environment is homogeneous, Theorem 2 shows that the species
eventually stabilize in the long run at the unique stationary equilibrium solution. Our
proof of this result relies on constructing a delicate Lyapunov function (see Lemma A3).
This Lyapunov function is concave and can also be used to obtain the global stability of
classical solutions of system (2) and the corresponding kinetic model. It is important to
note that Bouguima and Mehlia (Theorem 2.1 in [27]) used the Poincaré–Bendixon theory
to conclude the uniqueness and global stability of the unique stationary equilibrium for the
kinetic model. However, this method is only suitable for the ODE model.

When the environment is heterogeneous, and λp > 0 under suitable smallest as-
sumption on the interspecific competitions terms between the juveniles and the adults,
Theorems 3 and 4 guaranteed the existence and stability of a positive steady state solution
of system (1). It would be of great interest to know whether (1) always has a unique and
globally stable positive steady state solution whenever λp > 0. This question also remains
open for system (2). In this direction, for system (2) and when λeig,p > 0, it is important to
note that Brown and Zhang (Theorem 3.2 in [3]) established the existence of at least one
positive steady state, Bouguima and Mehlia (Propositision 6.1 in [27]) obtained a sufficient
condition of the initial data which guarantee the global stability of the unique positive
steady state solution, and Cantrell, Cosner, and Martinez (Lemma 3 in [4]) conclude the
global stability of the positive steady solution if τ is sufficiently small.
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There are several important prospects to consider in future studies on the dynamics
of solutions of (1).

(i) Effect of dispersal rates on λp. The necessary and sufficient condition for persistence
is the positivity of λp. Unlike the case of unstructured single species and local reaction
diffusion equation, there is no explicit formula for λp. This makes the study of λp
with respect to the diffusion rates difficult. However, in several instances, juveniles
do not move or move very slowly whereas adults have a high movement rate. This
is the case for some species of birds. Hence, it is of great biological interest to study
the asymptotic behavior of λp when one of the diffusion rates is small while the other
is large.

(ii) Global stability of positive steady states. Understanding the long-time behavior of
classical solutions of model (1) is essential since it helps to provide some accurate
prediction on the future of the species. In the current work, we completely settled this
question in the case of a homogeneous environment or the smallest assumption on τ.
Further efforts are needed for the case of arbitrary τ > 0.

(iii) Asymptotic profile of positive steady states with respect to diffusion rates. When
species persist and eventually stabilize, from an ecological viewpoint, it is important
to know the spatial distribution of the species. This would be determined by the
influence of the diffusion rates on the steady states. In this direction, we hope that
future works would explore the dependence of positive steady-state solutions of
system (1) on the diffusion rates.

(iv) Effect of temporal heterogeneity on the dynamics of (1). An important fact not
considered in our study is the effect of temporal heterogeneity on the dynamics of
solutions of model (1). It would be of important biological interest to study the
dynamics of solutions of (1) in time-periodic environments.

Author Contributions: Conceptualization, methodology, formal analysis, writing—original draft
preparation, writing—review and editing, visualization, M.A.O., R.B.S., M.O.U., C.I.U. All authors
have read and agreed to the published version of the manuscript.

Funding: C. I. U. acknowledges the support of the Slovak Research and Development Agency under
the project APVV-20-0311.

Data Availability Statement: Not applicable.

Acknowledgments: The authors appreciate Daniel Ševčovič for making helpful suggestions. They
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Appendix A. Proof of Theorem 1

For convenience, we first present some preliminary results to be used in the proofs of
our main results in the subsequent sections. Linearizing (1) at the trivial solution gives{

∂tU1 = µ1K(U1) + rU2 − (a + s)U1 x ∈ Ω,
∂tU2 = µ2K(U2) + sU1 − eU2 x ∈ Ω.

(A1)

Note that (A1) can be rewritten as

dU
dt

= µ ◦ K(U) +AU t > 0. (A2)

Let {Uµ(t)}t≥0 denote the uniformly continuous semigroup generated by the bounded
linear operator µ ◦ K+A on X × X. Hence, for every U0 ∈ X × X, U(t, U0) := Uµ(t)U0
is the unique solution of (A2), equivalently (A1), with initial data U0. Since A(x) is
cooperative for each x ∈ Ω, the uniformly continuous semigroup {Uµ(t)}t≥0 is strongly
positive, in the sense that
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Uµ(t)(X+ × X+) ⊂ X+ × X+ and Uµ(t)((X+ × X+) \ {0}) ⊂ X++ × X++ ∀ t > 0. (A3)

Define the nonlinear continuous function F : [0, ∞)× X× X → X× X,

F (τ, u) =
(
−bu1 − τcu2
− f u2 − τgu1

)
◦ u ∀ u ∈ X× X, τ ≥ 0. (A4)

Hence, the nonlocal PDE (1) can be rewritten in the compact form

∂tu(t, ·) = (µ ◦ K+A)u(t, ·) +F (τ, u(t, ·)) ∀ t > 0. (A5)

Therefore, by the variation of constants formula, for a given initial data u0, if u(t, ·; τ, u0)
exists on a time interval [0, T) for some T > 0, then it can be rewritten as

u(t, ·) = Uµ(t)u0 +
∫ t

0
Uµ(t− η)F (τ, u(η, ·; τ, u0))dη ∀ t ∈ [0, T). (A6)

The following result shows that the principal spectrum point λp(µ ◦ K +A) equals the
exponential growth bound of the uniformly continuous semigroup {Uµ(t)}t≥0. This
result turns out to be of particular importance in the arguments used to prove some our
main results.

Proposition A1. λp(µ ◦ K+A) ∈ σ(µ ◦ K+A) and

λp(µ ◦ K+A) = lim
t→∞

ln(‖Uµ(t)‖)
t

. (A7)

Proof. Since {Uµ(t)}t≥0 is a uniformly continuous semigroup, (A7) follows from
(Chapter IV, Proposition 2.2 and Corollary 2.4 in [28]). Furthermore, since λp(µ ◦ K+A)
is a finite number and the uniformly continuous semigroup {Uµ(t)}t≥1 is positive, then
λp(µ ◦ K+A) ∈ σ(µ ◦ K+A) by (Chapter 6, Theorem 2.10 in [28]).

Let {etK}t≥0 denote the uniformly continuous semigroup of bounded linear operators
generated by the bounded linear operator K on X. This means that given any u0 ∈ X,
u(t, x; u0) := (etKu0)(x) is the unique solution of{

∂tu = Ku(t, x) x ∈ Ω̄,
u(0, ·) = u0(x) x ∈ Ω̄.

(A8)

By the comparison principle for linear nonlocal operators, {etK}t≥0 is strongly monotone,
in the sense that

etKu < etKv for all t > 0 whenever u ≤, 6= v, u, v ∈ X. (A9)

Finally, we introduce the function

K(x) =
∫

Ω
κ(x, y)dy ∀ x ∈ Ω.

Note that K ∈ X++.
Now, observe that when τ = 0 in (1), it reduces to the following cooperative system{

∂tu1 = µ1Ku1 + ru2 − su1 − (a + bu1)u1 x ∈ Ω, t > 0,
∂tu2 = µ2Ku2 + su1 − (e + f u2)u2 x ∈ Ω, t > 0.

(A10)
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Choose a positive constant vector M = (M1, M2) such that

A(M) +F (0, M)(x) = A(x)M−
(

b(x)M2
1

f (x)M2
2

)
<1 0 ∀ x ∈ Ω. (A11)

Then, u0(x) ≡ M is a supper solution of (A10), which implies that the unique classical
solution u(t, ·; 0, M) of system (A10), equivalently of (1) with τ = 0, with initial data M
decreases over time. Let

u∗(x; 0, M) = lim
t→∞

u(t, x; 0, M) ∀ x ∈ Ω. (A12)

The following result holds.

Lemma A1. Let u∗(x; 0, M) be defined by (A12). Then u∗(·; 0, M) ∈ X+ × X+ and is a steady
state solution of (A10). Moreover, if λp(µ ◦ K + A) ≤ 0, then u∗(·; 0, M) ≡ 0. However,
if λp(µ ◦ K +A) > 0, then u∗(·; 0, M) ∈ X++ × X++ and is the unique positive steady state
solution of (A10).

Proof. Step 1. We first show that u∗ := u∗(·; 0, M) is a steady state solution of (A10).
To do this, we observe that u(t, x) := u(t, x; 0, M) is a solution to (A10) with initial M;
therefore, {

∂tu1(t, x) = µ1Ku1 + ru2(t, x)− (a + s + bu1(t, x))u1(t, x)
∂tu2(t, x) = µ2Ku2 + su1(t, x)− (e + f u2(t, x))u2(t, x).

Observe that, for each x ∈ Ω,

u1(t + 1, x)− u1(t, x) =
∫ 1

0
∂tu1(t + η, x)dη

=
∫ 1

0
(µ1Ku1(t, x) + ru2(t, x)− su1(t, x)− (a + bu1(t, x)u1(t, x))dη

Taking the limit of both sides, using the dominated convergence theorem yields

0 =
∫ 1

0
(µ1Ku∗1(x) + ru∗2(x)− (a + s + bu∗1(x))u∗1(x))dη ∀ x ∈ Ω,

which implies that

0 = µ1

∫
Ω

κ(x, y)(u∗1(y)− u∗1(x))dy + ru∗2(x)− (a + s + bu∗1(x))u∗1(x) ∀ x ∈ Ω.

Similar arguments can be applied to the second equation of (A10) to show that

0 = µ2

∫
Ω

κ(x, y)(u∗2(y)− u∗2(x))dy + s(x)u∗1(x)− (e(x) + f (x)u∗2(x))u∗2(x) ∀ x ∈ Ω.

Hence, u∗ is a steady state solution of (A12).

Step 2. We show that this limit function is continuous, i.e., u∗ ∈ X+ × X+. First note that
u∗ satisfies{

0 = r(x)u∗2(x)− (a(x) + s(x) + µ1K(x) + b(x)u∗1(x))u∗1(x) + µ1K∗1(x) x ∈ Ω,
0 = s(x)u∗1(x)− (e(x) + µ2K(x) + f (x)u∗2(x))u∗2(x) + µ2K∗2(x) x ∈ Ω

(A13)

where
K∗i (x) =

∫
Ω

κ(x, y)u∗i (y)dy ∀ x ∈ Ω, i = 1, 2.
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Now, we distinguish two cases.

Case 1. In this case, we suppose that there is some x0 ∈ Ω and i ∈ {1, 2} such that
u∗i (x0) = 0. Without loss of generality, we suppose that i = 1. Then, from the first equation
of (A13), we obtain that

r(x0)u∗2(x0) = 0 and µ1K∗1(x0) = 0, (A14)

since ru∗2 ≥ 0 and µ1K∗1 ≥ 0 on Ω. It then follows from the formula for K∗1 , the positivity
of the kernel κ, and the fact that u∗1 ≥ 0 on Ω and measurable, that u∗1 equals zero almost
everywhere on Ω and K∗1 ≡ 0. Consequently, we obtain from the first equation of (A13)
that ru∗2 = 0 almost everywhere on Ω. Thus, by multiplying the second equation of (A13)
by r and using the fact that u∗1 = 0 almost everywhere on Ω, we obtain that

r(x)K∗2(x) = 0 almost everywhere on Ω,

from which we deduce that K∗2(x1) = 0 for some x1 ∈ Ω because r > 0 on a set of positive
measure. Whence, as above, we also obtain that u∗2 = 0 almost everywhere on Ω and
K∗2 ≡ 0. Let

Ni := {x ∈ Ω : u∗i (x) > 0}.

Since K∗i ≡ 0 for every i = 1, 2 and K > 0 on Ω, we then obtain from (A13) and the fact that
u∗i = 0 almost everywhere on Ω, that

N := N1 = N2 ⊂ {x ∈ Ω : s(x) > 0} ∩ {x ∈ Ω : r(x) > 0} and |N | = 0.

Now, we claim that N = ∅. To this end, we assume that N 6= ∅. Let ã, b̃, ẽ, f̃ , r̃, and s̃ be
Hölder continuous functions which extend the functions a, b, c, e, f , r, and s on some
open neighborhood, Ω̃, of Ω, respectively. Consider the function F̃ : Ω̃×R2 → R2 by

F̃(x, u) = (F̃1(x, u), F̃2(x, u))

where
F̃1 = r̃(x)u2 − (ã(x) + s̃(x) + µ1K(x) + b̃(x)u1)u1 + µ1K∗1(x)

and
F̃2 = s̃(x)u1 − (ẽ(x) + µ2K(x) + f̃ (x)u2(x))u2 + µ2K∗2(x).

Clearly, F̃ is Hölder continuous in x ∈ Ω̃ locally uniformly for u and of class C∞ in u ∈ R2.
Calculating the Jacobian of F̃ at u yields

∂F̃
∂u

(x, u) =

−(ã(x) + s̃(x) + µ1K(x) + 2b̃(x)u1

)
r̃(x)

s̃(x) −
(

ẽ(x) + µ2K(x) + 2 f̃ (x)u2

)
Evaluating the determinant of ∂F̃

∂u at (x∗, u∗(x∗)) for x∗ ∈ N , we obtain

det
( ∂F̃

∂u
(x∗, u(x∗))

)
=
(

a(x∗) + s(x∗) + µ1K(x∗) + 2b(x∗)u∗1(x∗)
)(

e(x∗) + µ2K(x∗) + 2 f (x∗)u∗2(x∗)
)
− r(x∗)s(x∗).

In this case, we observe that (A13) yields

(a(x∗) + s(x∗) + µ1K(x∗) + b(x∗)u∗1(x∗)) = r(x∗)
u∗2(x∗)
u∗1(x∗)
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and

(e(x∗) + µ2K(x∗) + f (x)u∗2(x∗)) = s(x∗)
u∗1(x∗)
u∗2(x∗)

Therefore, the above determinant becomes

det
( ∂F̃

∂u
(x∗, u(x∗))

)
=(

r(x∗)
u∗2(x∗)
u∗1(x∗)

+ b(x∗)u∗1(x∗)
)(

s(x∗)
u∗1(x∗)
u∗2(x∗)

+ f (x∗)u∗2(x∗)
)
− r(x∗)s(x∗) > 0.

Hence, by the implicit function theorem (Theorem 1.1 in [29]), there exist open neighbor-
hoods O ⊂ Ω̃ of x∗ and U ⊂ R2 of u(x∗), and a continuous function ũ : O → U such that
for every x ∈ O, the algebraic equation F̃(x, u) = 0 has a solution if and only if u = ũ(x).
Therefore, u∗(x) = ũ(x) for all x ∈ Ω ∩O. Moreover, by the continuity of ũ at x∗ and the
fact that min{u∗1(x∗), u∗2(x)} > 0, there is an open neighborhood Õ ⊂⊂ O of x∗ such that
η∗ := min

x∈Õ{ũ1(x), ũ2(x)} > 0. In particular,

min{u∗1(x), u∗2(x)} ≥ η∗ ∀ x ∈ Õ ∩Ω,

which implies that Õ ∩Ω ⊂ N . Hence, 0 < |Õ ∩Ω| ≤ |N |, which gives a contradiction.
Therefore, N = ∅. Therefore, we obtain here that u∗ ≡ 0 ∈ X+ × X+.

Case 2. Suppose here that u∗i (x) > 0 for every x ∈ Ω. We show that u∗ ∈ X+ × X+.
Consider again the function F̃ defined above. This time, for every x ∈ Ω, we have

det
( ∂F̃

∂u
(x, u∗(x))

)
=
(

r(x)
u∗2(x)
u∗1(x)

+ µ1
K∗1(x)
u∗1(x)

+ b(x∗)u∗1(x)
)(

s(x)
u∗1(x)
u∗2(x)

+ µ2
K∗2(x)
u∗2(x)

+ f (x)u∗2(x)
)
− r(x)s(x)

>0.

Hence, it follows from the implicit function theorem (Theorem 1.1 in [29]) that the continu-
ous function ũ exists on Ω as in the previous case and that u∗ = ũ on Ω. Therefore, u∗ is
continuous on Ω.

From cases 1 and 2 above, we have that u∗ ∈ X+ × X+.

Step 3. Suppose that λp(µ ◦ K, A) ≤ 0; we show that u∗ ≡ 0. From the above, we
have that either u∗ ≡ 0 or 0 <1 u∗. Suppose, for contradiction, that 0 <1 u∗. We
observe that since u∗ is a steady state solution of (A10) and (H) holds, taking λ0 :=
minx∈D{b(x)u∗1(x), f (x)u∗2(x)} > 0, then

λ0u∗ ≤1 (µ ◦ K+A)u∗.

This implies that

etλ0 u∗ ≤1 Uµ(t)u∗ ∀ t > 0.

Hence, since etλ0 u∗ ∈ X++ × X++ for every t > 0, then

0 < etλ0‖u∗‖ ≤ ‖Uµ(t)u∗‖ ≤ ‖Uµ(t)‖‖u∗‖ ∀ t > 0.

Thus, using (A7), we obtain

0 < λ0 ≤ lim
t→∞

ln(‖Uµ(t)‖)
t

= λp(µ ◦ K+A).
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This contradicts the fact that λp(µ ◦ K+A) ≤ 0. Therefore, we must have u∗ ≡ 0.

Step 4. Suppose that λp(µ ◦ K +A) > 0. We show that u∗ ∈ X++ × X++. Since u∗ ∈
X+ × X+, by Dini’s theorem, the limit in (A12) holds uniformly in x ∈ Ω. This implies that
for every ε > 0, there is tε > 0 such that

‖u(t, ·; 0, M)‖ < ‖u∗‖+ ε ∀ t > tε.

Hence, taking λ1 := max{‖b‖∞, ‖ f ‖∞}, and observing that

(µ ◦ K+A)u(t + tε, ·; 0, M) ≤1 λ1(‖u∗‖+ ε)u + ∂tu(t + tε, ·; 0, M) ∀ t > 0,

we obtain,
Uµ(t)u(tε, ·; 0, M) ≤1 eλ1(‖u∗‖+ε)tu(t + tε, ·; 0, M) ∀ t > 0.

Now, choose l1 � 1 such that l1ui(t, ·; 0, M) ≥ 1 for each i = 1, 2. It then follows from the
above inequality that

Uµ(t)(l1u(tε, ·; 0, M)) ≤1 eλ1(‖u∗‖+ε)t(l1u(t + tε; 0, ·, M)) ∀ t > 0.

From which we deduce that

‖Uµ(t)(l1u(tε, ·; 0, M))‖ ≤1 eλ1(‖u∗‖+ε)t‖l1u(t + tε, ·; 0, M)‖ ∀ t > 0. (A15)

Since l1u∗i (tε, ·; 0, M) ≥ 1 for every i = 1, 2, we deduce that

‖Uµ(t)‖ ≤ ‖Uµ(t)(l1u(tε, ·; 0, M))|| ∀ t > 0. (A16)

(A15) and (A16) yield

λ1(‖u∗‖+ ε) +
ln(l1) + ln(‖u(t + tε, ·; 0, M)‖)

t
≥ ln(‖Uµ(t)‖)

t
∀ t > 0. (A17)

Therefore, since (A7) holds and ‖u(t, ·; 0, M)‖ ≤ ‖M‖ for all t ≥ 0, letting t→ ∞ in (A17)
gives

λ1(‖u∗‖+ ε) ≥ λp(µ ◦ K+A).

We then conclude that ‖u∗‖ > 0 since ε is arbitrary chosen and λ1 > 0. It then follows
from case 2 of step 1 that u∗ ∈ X++ × X++. Moreover, since τ = 0, it is easily seen that (1)
is strongly cooperative and subhomogeneous, therefore, u∗ is the unique strictly positive
steady-state of (1).

Remark A1. When τ = 0 and λp(µ ◦ K +A) > 0, Lemma A1 shows that (1) has a unique
strictly positive steady state u0. This shows that the function u∗(·; 0, M) in (A12) is independent
of the positive constant vector M. In what follows, we shall let u0(·) = u∗(·; 0, M).

Lemma A2. Suppose that λp(µ ◦ K+A) > 0 and let τ > 0 be fixed. Suppose also that rmin > 0
and smin > 0. Let u0 be the unique positive steady state solution of (A10) given by Lemma A1.
There is ετ > 0 such that for every 0 < ε < ετ , εu0 ≤1 u(t, ·; τ, u0) for all t ≥ 0 whenever
εu0 ≤1 u0.

Proof. Let ε̃ := min
{(

b(u0
1)

2

2u0
2

)
min

,
(

f (u0
2)

2

2u0
1

)
min

, rmin, smin

}
and

ετ := min
{1

2
,

ε̃

1 + τ‖cu0
1‖∞

,
ε̃

1 + τ‖gu0
2‖∞

}
.

Let 0 < ε < ετ and u0 ∈ X++ × X++ satisfy εu0 ≤1 u0. Consider the mapping M,
defined by
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M1(φ1) = µ1

∫
Ω

κ(x, y)[φ1(t, y)− φ1(t, x)]dy + (r− τcφ1)u2(t, ·; τ, u0)− (a + s + bφ1)φ1

and

M2(φ2) = µ2

∫
Ω

κ(x, y)[φ2(t, y)− φ2(t, x)]dy + (s− τgφ2)u1(t, ·; τ, u0)− (e + f φ2)φ2

for every φ1, φ2 ∈ C([0, ∞) × Ω : R+). Since u(t, ·; τ, u0) solves (1), then u(t, x; τ, u0)
satisfies

∂tu =M(u) x ∈ Ω, t > 0. (A18)

Next, fix ε̂ ∈ (0, ε) and let

Tmax,ε̂ := sup{T > 0 : ε̂u0 <1 u(t, ·; τ, u0) ∀ 0 ≤ t < T}.

Since ε̂ < ε and εu0 ≤1 u0, then Tmax,ε̂ ∈ (0, ∞]. Now, we claim that Tmax,ε̂ = ∞. If not, then
there is some x0 ∈ Ω and i ∈ {1, 2} such that

ε̂u0
i (x0) = ui(Tmax,ε̂, x0; τ, u0). (A19)

Without loss of generality, we may suppose that i = 1, since the case of i = 2 can be proved
similarly. From (A18), u1(t, x; τ, u0) is the unique classical solution of{

∂tu =M1(u) x ∈ Ω, t > 0,
u(0, ·) = u1(0, ·; τ, u0).

(A20)

Now, since u0 is a positive steady state solution of (A10), then

M1(ε̂u0
1) =ε̂µ1

∫
Ω

κ(x, y)[u0
1(y)− u0

1(x)]dy + (r− ε̂τcu0
1)u2(t, ·; τ, u0)− (a + s + bε̂u0

1)(ε̂u0
1)

=(a + s + bu0
1)(ε̂u0

1)− r(ε̂u0
2) + (r− ε̂τcu0

1)u2 − (a + s + b(ε̂u0
1))(ε̂u0

1)

=ε̂b(u0
1)

2 − ε̃ε̂u0
2 − (r− ε̃)(ε̂u0

2) + ((r− ε̃) + (ε̃− ε̂τcu0
1))u2 − b(ε̂u0

1)
2

=ε̂(
b
2
(u0

1)
2 − ε̃u0

2) + (r− ε̃)(u2 − ε̂u0
2) + (ε̃− ε̂τcu0

1)u2 + (
1
2
− ε̂)ε̂b(u0

1)
2

≥νε̂u0
1

for all t ∈ [0, Tmax,ε̂], where ν := ( 1
2 − ε̂)bminu0

1,min > 0. As a result, choosing 0 < ν̂ � 1
such that

(eν̂t − 1)
(
‖b‖∞ ε̂‖u0

1‖∞ + e−ν̂t ‖r‖∞

ε̂u0
1,min

sup
t≥0
‖u(t, ·; τ, u0)‖

)
+ ν̂ < ν,

the function û(t, x) = eν̂t ε̂u0(x) satisfies

M1(û1) =µ1

∫
Ω

κ(x, y)[û1(t, y)− û1(t, x)]dy + (r− τcû1)u2(t, ·; τ, u0)− (a + s + bû1)(û1)

=eν̂tM1(ε̂u0
1) + bε̂u0

1(1− eν̂t)û1 + (1− eν̂t)ru2(t, ·; τ, u0)

≥νû1 + bε̂u0
1(1− eν̂t)û1 + (1− eν̂t)ru2(t, ·; τ, u0)

≥
(

ν− ‖b‖∞ ε̂‖u0
1‖∞(eν̂t − 1)− (1− e−ν̂t)

‖r‖∞‖u(t, ·; τ, u0)‖
ε̂u0

1,min

)
û1

=
(

ν− (eν̃t − 1)
(
‖b‖∞ ε̂‖u0

1‖∞ + e−ν̂t ‖r‖∞‖u(t, ·; τ, u0)‖
ε̂u0

1,min

)
û1

)
>ν̂û1 = ∂tû1
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for all t ∈ [0, Tmax,ε̂]. Therefore, by the comparison principle for single-species nonlocal
equations we obtain that û1(t, x) ≤ u1(t, x; τ, u0) for all t ∈ [0, Tmax,ε̂]. In particular,

ε̂u0
1(x0) ≤ e−ν̂Tmax,ε̂ u1(Tmax,ε̂, x0; τ, u0) < u1(Tmax,ε̂, x0; τ, u0),

which contradicts (A19). Therefore, Tmax,ε̂ = ∞. This implies that ε̂u0 ≤1 u(t, ·; τ, u0) for
any t ≥ 0 and 0 < ε̂ < ε. Letting ε̂→ ε, yields the desired result.

Now, we present the proof of Theorem 1.

Proof of Theorem 1. (i) Let u(·, ·; τ, u0) be a classical solution of (1) with a non-negative
initial data u0. We first suppose that λp(µ ◦ K +A) < 0. Observe that u(t, x; τ, u0) is a
subsolution of the linear cooperative system (A1), that is{

∂tu1 ≤ µ1
∫

Ω κ(x, y)(u1(t, y)− u1(t, x))dy + ru2 − (s + a)u1 x ∈ Ω, t > 0,
∂tu2 ≤ µ2

∫
Ω κ(x, y)(u2(t, y)− u2(t, x))dy + su1 − eu2 x ∈ Ω, t > 0,

Hence u(t, ·; τ, u0) ≤ U(t, u0) for all t > 0. If u0 ≡ 0, then u(t, ·; τ, u0) ≡ 0 for every t > 0,
and the result follows. Now, suppose that u0 ∈ X+ × X+ \ {0}. Hence u(t, ·; τ, u0) > 0 for
all t > 0. Since u(t, ·; τ, u0) ≤ U(t, u0) for all t > 0, then

ln(‖u(t, ·; τ, u0)‖)
t

≤ ln(‖U(t, ·, u0)‖)
t

≤ ln(‖Uµ(t)‖)
t

+
ln(‖u0‖)

t
∀ t > 0. (A21)

Now, let ξ ∈ (0, 1). By (A7), there is tξ � 1, independent of u0 and τ, such that

ln(‖Uµ(t)‖)
t

≤ ξλp(µ ◦ K+A) ∀ t ≥ tξ ,

which together with (A21) yields

‖u(t, ·; τ, u0)‖ ≤ ‖u0‖etξλp(µ◦K+A) ∀ t ≥ tξ .

Hence, (10) holds.

(ii) Choose M such that u0 ≤1 M. Since u(t, ·; τ, u0) is a subsolution of (A10), it follows
that

sup
τ>0

u(t, ·; τ, u0) ≤ u(t, ·; 0, M)

Hence, from Lemma A1, we have that if λ(µ ◦ K+A) = 0, then

lim
t→∞

sup
τ>0
‖u(t, ·; τ, u0)‖ ≤ lim

t→∞
‖u(t, ·; 0, M)‖ = 0.

(iii) Set L := lim supt→∞ ‖u(t, ·; τ, u0)‖. For all ε > 0 there exists tε such that

‖u(t, ·; τ, u0‖ ≤ L + ε ∀ t ≥ tε.

Taking λ1 = max{‖b‖∞, ‖ f ‖∞}, λ2 = max{‖c‖∞, ‖g‖∞}, and λτ = λ1 + τλ2 we have

(µ ◦ K+A)u(t + tε, ·; τ, u0) ≤1 λτ(L + ε)u + ∂tu(t + tε, ·; τ, u0) ∀ t > 0.

Whence,
Uµ(t)u(tε, ·; τ, u0) ≤1 eλ1(L+ε)tu(t + tε, ·; τ, u0) ∀ t > 0.

Following a similar argument as in Step 4 of Lemma A1 we obtain that

λp(µ ◦ K+A) ≤ λτ(L + ε).
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Since ε > 0 is arbitrary, we conclude that

lim sup
t→∞

‖u(t, ·; τ, u0‖ ≥ η∗

where η∗ =
λp(µ◦K+A)

λτ
depends only on τ but is independent of the initial u0. This

proves (12). Finally, since u(1, ·; τ, u0) ∈ X++ × X++, there is 0 < ε < ετ (where ετ

is given by Lemma A2) such that εu0 ≤ u(1, ·; τ, u0). It then follows from Lemma A2 that
εu0 ≤1 u(t, ·; τ, u0) for every t ≥ 1, which yields (13).

Remark A2. Suppose that λp(µ ◦ K +A) > 0 and let τ ≥ 0. Let u0 be the unique positive
steady state solution of (A10) and ετ > 0 be given by Lemma A2. Then, for every 0 < ε < ετ ,
the closed interval [εu0, u0] is an invariant set for the flow generated by the solution of (1).

Appendix B. Proof of Theorem 2

We shall suppose that all the parameters a, b, c, e, f , r, and s are constant. In this case, we
have that λp(µ ◦ K+A) is independent of the diffusion rate µ and λp(µ ◦ K+A) = Λmax.
Throughout this section, we suppose that Λmax > 0. By Remark A2, the kinetic model
of (1), i.e., µ1 = µ2 = 0, is weakly uniformly persistent. Therefore, since solutions of (1) are
eventually bounded, we can apply the persistence theory of dynamical systems [30,31] to
conclude that for every τ > 0, there is a positive equilibrium solution uτ of{

0 = ruτ
2 − (a + s + buτ

1 + τcuτ
2)u

τ
1

0 = suτ
1 − (e + f uτ

2 + τguτ
1)u

τ
2 .

(A22)

Note that uτ is a positive spatially homogeneous equilibrium solution of (1). As we
shall see from Lemma A3 below, uτ is the unique positive solution of system (A22). For
convenience, let

h1,2 :=
r

uτ
1
− τc, h2,1 :=

s
uτ

2
− τg, and ∆1 :=

rs− (a + s)e− (a + s) f uτ
2 − beuτ

1
uτ

1 uτ
2

.

Observe from (A22) that

h1,2 =
a + s + buτ

1
uτ

2
> 0 and h2,1 =

e + f uτ
2

uτ
1

> 0.

Observe also from (A22) that

rs =(a + s + buτ
1 + τcuτ

2)(e + f uτ
2 + τguτ

1)

=(a + s)e + (a + s) f uτ
2 + τ(a + s)guτ

1 + beuτ
1 + ( f uτ

2 + τguτ
1)buτ

1

+ τ(e + f uτ
2 + τguτ

1)cuτ
2 .

Hence,

∆1 =
τ(a + s)guτ

1 + ( f uτ
2 + τguτ

1)buτ
1 + τ(e + f uτ

2 + τguτ
1)cuτ

2
uτ

1 uτ
2

> 0.

Next, let

∆1,1 := min
{∆1

b
, f
}

, ∆2,2 := min
{∆1

f
, b
}

, and h :=
h1,2

h2,1
. (A23)

It follows from the above computations that ∆1,1 > 0, ∆2,2 > 0 and h > 0. Finally, we
introduce the function

L̃(η) = η − 1− ln(η) ∀ η > 0. (A24)
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Note that L̃(η) ≥ 0 for all η > 0 with equality if and only if η = 1. Note also that the
function L̃ is strictly convex. The function L̃ will be used to construct a Lyapunov function
in the proof of Theorem 4.

Lemma A3. Let τ > 0 be fixed, and uτ be a positive solution of (A22). Let ∆1,1, ∆2,2 and h
be defined by (A23). Let u(t, ·; τ, u0) be a classical solution of (1) with a positive initial data
u0 ∈ X++ × X++. Define

Li(t) =
∫

Ω
uτ

i L̃
(ui(t, x; τ, u0)

uτ
i

)
dx ∀ t ≥ 0, i = 1, 2,

where L̃ is defined by (A24) and set

L(t) = L1(t) + hL2(t) ∀ t > 0.

Then, for all t > 0,

dL(t)
dt
≤−

2

∑
i=1

µiuτ
i hi

2h

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dydx−

2

∑
i=1

h2∆i,i

2hi

∫
Ω
(ui − uτ

i )
2. (A25)

Proof. Note also that h1,2, h2,1 and h are constants. For convenience, we set

h1,1 := b +
ru2

uτ
1 u1

and h2,2 = f +
su1

uτ
2 u2

.

By computations, thanks to (A22) and the fact that κ is symmetric, we obtain

dL1(t)
dt

=
∫

Ω
∂tu1(t, x)

(
1−

uτ
1

u1(t, x)

)
dx

=
∫

Ω

(
r

u2

u1
− (a + s + bu1 + τcu2)

)
(u1 − uτ

1)dx

+ µ1

∫
Ω

∫
Ω

κ(x, y)[u1(t, y)− u1(t, x)]
(

1−
uτ

1
u1

)
dydx

=
∫

Ω

(
r

u2

u1
− (a + s + buτ

1 + τcuτ
2)− (b(u1 − uτ

1) + τc(u2 − uτ
2))
)
(u1 − uτ

1)dx

− µ1uτ
1

∫
Ω

∫
Ω

κ(x, y)
[u1(t, y)− u1(t, x)]

u1(t, x)
dydx

=
∫

Ω

(
r
(u2

u1
−

uτ
2

uτ
1

)
− (b(u1 − uτ

1) + τc(u2 − uτ
2))
)
(u1 − uτ

1)dx

− µ1uτ
1

∫
Ω

∫
Ω

κ(x, y)
[u1(t, y)− u1(t, x)]

u1(t, x)
dydx

=
∫

Ω

(
r
(u2

u1
− u2

uτ
1
+

u2

uτ
1
−

uτ
2

uτ
1

)
− (b(u1 − uτ

1) + τc(u2 − uτ
2))
)
(u1 − uτ

1)dx

− µ1uτ
1

∫
Ω

∫
Ω

κ(x, y)
[u1(t, y)− u1(t, x)]

u1(t, x)
dydx

=
∫

Ω

(
r
( u2

uτ
1 u1

(uτ
1 − u1) +

1
uτ

1
(u2 − uτ

2)
)
− (b(u1 − uτ

1) + τc(u2 − uτ
2))
)
(u1 − uτ

1)dx

− µ1uτ
1

∫
Ω

∫
Ω

κ(x, y)
[u1(t, y)− u1(t, x)]

u1(t, x)
dydx

=
∫

Ω

(
h1,2(u2 − uτ

2)(u1 − uτ
1)− h1,1(u1 − uτ

1)
2
)

dx

− µ1uτ
1

∫
Ω

∫
Ω

κ(x, y)
[u1(t, y)− u1(t, x)]

u1(t, x)
dydx. (A26)



Mathematics 2023, 11, 925 18 of 27

Similarly,

dL2(t)
dt

=
∫

Ω

(
h2,1(u1 − uτ

1)(u2 − uτ
2)− h2,2(u2 − uτ

2)
2
)

dx

− µ2uτ
2

∫
Ω

∫
Ω

κ(x, y)
[u2(t, y)− u2(t, x)]

u2(t, x)
dydx. (A27)

It follows from (A26) and (A27) that

dL(t)
dt

=−
∫

Ω

(
h1,1(u1 − uτ

1)
2 − (h1,2 + hh2,1)(u1 − uτ

1)(u2 − uτ
2) + hh2,2(u2 − uτ

2)
2
)

−
2

∑
i=1

µiuτ
i hi−1

∫
Ω

∫
Ω

κ(x, y)
[ui(t, y)− ui(t, x)]

ui(t, x)
dydx. (A28)

Next, since κ is symmetric, for every w ∈ X++,∫
Ω

∫
Ω

κ(x, y)
(w(y)− w(x))

w(x)
dydx =

1
2

∫
Ω

∫
Ω

κ(x, y)
[
(w(y)− w(x))

w(x)
+

(w(x)− w(y))
w(y)

]
dydx

=
1
2

∫
Ω

∫
Ω

κ(x, y)(w(y)− w(x))
( 1

w(x)
− 1

w(y)

)
dydx

=
1
2

∫
Ω

∫
Ω

κ(x, y)
(w(y)− w(x))2

w(y)w(x)
dydx. (A29)

Then, by (A28) and (A29),

dL(t)
dt

=−
∫

Ω

(
h1,1(u1 − uτ

1)
2 − (h1,2 + hh2,1)(u1 − uτ

1)(u2 − uτ
2) + hh2,2(u2 − uτ

2)
2
)

−
2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dydx (A30)

Now, note that

∆ :=4hh1,1h2,2 − (h1,2 + hh2,1)
2 = 4h

(
b f +

rs
uτ

1 uτ
2
+

sbu1

uτ
2 u2

+
f ru2

uτ
1 u1

)
− (h1,2 + hh2,1)

2. (A31)

Observe from (A23) that

h1,2h2,1uτ
1 uτ

2 = (a + s + buτ
1)(e + f uτ

2) = (a + s)e + (a + s) f uτ
2 + beuτ

1 + b f uτ
1 uτ

2 ,

from which we obtain

b f = h1,2h2,1 −
(a + s)e

uτ
1 uτ

2
− (a + s) f

uτ
1
− be

uτ
2

(A32)

Combining (A32) and (A31) and the fact that h1,2 = hh2,1 yield

∆ =4h
( rs

uτ
1 uτ

2
+

sbu1

uτ
2 u2

+
f ru2

uτ
1 u1
− (a + s)e

uτ
1 uτ

2
− (a + s) f

uτ
1
− be

uτ
2

)
− (h1,2 − hh2,1)

2

=
4h

uτ
1 uτ

2

(
rs− (a + s)e− (a + s) f uτ

2 − beuτ
1

)
+ 4h

( sbu1

uτ
2 u2

+
f ru2

uτ
1 u1

)
=4h(∆1 + ∆2) (A33)

where ∆2 := sbu1
uτ

2 u2
+ f ru2

uτ
1 u1

. It is clear that ∆1 is a positive constant and that ∆2 > 0 for every
t > 0. Therefore, by (A30), we have
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dL(t)
dt

=−
∫

Ω

(
h1,1

(
(u1 − uτ

1)−
(h1,2 + hh2,1)

2h1,1
(u2 − uτ

2)
)2

+
h

h1,1
(∆1 + ∆2)(u2 − uτ

2)
2
)

dx

−
2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dxdy. (A34)

Using the inequality

m1 + s
m2 + s

≥ min{1,
m1

m2
} ∀ m1 > 0, m2 > 0, s > 0,

we obtain

∆1 + ∆2

h1,1
=

∆1 +
sbu1
uτ

2 u2
+ f ru2

uτ
1 u1

b + ru2
uτ

1 u1

≥ min{∆1

b
, f } = ∆1,1 > 0 (A35)

and

∆1 + ∆2

h2,2
=

∆1 +
sbu1
uτ

2 u2
+ f ru2

uτ
1 u1

f + su1
uτ

2 u2

≥ min{∆1

f
, b} = ∆2,2 > 0. (A36)

By (A34) and (A35),

dL(t)
dt
≤−

∫
Ω

(
h1,1

(
(u1 − uτ

1)−
(h1,2 + hh2,1)

2h1,1
(u2 − uτ

2)
)2

+ h∆1,1(u2 − uτ
2)

2
)

dx

−
2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dxdy. (A37)

By rewriting (A28) as

dL(t)
dt

=−
∫
Ω

(
hh2,2

(
(u2 − uτ

2)−
(h1,2 + hh2,1)

2hh2,2
(u1 − uτ

1)
)2

+
1

h2,2
(∆1 + ∆2)(u1 − uτ

1)
2
)

dx

−
2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dxdy,

where we have used the fact

4hh1,1h2,2 − (h1,2 + hh2
2,1)

4hh2,2
=

(∆1 + ∆2)

h2,2
,

it follows from (A36) that

dL(t)
dt
≤−

∫
Ω

(
h2,2

(
(u2 − uτ

2)−
(h1,2 + hh2,1)

2h2,2
(u1 − uτ

1)
)2

+ ∆2,2(u1 − uτ
1)

2
)

dx

−
2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dxdy. (A38)

Finally, we deduce from (A37) and (A38) that

dL(t)
dt
≤−

2

∑
i=1

µiuτ
i hi−1

2

∫
Ω

∫
Ω

κ(x, y)
(ui(t, y)− ui(t, x))2

ui(t, x)ui(t, y)
dydx−

2

∑
i=1

h2−i∆i,i

2

∫
Ω
(ui − uτ

i )
2,

which shows that (A25) holds.

Observe from Lemma A3, mainly inequality (A25), that uτ is the unique positive
steady state solution of (1). In particular, system (A22) has a unique positive solution. As a
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first application of Lemma A3, we have the convergence of u(t, ·; τ, u0) to uτ as t→ ∞ in
the Lp(Ω)-space for any finite p ≥ 1.

Lemma A4. Let τ > 0 be fixed, and uτ be a positive solution of (A22). Let ∆1,1, ∆2,2 and h
be defined by (A23). Let u(t, ·; τ, u0) be a classical solution of (1) with a positive initial data
u0 ∈ X++ × X++. Then,

lim
t→∞

2

∑
i=1
‖ui(t, ·; τ, u0)− uτ

i ‖Lp(Ω) = 0 ∀ p ≥ 1.

Proof. Since u(t, ·; τ, u0) ≤ u(t, ·; 0, u0) for every τ ≥ 0 and u(t, ·; 0, u0) is eventually
bounded, to complete the proof of the lemma, it is enough to show the result for p = 2.
It is easy to see from (1) and the uniform boundedness of u(t, ·; τ, u0) that the function
t 7→ ∑2

i=1 ‖ui(t, ·; τ, u0)− uτ
i ‖2

L2(Ω)
is Lipschitz continuous on [0, ∞). On the other hand,

by Lemma A3, there is a positive constant m∗ > 0 such that

∫ t

0

2

∑
i=1
‖ui(η, ·; τ, u0)− uτ

i ‖2
L2(Ω)dη ≤ m∗

(
L(0)−L(t)

)
∀ t ≥ 0.

However, since L̃(η) ≥ 0 for all η > 0, then L(t) ≥ 0 for all t ≥ 0, which in view of the
above inequality yield

∫ ∞

0

2

∑
i=1
‖ui(η, ·; τ, u0)− uτ

i ‖2
L2(Ω)dη ≤ m∗L(0).

Hence, ∑2
i=1 ‖ui(t, ·; τ, u0) − uτ

i ‖2
L2(Ω)

→ 0 as t → ∞ since the mapping [0, ∞) 3 t 7→
∑2

i=1 ‖ui(t, ·; τ, u0)− uτ
i ‖2

L2(Ω)
is Lipschitz.

Next, we show that u(t, ·; τ, u0) is uniformly bounded away from zero.

Lemma A5. Let τ > 0 be fixed. Let u(t, ·; τ, u0) be a classical solution of (1) with a positive initial
data u0 ∈ X++ × X++. Then there is η∗ > 0 such that

lim inf
t→∞

min
x∈Ω

min
i=1,2

ui(t, x; τ, u0) ≥ η∗.

Proof. It follows from Theorem 1(iii).

Thanks to Lemmas A4 and A5, we can now complete the proof of Theorem 2.

Proof of Theorem 2. We proceed by contradiction. Suppose that there exist {(tn, xn)}n≥1
with tn → ∞ such that

lim inf
n→∞

max
i=1,2
|ui(tn, xn; τ, u0)− uτ

i | > 0. (A39)

Consider the sequence vn(t) = u(tn + t, xn; τ, u0). Observe that for t > −tn, vn solves
dvn

1
dt = µ1

∫
Ω

κ(xn, y)(u1(t + tn, y)− uτ
1)dy− µ1(vn

1 − uτ
1)K(xn) + rvn

2 − (a + s + bvn
1 + τcvn

2 )v
n
1

dvn
2

dt = µ2
∫
Ω

κ(xn, y)(u2(t + tn, y)− uτ
2)dy− µ2(vn

2 − uτ
2)K(xn) + svn

1 − (e + f vn
2 + τgvn

1 )v
n
2 .

Since Ω is compact, without loss of generality (if possible after passing to a subse-
quence), we may suppose there is x∞ ∈ Ω such that xn → x∞ as n → ∞. By Lemma A4
and Holder’s inequality, we have
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∣∣∣ ∫
Ω

κ(xn, y)(ui(t + tn, y)− uτ
i )dy

∣∣∣ ≤‖κ(xn, ·)‖L2(Ω)‖ui(t + tn, ·)− uτ
i ‖L2(Ω)

≤‖κ‖∞|Ω|
1
2 ‖ui(t + tn, ·)− uτ

i ‖L2(Ω)

→0 as n→ ∞,

uniformly for t ∈ [T, ∞) for every T ∈ R. Furthermore, since supt≥0 ‖u(t, ·; τ, u0)‖ < ∞,
then

M1 := sup
n≥1

sup
t≥−tn

‖vn(t)‖ < ∞ and sup
n≥1

sup
t≥−tn

max
i=1,2
|
dvn

i (t)
dt
| < ∞.

Therefore, it follows from Arzela–Ascoli’s theorem that there is a non-negative function
v∞ ∈ C(R : R2) such that, up to a subsequence, vn → v∞ as n→ ∞, locally uniformly on
R. Moreover, v∞ satisfies{ dv∞

1
dt = −µ1(v∞

1 − uτ
1)K(x∞) + rv∞

2 − (a + s + bv∞
1 + τcv∞

2 )v∞
1 t ∈ R,

dv∞
2

dt = −µ2(v∞
2 − y∞

2 )K(x∞) + sv∞
1 − (e + f v∞

2 + τgv∞
1 )v∞

2 t ∈ R.
(A40)

Furthermore, using Lemma A5 and uniform boundedness of u(t, ·; τ, u0), there is M∗ > 0
such that

1
M∗
≤ v∞

i (t) ≤ M∗ ∀ t ∈ R, i = 1, 2. (A41)

Moreover, it follows from (A39) that

‖v∞(0)− uτ‖ > 0. (A42)

Next, define the Lyapunov function

L̂(t) = L̃
(v∞

1 (t)
uτ

1

)
+ hL̃

(v∞
2 (t)
uτ

1

)
∀ t ∈ R,

where h is the positive number in (A23) and L̃ is given by (A24). Using computations
similar to those leading to (A25), we obtain

dL̂(t)
dt
≤−

2

∑
i=1

µihi−1K(x∞)

v∞
i (t)uτ

i
(v∞

i − uτ
i )

2 −
2

∑
i=1

∆i,ih2−i

2
(v∞

i − uτ
i )

2, (A43)

where ∆1,1 and ∆2,2 are the constants in (A23). Taking δ∗ = min{ µ1K(x∞)
M∗uτ

1
, µ2hK(x∞)

M∗uτ
2

, h∆1,1
2 , ∆2,2

2 },
it follows from (A41) and (A43) that

dL̂(t)
dt
≤ −δ∗

(
(v∞

1 − uτ
1)

2 + (v∞
2 − uτ

2)
2
)
∀ t ∈ R. (A44)

Hence,

∫ t

t0

2

∑
i=1

(v∞
i (σ)− uτ

i )
2dσ ≤ 1

δ∗
(L̂(t0)− L̂(t)) ≤

1
δ∗
L̂(t0) ∀ t > t0.

Notice from (A43) and (A41) that supt∈R L̂(t) < ∞, we then conclude from the last inequal-
ity that ∫ ∞

−∞

2

∑
i=1

(v∞
i (σ)− uτ

i )
2dσ < ∞

Hence,

lim
t→±∞

2

∑
i=1

(v∞
i (t)− uτ

i )
2 = 0.



Mathematics 2023, 11, 925 22 of 27

This, in turn, yields
lim
t±∞
L̂(t) = 0.

Consequently, we deduce from (A44) that L̂(t) ≡ 0, which yield that v∞(t) = uτ for all
t ∈ R. This clearly contradicts (A42). Therefore, the result follows.

Appendix C. Proof of Theorems 3 and 4

Notice that the function F in (A4) satisfies F ∈ C∞([0, ∞)× X× X) and

∂uF (τ, u)(v) =
(
−(2bu1 + τcu2) −τcu1
−τgu2 −(2 f u2 + τgu1)

)
v ∀ u, v ∈ X× X, τ > 0.

Thus, we have the following:

Lemma A6. Suppose that λp(µ ◦ K+A) > 0 and let u0 be given by Lemma A1. Then there is
τ∗ > 0 and a C1-map u : [0, τ∗) 3 τ 7→ u(·; τ) ∈ X++ × X++ satisfying u(·; 0) = u0 such
that

(µ ◦ K+A)u(·; τ) +F (τ, u(·; τ)) = 0 ∀τ ∈ [0, τ∗). (A45)

Moreover, for every τ ∈ [0, τ∗), u(·; τ) is the unique solution of (A45) in X++ × X++ and
λp(µ ◦ K+A+ ∂uF (τ, u(·; τ))) < 0.

Proof. Observe that the mapping on X× X, defined by

v 7→ (µ ◦ K+A)(v) + ∂uF (0, u0)(v) = µ ◦ K(v) +
(
−(a + s + 2bu0

1) r
s −(e + 2 f u0

2)

)
v,

is cooperative. Furthermore, setting λ0 := minx∈Ω{b(x)u0
1(x), f (x)u0

2(x)} > 0, since u0 is
a steady state solution of (1), we have

(µ ◦ K+A)(u0) + ∂uF (0, u0)(u0) =(µ ◦ K+A)(u0) +F (0, u0)(u0)−
(

bu0
1 0

0 f u0
2

)
u0

=−
(

bu0
1 0

0 f u0
2

)
u0

≤− λ0u0.

Hence, since u0 ∈ X++ × X++ and λ0 > 0, λp(µ ◦ K+A+ ∂uF (0, u0)) ≤ −λ0 < 0. This
implies that the linear functional µ ◦K+A+ ∂uF (0, u0) is invertible. Hence, by the implicit
function theorem, there is τ∗ > 0 and a C1 map u : [0, τ∗) 3 τ 7→ u(·; τ) ∈ X++ × X++

satisfying u(·; 0) = u0(·) such that (µ ◦ K +A)(u(·; τ)) + F (τ, u(·; τ)) = 0 for all τ ∈
[0, τ∗). Moreover, for every τ ∈ [0, τ∗), u(·; τ) is the unique positive solution of (µ ◦ K+
A)(u) + F (τ, u) = 0 in X++ × X++. Furthermore, since λp(µ ◦ K +A+ ∂uF (0, u0)) ≤
−λ0 < 0 and u(·; τ) is continuous in τ ∈ [0, τ∗), if possible, by taking τ∗ sufficiently small,
we have that λp(µ ◦ K+A+ ∂uF (τ, u(·; τ))) < 0 for every τ ∈ [0, τ∗).

Proof of Theorem 3. (i) It follows from Lemma A6.
(ii) Suppose that Λmin > 0 and let τ > 0. Then, by Theorem 2, for every x ∈ Ω, there

is a unique positive equilibrium solution of the system{
0 = r(x)u2(x)− (a(x) + s(x) + b(x)u1 + τc(x)u2)u1

0 = s(x)u1 − (e(x) + f (x)u2 + τg(x)u1)u2,
(A46)

which we denote by u0,τ(x). Moreover, the function u0,τ(·) ∈ X++ × X++. Now, consider
the function G : R2 × X× X → X× X defined by
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G(µ, u) = (µ ◦ K+A)u +F (τ, u)

where F is defined in (A4). Hence, the function G is of class C∞. Furthermore, for every
v ∈ X× X,

∂uG(0, u0,τ)v =

(
−(a + s + 2bu0,τ

1 + τcu0,τ
2 ) r− τcu0,τ

1
s− τgu0,τ

2 −(e + 2 f u0,τ
2 + τgu0,τ

1 )

)
v.

Note from (A46) that

r(x)− τc(x)u0,τ
1 (x) =

(a(x) + s(x) + b(x)u0,τ
1 (x))u0,τ

1 (x)

u0,τ
2 (x)

> 0

and

s(x)− τg(x)u0,τ
2 (x) =

(e(x) + f (x)u0,τ
2 (x))u0,τ

2 (x)

u0,τ
1 (x)

> 0

for every x ∈ Ω. Hence, ∂uG(0, u0,τ) is cooperative. Furthermore,

∂uG(0, u0,τ)u0,τ = −
(

b(u0,τ
1 )2

f (u0,τ
2 )2(·, 0)

)
≤ −λ̃0u0,τ ,

where λ̃0 = min{(bu0,τ
1 )min, (gu0,τ

2 )min} > 0. This shows that λp(∂uG(0, u0,τ)u0,τ) ≤
−λ̃0 < 0. Therefore, we can apply the implicit function theorem as in the proof of
Lemma A6 to derive the desired result.

We give a proof of Theorem 4.

Proof of Theorem 4. (i) Suppose that τ = 0 and λp(µ ◦ K +A) > 0. In this case, (1) is
cooperative and subhomogeneous. By Lemma A1, we know that (1) has a unique strictly
positive steady state, u0. Furthermore, since (1) is cooperative and subhomogeneous, it
follows from standards arguments that u0 is globally stable with respect to positive pertur-
bationS.

(ii) Suppose that rmin > 0 and smin > 0. Take

τ∗∗ = min
{ rmin

(‖c‖∞ + 2)‖u0
2‖∞

,
smin

(‖g‖∞ + 2)‖u0
1‖∞

, τ∗
}

where u0 = (u0
1, u0

2) is the unique strictly positive steady state solution of (1) for τ = 0, τ∗

is given by Theorem 3. Next, consider the closed-bounded interval

[0, 2u0] := {u ∈ X+ × X+ : u ≤1 2u0}.

Let τ ∈ (0, τ∗∗] be fixed and uτ be the unique strictly positive steady state solution of (1)
guaranteed by Theorem 3. Since every non-negative classical solution of (1) is subsolution
of (A10), and u0 is globally stable for (A10), then every solution of (1) eventually lies in
[0, 2u0]. Observe that, on [0, 2u0], the semiflow generated by the classical solution of (1) is
positive and subhomogeneous. Therefore, the unique strictly positive steady state, uτ , is
globally stable with respect to positive perturbations.

The rest of this section will be devoted to prove Theorem 5. Hence, throughout the
rest of the paper, we suppose that (a + s)min > 0 and emin > 0 and prove Theorem 5.

Proof. (i) We divide the proof in two cases.
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Case 1. Suppose that
( s

e
)

max

( r
s+a
)

max < 1. Chose 0 < λ0 < min{‖e‖∞, ‖a + s‖∞} satisfy-
ing ( s

e
)

max

1− λ0
‖e‖∞

<

(
1− λ0

‖a+s‖∞

)
(

r
a+s

)
max

.

Now, choose two positive numbers q1 > 1 and q2 > 1 satisfying

( s
e
)

max

1− λ0
‖e‖∞

<
q2

q1
<

(
1− λ0

‖a+s‖∞

)
(

r
a+s

)
max

, (A47)

and consider the constant vector q = (q1, q2). It follows from (A47) that

−(a(x) + s(x))q1 + r(x)q2 ≤ −λ0q1 and s(x)q1 − e(x)q2 ≤ −λ0q2 ∀ x ∈ Ω.

Therefore,
(µ ◦ K+A)q = A(x)q ≤1 −λ0q.

Hence, in view of the monotonicity of {Uµ(t)}t≥0, we obtain

0 <1 Uµ(t)q ≤1 e−λ0tq ∀ t > 0.

This along with the fact that q1, q2 > 1 implies that

‖Uµ(t)‖ ≤ ‖Uµ(t)q‖ ≤ e−λ0t‖q‖ ∀ t > 0.

Whence, by Proposition A1

λp(µ ◦ K+A) = lim
t→∞

ln(‖Uµ(t)‖)
t

≤ −λ0 < 0.

Case 2. Suppose that
(

(r+s)2

4(a+s)e

)
max

< 1. Let µ = (µ1, µ2) be fixed and ε > 0. Consider,

the cooperative two-stage nonlocal system,{
∂tu1 = µ1Ku1 + ru2 − (a + s + λp(µ ◦ K+A)− ε + bu1)u1 x ∈ Ω, t > 0,
∂tu2 = µ2Ku2 + su1 − (e + λp(µ ◦ K+A)− ε + bu2)u2 x ∈ Ω, t > 0.

(A48)

Since λp(µ ◦ K+A− λp(µ ◦ K+A) + ε) = ε > 0, it follows from Lemma A1 that (A48)
has a unique positive steady state solution u(·; ε), that is u(·; ε) solves{

0 = µ1Ku1 + ru2 − (a + s + λp(µ ◦ K+A)− ε + bu1)u1 x ∈ Ω,
0 = µ2Ku2 + su1 − (e + λp(µ ◦ K+A)− ε + f u2)u2 x ∈ Ω.

(A49)

Moreover, since the right hand side of (A48) is strictly increasing in ε, u(·; ε) is strictly
increasing in ε. Therefore, by the arguments in the proof of Lemma A1, there is u(·; 0) ∈
X+ × X+ such that u(·; ε)→ u(·; 0) as ε→ 0 uniformly in Ω. In addition, u(·; 0) solves{

0 = µ1Ku1 + ru2 − (a + s + λp(µ ◦ K+A) + bu1)u1 x ∈ Ω,
0 = µ2Ku2 + su1 − (e + λp(µ ◦ K+A) + bu2)u2 x ∈ Ω.

(A50)

Hence, since λp(µ ◦ K+A− λp(µ ◦ K+A)) = 0, we conclude from Lemma A1 and (A50)
that u(·; 0) ≡ 0. Now, for every ε > 0, multiply the first equation of (A49) by u1(·; ε) and
integrate on Ω to obtain
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(λp(µ ◦ K+A)− ε)
∫

Ω
u2

1(·; ε) +
∫

Ω
bu3

1(·; ε) =µ1

∫
Ω

∫
Ω

κ(x, y)(u1(y; ε)− u1(x; ε))u1(x; ε)dxdy

+
∫

Ω
ru1u2 −

∫
Ω
(a + s)u2

1

≤
∫

Ω
ru1u2 −

∫
Ω
(a + s)u2

1. (A51)

Similarly, multiplying the second equation of (A49) by u2(·; ε) yields

(λp(µ ◦ K+A)− ε)
∫

Ω
u2

2(·; ε) +
∫

Ω
f u3

2(·; ε) ≤
∫

Ω
su1u2 −

∫
Ω

eu2
2. (A52)

From (A51) and (A52), we obtain

(λp(µ ◦ K+A)− ε)
∫

Ω
(u2

1(·; ε) + u2
2(·; ε)) ≤ −

∫
Ω
((a + s)u2

1 − (r + s)u1u2 + eu2
2) (A53)

Now, observe that

(a + s)u2
1 − (r + s)u1u2 + eu2

2 =(a + s)(u1 −
r + s

2(a + s)
u2)

2 +
4(a + s)e− (r + s)2

4(a + s)
u2

2

≥emin

(
1−

( (r + s)2

4(a + s)e

)
max

)
u2

2

and

(a + s)u2
1 − (r + s)u1u2 + eu2

2 =e(u2 −
r + s

2e
u1)

2 +
4(a + s)e− (r + s)2

4e
u2

1

≥(a + s)min

(
1−

( (r + s)2

4(a + s)e

)
max

)
u2

1

Hence, it follows from (A53) that(
λp(µ ◦ K+A)− ε +

1
2

min{emin, (a + s)min}
(

1−
( (r + s)2

4(a + s)e

)
max

)) ∫
Ω
(u2

1(·; ε) + u2
2(·; ε)) ≤ 0,

from which we deduce that

λp(µ ◦ K+A) ≤ ε− 1
2

min{emin, (a + s)min}
(

1−
( (r + s)2

4(a + s)e

)
max

)
∀ ε > 0,

since
∫

Ω(u2
1(·; ε) + u2

2(·; ε)) > 0. Letting ε→ 0 in the last inequality yields

λp(µ ◦ K+A) ≤ −1
2

min{emin, (a + s)min}
(

1−
( (r + s)2

4(a + s)e

)
max

)
< 0.

(ii) We also distinguish two cases.

Case 1. Suppose that
( s

e
)

min

( r
s+a
)

min > 1 and choose λ0 > 0 such that

( s
e
)

min

1 + λ0
emin

>

(
1 + λ0

(a+s)min

)
(

r
a+s

)
min

.
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Now, choose two positive numbers q1, q2 such that q1 + q2 = 1 and

( s
e
)

min

1 + λ0
emin

>
q2

q1
>

(
1 + λ0

(a+s)min

)
(

r
a+s

)
min

, (A54)

and consider the constant vector q = (q1, q2). It follows from (A54) that

−(a(x) + s(x))q1 + r(x)q2 ≥ λ0q1 and s(x)q1 − e(x)q2 ≥ λ0q2 ∀ x ∈ Ω.

Therefore,
(µ ◦ K+A)q = A(x)q ≥ λ0q

Hence, the monotonicity of {Uµ(t)}t≥0 yields

0 <1 eλ0tq ≤1 Uµ(t)q ∀ t > 0.

This along with the fact that q1 + q2 = 1 implies that

‖Uµ(t)‖ ≥ ‖Uµ(t)q‖ ≥ eλ0t‖q‖ ∀ t > 0.

Whence, by Proposition A1

λp(µ ◦ K+A) = lim
t→∞

ln(‖Uµ(t)‖)
t

≥ λ0 > 0.

Case 2. Next, we suppose that
∫

Ω
√

rs > 1
2

∫
Ω(a + s + e). Let µ = (µ1, µ2) be fixed and

ε > 0. Let u(·; ε) be the unique positive solution of (A49). Divide the first equation of (A49)
by u1(·; ε), integrate the resulting equation, and after using (A29), we obtain

|Ω|λp(µ ◦ K+A− ε) +
∫

Ω
bu1 ≥

∫
Ω

r
u2

u1
−
∫

Ω
(a + s).

Similarly, we obtain

|Ω|λp(µ ◦ K+A− ε) +
∫

Ω
f u2 ≥

∫
Ω

s
u1

u2
−
∫

Ω
e.

Adding up the last two inequality and using the inequality r u2
u1

+ s u1
u2
≥ 2
√

rs, we obtain

2|Ω|λp(µ ◦K+A− ε) + (‖b‖∞ + ‖ f ‖∞)
∫

Ω
(u1(·; ε) + u2(·; ε)) ≥ 2

∫
Ω

√
rs−

∫
Ω
(a+ s+ e).

Therefore, since u(·; ε) → 0 as ε → 0 uniformly in Ω, we deduce from the last inequality,
after letting ε→ 0,

λp(µ ◦ K+A) ≥ 1
|Ω|

( ∫
Ω

√
rs− 1

2

∫
Ω
(a + s + e)

)
> 0.
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