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Abstract: Social media has transformed into a crucial channel for political expression. Twitter,
especially, is a vital platform used to exchange political hate in Pakistan. Political hate speech affects
the public image of politicians, targets their supporters, and hurts public sentiments. Hate speech
is a controversial public speech that promotes violence toward a person or group based on specific
characteristics. Although studies have been conducted to identify hate speech in European languages,
Roman languages have yet to receive much attention. In this research work, we present the automatic
detection of political hate speech in Roman Urdu. An exclusive political hate speech labeled dataset
(RU-PHS) containing 5002 instances and city-level information has been developed. To overcome
the vast lexical structure of Roman Urdu, we propose an algorithm for the lexical unification of
Roman Urdu. Three vectorization techniques are developed: TF-IDF, word2vec, and fastText. A
comparative analysis of the accuracy and time complexity of conventional machine learning models
and fine-tuned neural networks using dense word representations is presented for classifying and
predicting political hate speech. The results show that a random forest and the proposed feed-forward
neural network achieve an accuracy of 93% using fastText word embedding to distinguish between
neutral and politically offensive speech. The statistical information helps identify trends and patterns,
and the hotspot and cluster analysis assist in pinpointing Punjab as a highly susceptible area in
Pakistan in terms of political hate tweet generation.

Keywords: natural language processing; machine learning; deep learning; spatial analysis

MSC: 68T07; 68T50

1. Introduction

The recent couple of years have seen drastic growth in social networks and the rate
of content consumers. Social media platforms are used to share posts (Facebook) and
tweets (Twitter) that can contain text, images, videos, emotions, etc., directly affecting the
daily life of consumers. A significant and slippery type of such language is hateful speech:
content that communicates a class’s sentiment. Offensive speech has become a significant
issue for everyone on the Web, where consumer-created content appears from the remark
areas of information sites to ongoing talk meetings in vivid games. Such content can
embarrass consumers and can furthermore support radicalization and incite violence [1].
Twitter is among the leading social media platforms. A 140-character post is called a tweet
and can include spaces, emojis, URLs, and hashtags. According to the latest survey [2],
217 million active monetizable users and 500 million tweets are produced daily. Twitter
restricts consumers from posting hateful and contemptuous substances [3].

The Urdu language has over 230 million speakers worldwide, including in the UAE,
the UK, and the US. The overall active social media stats of Pakistani users are depicted in
Figure 1. Urdu is the official language of Pakistan, a rank it imparts to English in a nation
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of 226 million people. Despite that, there are a few difficulties related to Urdu writing. The
Urdu language comprises 40 letters. The standard consoles are intended to only deal with
the 26 letters of English. This enormous gap between various alphabets makes it almost
difficult to write Urdu letters using a standard English console. Urdu is a morphologically
rich language that bears a shortfall of resources. It has a complex inflectional framework, a
course of word improvement wherein things are added to the root word to demonstrate
syntactic implications. Roman Urdu (RU) is the conventional name utilized for the Urdu
language written in Roman script.

Figure 1. Active social media user stats of Pakistan based on each individual company’s ad reach in
the start of 2022.

Provided the volume of information growth of social media platforms, especially on
Twitter, where users express their opinions, feelings, and surprising/devastating news in
RU, they may also leave inappropriate content such as hate speech. The main parts of the
problem statement in this research are that online hate speech can set off extreme occasions
in society [4]. Current methods, such as word embeddings, are only available for English
or asset-rich languages [5]. Present hate speech detection procedures do not perform
unequivocally on the code-mixed imperfect, informal, and resource-poor languages [6].

The principal objective was classifying hate speech to identify and analyze data from
social networks, especially Twitter, using standard machine learning methods for text
classification and evaluation. The content on social media posted each minute is usually
unrefined and represents one’s beliefs; people express and judge others based on their
choices, ultimately creating circumstances for others and even societies. For example,
discussion on religion and politics almost always results in violence. For this research, the
aim was to target offensive political speech written in RU script. The tweets were targeted
based on infamous political keywords that could potentially contain RU data and offensive
speech. The offensive speech data were obtained from Twitter. Several objectives designed
for this research could help classify, predict, and geomap offensive speech written in RU.
The main contributions of this research are as follows:
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1. This research work contributes to a detailed analysis of current approaches employed
for the classification of hate speech in Roman Urdu. It also presents a review of the
literature on data sets developed by previous studies and a comparative analysis that
highlights the strengths and weaknesses of these studies.

2. This research proposes a complete dataset of Roman Urdu political hate speech
(RU-PHS) containing 5002 instances along with their labels and city-level location
information.

3. To overcome the vast lexical structure of Roman Urdu, an algorithm for the lexical
unification of Roman Urdu is proposed, by leveraging regular expressions.

4. A comparative analysis between conventional machine learning models, a feed-
forward neural network, and a conventional neural network using dense word repre-
sentations (i.e., TF-IDF, word2vec, and fastText) is presented for the classification and
prediction of political hate speech.

5. A spatial data analysis of the RU-PHS dataset in terms of hotspots and clusters is
conducted to predict future affected areas in Pakistan.

The paper is organized as follows: In Section 2, we discuss preliminary concepts of text
classification, its applications, and state-of-the-art approaches with contemporary trends
and open problems. This is followed by Section 3, in which a comprehensive review of
the literature related to the scope of this research study is presented. Section 4 presents
the proposed methodology for the said problems. Section 5 discusses the implementation,
dataset description, and formulation process. Section 6 presents the spatial analysis and
results of data points. Section 7 addresses the hyperparameter settings for the proposed
models and evaluates their performance. Lastly, Section 8 presents the conclusions and
future directions.

2. Preliminaries
2.1. Text Classification

Text or document classification organizes, structures, and sorts text into binary or
multiple classes. Over the past several decades, text classification problems have been
widely studied and addressed in a variety of real-life domains [7]. Researchers are now
interested in developing applications that use text classifiers, especially given the recent
advancements in natural language processing (NLP) and data mining.

Classifying text into different categories starts using plain raw text files stored on the
disk. It then involves data cleaning, preprocessing, and transformation. The transformed
data are then preprocessed for the machine learning algorithm; this step is known as feature
engineering and converts words into features for training classification and predictive
models. Figure 2 gives a classic representation of the training of a machine learning
classifier to classify text. Labels are provided along with the text data to train a machine
learning algorithm. The data preprocessing steps are performed, including tokenization,
lower casing, stop word removal, stemming, and lemmatization.

Figure 2. Training pipeline of text classification phenomena.
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The feature engineering steps convert words into meaningful information such as
frequencies using TF-IDF and one-hot encoding; for a dense representation, word2vec,
fastText, and Glove word embeddings are used to capture contextual information. Once the
features are extracted, they are passed to the ML models, which then learn to classify the
data into given categories. Figure 3 represents the prediction process, where the ML model
is not provided with labels to test what the model has learned from the training data.

Figure 3. Prediction pipeline of text classification phenomena.

2.2. Sentiment Analysis

Sentiment analysis is the process of determining if a user-generated post is positive,
negative, or objective. NLP is used in an emotion detection analysis system. Machine
learning algorithms assign weighted sentiment values to entities, topics, documents, and
categorizations within a statement or phrase. It helps corporations get an idea of how
well or poorly their product or service is performing on the market by analyzing the
general sentiment of reviews and conversations on social networks. Opinion research is
also used to distinguish positive or hostile public sentiments communicated on sites about
culture, race, or orientation that could cause viciousness and hostility between individuals
of various backgrounds. The sentiment investigation task centers around distinguishing
and extracting feelings from a message to a specific subject or item. A subtask of sentiment
examination is the opinion order in light of specific polarities [8].

2.2.1. Fine-Grained

The fine-grained sentiment analysis model analyzes the sentence by dividing it into
clauses or phrases. It helps to gain polarity precision. A phrase is divided into expressions
or clauses, and every fragment is examined in association with others. We can recognize
who discusses an item and what an individual discusses in their criticism. We can regulate
a sentiment analysis across the subsequent polarity classes: neutral, positive, negative, and
offensive. The fine-grained analysis is beneficent when analyzing reviews or ratings.

2.2.2. Aspect Based

The aspect-based sentiment analysis focuses on the features mentioned in a phrase
that is later classified as an emotion. This model dives deeper and helps detect the specific
aspects that people talk about in their posts.

2.2.3. Emotion Detection

The emotion detection sentiment analysis model goes way beyond just polarity count.
It helps recognize emotions embedded in phrases such as happiness, sadness, frustration,
anger, fear, panic, etc. This model utilizes lexicon-based approaches to analyze the word
level that delivers a specific emotion. Some state-of-the-art classifiers also use strong
artificial intelligence techniques. It is prescribed to involve machine learning over lexicons
since individuals express feelings in many ways. For instance, the line “This movie is going
to kill me” might communicate sensations of dread and frenzy.
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2.2.4. Intent Analysis

As the name suggests, intent sentiment analysis helps detect a consumer’s intentions.
Based on consumers’ shopping behaviors, are they interested in buying or are they just
browsing? Precisely recognizing users’ intent helps save organizations time and money.
Thus, often, organizations pursue purchasers that want to avoid purchasing in the short
term. An exact intent investigation can determine this obstacle. In this way, if a consumer
has a history of buying things online, a corporation can target them with marketing. If they
never buy online, time and assets can be saved by not advertising to those consumers.

3. Related Work

In this digital age, since web-based hate speech content began to become viral on vari-
ous social media stages, additional research has been conducted on detecting, classifying,
and predicting hostile speech. Nevertheless, only some text corpora have been produced in
RU containing a minimal dataset. A prior work [4] introduced RU toxic comment identi-
fication. They presented an extensive corpus containing 72,000 labeled comments with a
substantial interannotator agreement. They worked with existing machine learning meth-
ods that performed well for English language toxic datasets incorporating text classification
techniques and recent deep-learning-based models. This study’s principal challenge was
the inaccessibility of pretrained word embeddings in RU, so they created different word
embeddings utilizing Glove, word2vec, and fastText procedures. They achieved the highest
scores in word embeddings utilizing the skip-gram model of fastText.

In [5], research work by Rizwan Ali Naqv et al. aimed to develop a Roman Urdu
news classifier. For this, they scraped data from news websites and divided it into five
classes: international news, health, sports, business, and technology. They collected a total
of 735 news texts that belonged to the categories mentioned. This data set was collected in
Urdu and later translated into RU using ijunoon.com. They faced the challenge of lexical
variations of RU in this study. To handle this problem, they divided their test data set into
two parts with lexical variations (real-world test data) and without lexical variations. To
extract features from this news dataset, the study used (TF-IDF).

In addition to unsupervised machine learning techniques, studies such as that by
Nobata et al. [9] introduced the utilization of supervised ML techniques for recognizing
offensive speech. Of these research studies, the first research study gathered publicly
available commentary from the financial and news domains and generated a body of
offensive speech. Furthermore, research was carried out involving syntactic features and
various kinds of embedding techniques. Moin Khan et al. [10] developed an RU corpus
composed of over 5000 tweets, most of which were hate speech. They divided the tweets
into hostile and neutral at first and further sorted the hostile tweets into offensive and
hate speech. They involved a few supervised learning technique strategies for assessing
the developed corpus. Logistic regression performed best in their study to distinguish
between neutral and hostile sentences. Hammad Rizwan et al. [11] proposed a dataset
named RUHSOLD with 10,012 tweets in RU and labeled them into five hate speech classes,
including abusive, profane, sexism, religious hate, and normal. A novel approach, CNN-
gram for offensive speech classification, was proposed and a comparative analysis of their
proposed model was performed with various baseline models using the RUHSOLD dataset.

The study [12] examined several methods for classifying offensive speech on social
media platforms. They introduced an integration of lexicon-based and machine-learning-
based techniques for hate speech prediction. They notably used emotional information
in a sentence to help get a better accuracy in offensive speech detection. They performed
a statistical analysis to determine the critical correlation between the probability that the
consumer would share comments related to the base class, and the tagged labels related to
that class. The review achieved correlation coefficient values for racism and sexism of 0.71
and 0.76, respectively. Additional research by Muhammad Bilal et al. [13] on RU opinion
mining evaluated three classification algorithms: naive Bayes, decision tree, and KNN.
They extracted opinions from an online blog and labeled them positive and negative. These
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labeled data were further supplied to the models, and naive Bayes outperformed all the
others in terms of accuracy, recall, precision, and F measures.

Various studies have generated Roman Urdu hate speech corpora and made them
publicly available. Table 1 summarizes the Roman Urdu datasets generated along with their
name, size, and language. A novel study [14] conducted research on generating a parallel
corpus for Urdu and RU. They presented a large-scale RU parallel corpus named Roman-
Urdu-Parl that contained 6.37 million Urdu and RU text pairs. These data were collected
from various sources. The crowd-sourcing technique was used to annotate the data set. It
contained a total of 42.9K unique words for RU and 43.8K unique words for Urdu. This
study mainly focused on word representation learning and its machine transliteration and
vector representation. Despite the traditional techniques to perform sentiment analysis,
such as lexical normalization, word dictionary, and code transfer indication, a study [15],
independent of these techniques, proposed a sentiment analysis using multilingual BERT
(mBERT) and XLM-RoBERTa (XLM-R) models. They acquired the Twitter data set during
the 2018 election named MultiSenti. It contained code-mixed English and RU. The dataset,
after preprocessing, was divided into three classes that include positive, negative, and
neutral. XLM-Roberta gave higher accuracy and F1 score for informal and under-resource
languages such as code-mixed English and RU.

Roman Urdu datasets were acquired using different platforms. Table 2 gives a sum-
mary of the famous platforms used for this matter, in which Twitter has been used most
frequently in research studies.

Table 1. Publicly available Urdu and Roman Urdu datasets along with their characteristics.

Ref. Corpus Language Frequency Type

[6] DSL RU Sentiments Roman Urdu 3241 Sentiments

[16] RUT Roman Urdu 72,000 Comments

[3] HS-RU-20 Roman Urdu 5000 Tweets

[11] RUHSOLD Roman Urdu 10,012 Tweets

[13] No Corpus Name Roman Urdu 300 Opinions

[15] MultiSenti RU and English 20,735 Tweets

[17] UCSA Urdu 9601 Reviews

[18] No Corpus Name Roman Urdu 14,131 YouTube Comments

[19] No Corpus Name English 2577 Tweets

[20] No Corpus Name Roman Urdu 1000 Tweets

[21] Aryan Urdu English and RU _ _

[22] No Corpus Name Roman Urdu 454 Reviews

[23] UCI RUSA-19 Roman Urdu 20,229, 10,016 Sentences

[24] UOD Urdu RU 2171 YouTube Comments

[25] TRAC-1 HS HOT Hindi-English 12,000, 11,623 Sentences

[26] RUED Roman Urdu 20,000 Sentences

[27] RUSA-19 Roman Urdu 10,021 Sentences

[28] Roman Urdu (RU) Roman Urdu 11,000 Reviews

[29] No Corpus Name Urdu 6025 Sentences

[30] No Corpus Name Roman Urdu 18,000 Sentences

[12] Existing Dataset English 24,782 Tweets

[31] No Corpus Name Urdu 6000 Sentences
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Table 2. Summary of platforms used in the collection of datasets.

Ref. Twitter YouTube Facebook Yahoo Formspring Wikipedia Slashdot

[3] X

[32] X

[33] X

[34] X

[35] X

[36] X

[37] X

[38] X

[39] X

[40] X

[41] X

[42] X X X

[43] X

[44] X X

[45] X

[46] X X

[47] X

[48] X

[49] X

[50] X

[51] X

[52] X

[53] X

Mukand [17] introduced a technique for extremity characterization of code-mixed
data. The technique was based on a hypothesis, namely SCL (structural correspondence
learning), used in domain adaptation. The transliteration oracle handled the problem with
spelling variations. A transliteration oracle is a transliterate processor that converts strings
based on the sound they represent from one writing system (such as Latin) to another
(such as Arabic). The authors of the paper used two types of translation oracles—the
first oracle, which accommodated spelling variations, and the second oracle, which was
a translation between Urdu and English. Using a double metaphone algorithm, the first
oracle completely switched all tokens to RU. Tokens that had the same metaphone code
in both target and source languages were added into pivot pairs. The second oracle
accomplished the interpretation between Urdu and English.

Research carried out by Kaur et al. [54] in 2014 proposed a hybrid approach for
Punjabi text classification. This exploration utilized a number of naive Bayesian and
N-gram methods. The elements of the N-gram method were extracted and then used
as a training data set to train a naive Bayes classifier. The algorithm was then tested
by providing testing data. The observation was made that the results from previously
proposed frameworks and the current algorithm gave a promising number of clarifications.
Studies have employed different techniques to solve these problems, and an analysis of
the strengths and weaknesses of these studies are presented in Table 3. Another approach
was used by Ashari et al. in [55] in which they classified using naive Bayes, decision
tree, and KNN classifiers and proposed three classification models to design an alternative
solution using WEKA as an information mining instrument. Their investigations showed
that decision tree was the quickest and KNN computations took time, so it was a slow
characterization strategy. The explanation they referenced was that, in the decision tree,
there was no computation included. Characterization by adhering to the tree guidelines
was faster than those that required computation in the NB and KNN classifiers.
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Table 3. Analysis of studies on the classification of Urdu and Roman Urdu hate speech.

Ref. Strengths Weaknesses

[56]
Classification of Urdu sentences

on document-level,
lexicon-based sentiment analysis

No method to tackle implicit negation
Noun phrases not considered

[57]
Utilized long short-term memory
(LSTM) for polarity detection in

Roman Urdu

No validation of data collection process,
no data preprocessing method declared

Methods were not transparent

[58]
806 Roman Urdu sentences collection,
feature construction, and application
on different multilingual classifiers

Limited dataset
No structure of the dataset

[59]
Lexicon- and rule-based methods used to construct an RU

classification algorithm, ML, and phonetic
techniques used

Limited categorization of the dataset
No normalizing of the dataset

[60] 15,000 roman Urdu sentences collected The dataset contained biographies and was not general

[31] 22,000 sentences of RU were collected;
supervised and unsupervised methods were used Ambiguous combination of classifiers

[61] 1200 text documents of Urdu news were collected;
performed a linguistic analysis

No character-level features used
Needs evaluation on state-of-the-art

semantic techniques

[62] Existing values collated to different techniques No dataset mentioned
No classification methods mentioned

[63] A massive dataset of 5 sentiments; use of lexical
classifying techniques

Confusing representation of the dataset
Lack of credible results

[64]
1000 reviews collected and various

frameworks compared,
i.e., Hadoop MapReduce

Limited dataset; classifiers were not general and were
overfitting on the given dataset

In 2012, another study on sentiment analysis was carried out by Jebaseeli [65] in which
they explored the use of three classifiers, namely, NB, KNN and RF, for the classification
of sentiments as positive or negative about the machine learning structure for inspiration
to dissect the ability of these three classifiers. In the study, a data set of 300 surveys
was taken with a split of 100 positive, 100 negative, and 100 neutral surveys [65]. In the
preprocessing step, customarily assembling words and just generally utilized words were
taken out by utilizing the SVD approach. SVD was utilized to rate the significance of words.
The resulting preprocessed information was utilized as responsibility estimation. In that
examination, a degree of 55–60% accuracy was achieved. Gamallo [66] presented a set of NB
classifiers to determine the polarization of English Twitter posts. Two naive classifiers were
compiled: the baseline (designed to portray tweets as specific, negative, and neutral) and
the binary classifier. The classifiers took into account phrases (nouns, verbs, adjectives, and
adverbs), multiword, and polarities vocabulary from numerous roots. A related study[67]
used a psychrometric deep learning model to classify the sentiments of tourists against the
COVID-19 pandemic. The comments were collected from Twitter containing information
about weather, health, holidays, seasonality, and economics. The proposed model used the
PANAS (Positive and Negative Affect Scale) to classify these comments.

4. Proposed Methodology
4.1. Representing Words

The text data presented as input to any machine learning model and coming as output
from it are converted to embeddings. These input and output embeddings of words are the
parameters of the model, stored in lookup matrices Wi and Wo. Word embedding methods
are employed to demonstrate words and connect humans mathematically—an artificial
knowledge of learning.
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Word embeddings learn text representations in an n-dimensional space, in which
words can be represented in terms of frequency counts, i.e., TF-IDF or words with similar
meanings have similar representations. Two similar words are represented by almost
identical vectors very close together in a feature space, i.e., word2vec and fastText. These
techniques are preferred depending on the data’s status, size, and output preferences. Much
work has recently been done with models representing words as functions of subword units.
Table 4 shows the words and their decomposition patterns. In this work, we considered
two word representations: words and decomposing them into N-grams of characters. This
is required for most natural language processing problems. In this section, we present the
three types of word representations developed to convert the exclusively collected dataset
into vector representations.

Table 4. Word and subword decomposition example of word “Bhagora”.

Representation Decomposition

Word Bhagora
Character B+h+a+g+o+r+a

Character 2-gram Bh+ha+ag+go+or+ra
Character 3-gram Bha+hag+ago+gor+ora

4.1.1. TF-IDF

TF-IDF [68] is a quantitative tool that evaluates the relevance of a word in a collection
of documents. This is accomplished by simply multiplying metrics: the number of times a
word appears in a document and the word’s inverse document frequency along a collection
of documents. The higher the score, the more important that word is in that document. To
put it mathematically, the TF-IDF score for the word w in document d of document set D is
shown in Equation (1). Then, Equations (2) and (3) further drive the term frequency and
document frequency.

t f id f (w, d, D) = t f (w, d) · idf(w, D) (1)

where:

t f (w, d) = log(1 + freq (w, d)) (2)

id f (w, D) = log
(

N
count(d ∈ D : w ∈ d)

)
(3)

4.1.2. word2vec

word2vec [69] is a predictive neural word embedding model that uses a neural network
model to learn vector representations from a large corpus of text. It predicts the target word
by computing the cosine similarity between vectors, i.e., by analyzing nearby words. The
following Figure 4 represents how word vectors with similar meanings are clustered in
close proximity in word2vec and how a one-hot encoding does not capture context at all.

similarity(Basketball, Handball) = cos(θ) =
Basketball · Handball
‖Basketball‖‖Handball‖ (4)

word2vec captures the similarity score between words using the cosine similarity
equation when trained on a large corpus. In Figure 4, the vectors X, Y, and Z can be
considered dimensions. Each word occupies a dimension for the one-hot encoding and has
nothing to do with the rest of the words. Hence, all the words are independent of each
other. In word2vec, the main goal is to have words occupy close spatial positions if they are
contextually the same. Equation (4) calculates the similarity between such vectors, which is
close to one, i.e., the cosine angle is close to zero. This is achieved by taking the product of



Mathematics 2023, 11, 969 10 of 26

both vectors, in this case, Basketball and Handball, and dividing it by the product of the
lengths of both vectors.

Figure 4. The representation of one-hot-encoded vectors vs. word2vec vectors.

There are two main architectures of word2vec that are used to learn distributed
representations.

• Continuous bag-of-words (CBOW);
• Continuous skip-gram (CSG).

CBOW attempts to predict a word based on a window of surrounding context words,
but the bag-of-word assumption is not affected by the sequence of context words, whereas
continuous skip gram does the opposite. Based on the input word, the continuous skip-
gram model predicts whether words that are surrounding a word also called context words.
This model contains one hidden layer, which performs a dot product of the input vector
and weight matrix and no activation function is used (see Figure 5). The output vector
generated by the hidden layer and the weight matrix of the hidden layer is multiplied
together with a softmax function to predict the probability of context words.

Figure 5. Roman Urdu word representations using continues bag of words model of fastText.
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4.1.3. fastText

fastText [70] embeddings use subword-level knowledge to generate word vectors.
Words are expressed as the sum of gram vectors after learning N-gram representations.
This adds information at the subword level to the word2vec framework. This enables
embeddings for understanding prefixes and suffixes. Similarly to word2vec, fastText learns
the word vectors along with the N-grams that exist within each word, although these
embeddings are computationally more expensive than word2vec.

4.2. Machine Learning for Political Hate Speech Detection
4.2.1. Feed-Forward Neural Network

A feed-forward neural network is the oldest and most fundamental type of artificial
NN in which node links do not constitute a loop [71]. Feed-forward neural networks are
made of an input layer, n numbers of hidden layers, and an output layer where the neurons
of the input and hidden layers carry weights and the data only move in one direction, i.e.,
in a forward fashion (see Figure 6). In this case, the input or embedding layer takes the
distributed representations V of words W generated by the word2vec and fastText models.

L ∈ Rdr×|V| (5)

It takes the vocabulary size and maximum input length of words in the vocabulary as
embedding layer features. Vectors are denoted as r ∈ Rdr and are represented in practice
by a lookup matrix L; see Equation (5). In this lookup matrix L, every row has a continuing
vector that belongs to words existing in the vocabulary and is called the word embedding,
represented as shown in Equation (6).

L =
[
rj
]|V|

j=1 (6)

Figure 6. An abstract view of proposed feed forward neural network architecture.

After the input layer, where the data are fed to input neurons in the shape of feature
vectors, the values and their assigned weights are then fed-forward to the hidden layers,
where the magic happens. Each hidden layer transforms the values linearly with a weight
metric W (shown in Equation (7)) and β as a bias vector βh ∈ Rdh.

Wh
i,j ∈ Rdn×(n−1)dr (7)
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This is then followed by applying an activation function (shown in Equation (8)) to
induce nonlinearity into the network. It helps simulate whether the neuron fires or not,
prevents overfitting, and speeds up the convergence. In Equation (8), Wh

i,j represents the

product of the input vectors and the weights of the hidden layer, and bh represent the
bias of the hidden layers ht. Finally, in the output layer, these hidden representations are
mapped to a probability distribution. This implies that we must assign a probability to
every word in the dictionary.

ht = φ
(

Wh
i,jvi + bh

)
(8)

4.2.2. Convolutional Neural Network

Convolutional neural networks (CNNs) [72] were initially developed to recognize
digits, especially handwritten ones from images. The main functionalities of a CNN are
convolutional and pooling layers to retrieve features from the input data. For Roman
Urdu hate speech classification, we fine-tuned a 1D CNN model. The block diagram of the
proposed architecture can be seen in Figure 7.

Figure 7. An abstract view of proposed 1-D convolutional neural network architecture.

A convolution layer is a sliding window that converts feature vectors from a fixed-size
region. Pooling layers are typically used after a convolutional layer to reduce dimension-
ality and provide a fixed-length output. For example, max pooling takes the maximum
value from the previous convolutional layer. The pooling output is usually passed to a
fully connected layer, which is functionally equivalent to a typical multilayer perceptron
neural network (MLP). For text classification tasks, a 1D array represents the text, and the
architecture of the CNN becomes 1D convolutional and grouping operations. The CNN
model used for classifying labeled Roman Urdu tweets contained five layers: the input
layer as an embedding layer, a 1D convolutional layer, one global max pooling layer, and
two dense layers. The input size had dimension 200, and the output had dimension 3. The
CNN computed the operations’ results and the loss function gradient using forward and
backward propagation.

zi = [ω1, ω2, . . . ωi+k] ∈ Rk×D (9)

Given a sequence of n words w1, w2, . . . wn, where each word belongs to the word
vocabulary Wc and embedding vector with dimension Dc, the word embedding matrix is
C = RDc× |Wc |. The sentences are passed to this embedding matrix and converted to vectors.
The 1D convolution is produced by sliding a window of size k with the same convolutional
filters and kernels in every sliding window throughout the sequence. With a dot product
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between the embedding vectors v and the weight w and the convolution of width k, the
concatenated embedding vector of the ith sliding window is shown in Equation (9).

Since in forward propagation, the input data are fed to the neural network in the
forward direction to calculate output vectors from input vectors at each layer l, the forward
propagation in a one-dimensional convolutional network is shown in Equation (10).

sl
n = βl

n +
Nl−1

∑
i=1

conv
(

ωl−1
i=1 , ol−1

i

)
(10)

where βl
n is the bias of the nth neuron at layer l, and ol−1

i expresses the output of the ith
neuron at layer l − 1. For each sliding window i, the scaler values si are generated by
applying convolutional filters to each of them, that is, si = g(zi.v) ∈ R. Features extracted
from this layer are then passed to a 1D convolutional layer which in the implementation
had a filter size of 5, i.e., u1, . . . u5 multiplied by a matrix U and adding bias βl at layer l.
Each layer receives the input and calculates the output with an activation function which
was a ReLu in this implementation (shown in Equation (11)).

si = g(zi.U + β) (11)

This output is then forwarded to the next layer in the network, along with the learning
rate η, the weights of the kernel are updated using the following Equation (12).

ωl−1
ik (p + 1) = wl−1

ik (p)− η
∂E

∂wI−1
ik

(p) (12)

Since the values assigned to the biases are learnable, just like the weights, the biases
are also updated (shown in Equation (13)). p and p + 1 represents the current state and
next state. E represents the mean square error (MSE) between observed values and actual
values at a given layer.

βl
k(p + 1) = βl

k(p)− η
∂E
∂βl

k
(p) (13)

This is followed by a pooling layer, i.e., a global max pooling. It combines all the
resultant vectors produced by the convolutional layer into a one-dimensional feature
vector. Max pooling is done by taking the max value from the resultant vector as shown
graphically in Figure 7. This 1D vector captures the most important features from the
sentence and maps them to classification labels. Furthermore, dropout layers are added,
randomly dropping half of the neurons, a common method for reducing overfitting in
neural networks, before passing through to the output layer, where a prediction is made.

5. Implementation
5.1. RU-PHS Dataset

To validate the effectiveness of our proposed methodology, a benchmark dataset was
developed named Roman Urdu Political Hate Speech. This entire dataset contained a total
of 5001 labeled Roman Urdu tweets. Each row contained text with its corresponding labels
and their respective city-level locations. It did not contain any null values. The data set
was categorized into three classes, PO, PM, and N, described in Table 5. Of the 5K tweets,
3028 were labeled as politically offensive, 1190 as politically medium, and 784 as neutral.

Table 5. Roman Urdu Political Hate Speech (RU-PHS) dataset characteristics

Labels Full Form #tweets #Words

PO Politically offensive 3028 273,379
PM Politically medium 1190 80,322
N Neutral 784 46,553
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5.2. Preprocessing

Text data are typically unstructured, especially data scraped from social networks, as
it is user-generated content. While Roman Urdu writing lacks rules and has no standard
lexicon, users write a given word with their own set of rules with several spelling variations.
This creates the need to normalize the data and transform it into a structured feature space.
The data set was collected from the social media platform Twitter for this research work.
The data set was based on trending political hate words from January 2022 to April 2022.
Data were collected using an R script, and Twitter Python API was used to stream the data
set, which allowed the use of the Twitter developer portal for us to retrieve tweet data.

The scraped data contained more than 30 columns of information for each tweet
irrelevant to this investigation. Only the columns “Text” and “Location” were obtained
from it. These data were further filtered based on the location, and only tweets from
Pakistan were retained. Data were preprocessed using regular expressions (re) to remove
@mentions, #Hashtags, URLs, Unicode characters, emojis, and white spaces and converted
to lowercase. Furthermore, the dataset was imbalanced since the “politically medium” and
“neutral” classes had comparatively fewer samples. To generate synthetic samples for the
minority class, the SMOTE algorithm was used. SMOTE is an oversampling technique,
which helps produce new samples by focusing on the feature set and interpolating between
positive samples that lie together. The total sample distribution of the dataset was (5002,
3), and after SMOTE balancing, the total samples of all three classes were transformed to
(9084, 3); only the minority classes were oversampled based on the max number of samples
of the majority class, which was 3028.

5.2.1. Guideline Development

For the development of guidelines, we designed a constant procedure to form a strictly
exhaustive set of guidelines to determine whether a given phrase or tweet was hate speech.
The essential advantage of this guideline development was the consistent approach that
would form with their use and lead to correct annotations. The following Table 6 highlights
the first-level classification guidelines for offensive speech identification. There were two
levels of classifications. The first level classified hate speech and neutral expressions. In the
second-level classification for this research, we aimed to classify political hate speech into
further three categories: neutral, medium, and offensive. An overall review of the scraped
tweets after cleaning was conducted. It was revealed that there was a sizable number of
unwanted tweets that were neither neutral nor offensive and did not lie under political
hate speech. Since our primary focus was non-English data for this research, all the tweets
were split into English and non-English content. A semiautomated technique of NLTK’s
language detection feature was developed to identify candidate corpus for further manual
labeling of the data.

5.2.2. Data Annotation

In this step, machine classifiers were used to learn the characteristics of Twitter posts
that represented the class to which they belonged to complete this subjective task using
a large-scope data analysis critical for the volumes of data created. In the next step, we
manually identified and annotated tweets using the guidelines developed, as machine
learning classifiers needed to be fed more information to classify the data correctly. RU
data needed predefined rules and regulations to write its roman counterpart, making it
difficult to label the data automatically. Thus, the collected data were partly annotated
using machine learning algorithms and partly annotated by a human annotator. The
annotator was a native speaker of the Urdu language and a graduate. Figure 8 represents
the taxonomy developed for the classification of hate speech.
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Table 6. The set of class guidelines developed for data labeling.

Classes Guidelines

A tweet or phrase belonged to the “political hate speech” class if it met any or all of the following parameters:

Political hate
speech

If a tweet had a hate term about a political figure, political party, government or if it targeted the followers of a
specific political party.

For example, “Ap ka baap nawaz bhagora chor h” translated in English as “Your father Nawaz is a truant and
thief”. Some other offensive terms could be “youthia” and “patwari” targeting the supporters of specific

political parties.

Neutral
A tweet or phrase corresponded to the “neutral” class if it lacked any of the criteria mentioned for the political

hate speech class, for example, “Wsa hi acha lgta ha mujha nawaz sharef” translated in English as
“I just like nawaz sharef”.

Offensive

A tweet or phrase that belonged to the “political hate speech” class was further classified as “offensive”, if the
tweet had abusive terms or symbols promoting hostility, igniting anger, or inciting harm to an individual
political entity or a group of people that belonged to a political party or that supported a political profile.

For example, “Bhounktey rahhooooo nawaz chor” translated in English as “Keep on barking nawaz thief”.

Medium/little
offensive

A tweet or phrase that belonged to the “political hate speech” class was further classified as “sarcasm/little
offensive”, if the tweet mocked and conveyed contempt against a political individual, political party, and

supporter of a specific political profile yet if it did not contain explicit hate words.
For example, “Bilkul thek kaha ap nay nawaz Shareef nay boht investment ki h hmare adliya pay” translated

in English as “You are right, Nawaz shareef has invested a lot in our judiciary system”.

Figure 8. Taxonomy diagram of political hate speech classification.

5.2.3. Custom Stop Words

Stop words are known as conjunction terms or “Haroof e Jaar” in Urdu. A similar list
of stop words is also present for Roman Urdu. The complete removal of stop words has the
primary benefit of returning only relevant documents. We removed English stop words
from our dataset using NLTK library’s default list of 40 stop words. A predefined list of RU
stop words was obtained from GitHub containing 100 words [18]. A custom list of stop
words was extracted from the data set (RU-PHS). For this, we counted the frequency of
the most commonly occurring words and sorted them in A–Z order using a Python script.
For the next step, the standard stop words list was compared to the frequently occurring
words list, and the stop word variants contained in the RU-PHS dataset were identified
and removed.

5.2.4. Lexical Unification

Roman Urdu lacks standardization rules, especially user-generated data, which are
always unstructured, e.g., inconsistent forms of writing words. Since the machine cannot
comprehend that one word can be written with many variations, it takes each variation
as a whole different word. This can also lead to biased and compromised results in the
classification task. To overcome this problem and to map different variations of one word
to a single string we proposed to remove vowels from words. The algorithm (shown
in Algorithm 1) was designed to find instances of strings that occurred most frequently
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in the RU-PHS dataset and to remove vowels from those strings. Table 7 represents the
transformation of word variations to a normalized form by pruning vowels.

Algorithm 1: RU Lexical Unification by Removing Vowels.

1. Read CSV file containing scraped data
2. Clean the data by removing

a. @mentions, #hashtags, URLs, and Unicode characters.
b. White spaces including from the start and end of the line.
c. Non-English, numeric values, and special symbols.

3. Compute a list F of the most frequently occurring words
n

∑
i=1

(stringS)

4. Select strings with the highest frequency

max

[
n

∑
i=1

(stringS)

]
5. Create a list of vowels V
6. Compare each string to the list of vowels

a. Convert strings to lowercase
b. For each x in input string S
c. If x is in V

Replace it with empty space
else

Retain it as it is
7. Replace all instances of the original string in the CSV file with the resultant string.

Table 7. Words normalization using proposed lexical unification algorithm.

Words Frequency Normalized

Kampain 74 Kmpn
Kampein 65 Kmpn
Kampain 55 Kmpn
Kanpay 25 Knpy
Kanpein 15 Knpn
Kanpen 12 Knpn
kanpien 11 knpn

6. Spatial Data Analysis of Political Hate Speech

Spatial analysis is the process of modeling problems geographically, deriving results
through information processing, and then exploring and examining those results. This kind
of analysis has proven to be highly effective for assessing the geographic viability of specific
locations for various applications, estimating and forecasting outcomes, interpreting and
comprehending change, identifying meaningful patterns hidden in data, and much more.
In this research, the exclusive political hate speech dataset (RU-PHS) was collected along
with locations. The data set was collected only from Pakistan and contained city-level
information on each tweet. The aim was to apply geospatial techniques on the dataset to
predict hate speech.

6.1. Geocoding

For a geospatial analysis, first, the city-level locations were converted to latitude
and longitude using the Python geopy module. Using third-party geocoders and other
information sources, geopy makes it simple to find the coordinate information of addresses,
cities, countries, and landmarks all over the world. Figure 9 gives a visual representation
and it can be seen that most of the tweets were posted from the Punjab region of Pakistan.
The city-level locations were replicated as we could only retrieve city-level information
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from tweets; thus, one point on the map might contain hundreds of points behind it, as it
was the exact location for many other instances. This could be improved by obtaining the
area-level information of the tweets to map them better and predict future locations. Tweet
locations were visualized in ArcMap.

Figure 9. Visualization of city-level tweets’ information over Pakistan’s base map using ArcGIS.

6.2. Hotspot Analysis

A hotspot is considered an area with a higher concentration of events than would be
anticipated from a random distribution of incidents. The analysis of point distributions
or spatial layouts of points in space led to the development of hotspot detection [73]. The
density of locations within a given area was compared to a complete spatial randomness
model, which described the point events occurring at random (i.e., a homogeneous spatial
Poisson process). Hotspot techniques evaluate the level of point event interaction to
comprehend spatial patterns and assess the density of data points in a particular region.
The following Figure 10 visualizes the hot and cold spots that were visualized using the
information from the RU-PHS labels. The legend shown on the right side gives a summary
of the mapped points. The blue points show the cold spots, and the red points show the
hotspots with 99% probability.
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Figure 10. Visualization of hotspot analysis of tweets’ labels over Pakistan’s base map Using ArcGIS.

6.3. Cluster Analysis

A cluster and outlier analysis was used to validate and supplement the hotspot
analysis because it could detect both groups and areas with anomalies. As a result, its
findings highlighted aspects that may have been neglected in the hotspot analysis but were
noteworthy, particularly in areas in which different types of subgroups coexisted. The
results of this analysis (with a fixed bandwidth and a Euclidean distance of 6 miles) were
very noticeable, particularly considering that the criteria were the same as in the hotspot
analysis for ease of understanding and comparison purposes. Figure 11 shows the results
of the cluster outlier analysis using the RU-PHS label information.

Figure 11. Visualization of cluster outlier analysis of tweets’ labels over Pakistan’s base map using Ar-
cGIS.

6.4. Interpolation

To improve visual representation and provide guidance in decision making, the
results were interpolated onto a continuous surface using an inverse distance weighted
interpolation (IDW), as shown in Figure 12a for hotspot point data and Figure 12b for
cluster outlier point data. The interpolation estimates values for raster cells based on a
small set of sample data points. It could forecast null values about any geographic point
data. The interpolation was used only for the visual representation; otherwise, the real
statistical analysis took place feature by data. Displaying both the surface and true results
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of the hotspot analysis simultaneously was an excellent way to logically portray both the
statistical results and the more approachable visualization.

(a) (b)
Figure 12. Inverse distance weighted interpolation results: (a) hotspot points data; (b) cluster outlier
points data.

7. Results and Discussions

To test the effectiveness of our proposed methodology, we used the RU-PHS dataset
developed and labeled by this research. Before the experiment, the data set was cleaned,
lexically unified, lemmatized for English words, tokenized, and transformed by a SMOTE
analysis since the data set suffered imbalance. We used TF-IDF vectorizer, word2vec,
and fastText for dense vector representations of words. The aim was to classify political
hate speech into three classes neutral (N), politically offensive hate (PO), and politically
medium hate (PM). For the classification, conventional machine learning models were used
to present a comparative analysis concerning deep neural networks.

7.1. Hyperparameters

The vocabulary size was 13,799; the input length was equal to the maximum number
of tokens present in the sentence, and a low-rank projection of the co-occurrence statistics
of each word concerning all other words was 50, i.e., the embedding dimension passed
as the output dimension to the embedding layer. Similar embedding layer dimensions
were leveraged for different vector embeddings. To experiment, the data were split into the
typical 80%, 20% split, where 20% of the data were for testing and validating the proposed
model. The feed-forward neural network consisted of five layers with ReLu as an activation
function and softmax on the output layer to predict a multinomial probability distribution
for multiclass classification. Table 8 presents the model summary of feed-forward neural
network architecture for the classification of RU-PHS.

Table 8. Model summary of the fine-tuned feed-forward neural network.

Sr. Layer Type Output Shape Parameters Activation

1 Input Embedding (None, 200, 50) 689,950 -

2 Hidden Flatten (None, 10,000) 0 -

3 Hidden Dense (None, 64) 640,064 ReLu

4 Hidden Dense (None, 32) 2080 ReLu

5 Output Dense (None, 3) 99 Softmax

Similarly, the convolutional neural network was implemented with 723,401 trainable
parameters for 15 epochs. To measure the performance of both our classification models
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based on error and probability, the categorical cross-entropy was used as the loss function,
since it is commonly used for multiclass classification tasks. To optimize stochastic gradient
descent, the Adam optimizer was used as it provides more efficient neural network weights
by running repeated cycles of adaptive moment estimation. The only difference was that the
sequences of word embeddings went through several convolutional operations with kernel
heights and then through a ReLu activation and a 1D global max pooling operation. Finally,
the maximum values of the dense layers were concatenated and passed to a fully connected
classification layer with a softmax activation. A detailed summary of the convolutional
neural network model for the classification of RU-PHS is presented in Table 9.

Table 9. Model summary of the fine-tuned convolutional neural network.

Sr. Layer Type Output Shape Parameters Activation

1 Input Embedding (None, 200, 50) 689,950 -

2 Hidden Conv1D (None, 196, 128) 32,128 Relu

3 Hidden GlobalMaxPooling1D (None, 128) 0 -

4 Hidden Dense (None, 10) 1290 Relu

5 Output Dense (None, 3) 33 Softmax

7.2. Model Training and Validation

The models were trained using the training data and the accuracy was used as the
evaluation metric to check models’ performance both in training accuracy and in validation
accuracy. The models were trained with different numbers of epochs and the maximum
validation accuracy achieved was 93% for the feed-forward neural network and 92% for the
convolutional neural network for 14 epochs. Figure 13a,b gives a detailed insight into the
training and validation accuracy for the feed-forward neural model with the continuous
skip-gram vector representations of fastText.

(a) (b)
Figure 13. Accuracy and loss ROC curves of proposed feed forward neural network: (a) training and
validation accuracy; (b) training and validation loss.

The training and validation curves in Figure 14a,b indicated that increasing the training
epochs could improve the precision of the CNN model. However, when we increased the
number of epochs, no increment was observed in the validation accuracy; on the other
hand, the training accuracy was increased to 97–98%. This suggested that the model started
to overfit. Since the dataset was small and the ideal number of epochs depended on the
complexity of the dataset, no improvement was seen in the model by increasing the epochs.
However, it could be seen that both training and validation accuracies increased with the
same trend.
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(a) (b)
Figure 14. Accuracy and loss ROC curves of proposed convolutional neural network: (a) training
and validation accuracy; (b) training and validation loss.

7.3. Accuracy

The standard accuracy metrics were used to measure the classification performance
in the RU-PHS data set, i.e., accuracy, macroaveraged precision, macroaveraged recall,
macroaveraged F1 score. Since the class imbalance was tackled, to let the classifier treat
each class equally and to reflect the overall performance of the model with regard to the
most frequent class labels, the macroaveraged scores was used.

In this section, we compare the overall performance of conventional machine learning
models and neural networks for classifying tweets into politically offensive hate, politically
medium hate, and neutral classes. Table 10 shows the accuracy scores of each model
about various word representations techniques. In the Table 10, it can be seen that TF-IDF
performed well with conventional machine learning models such as multinomial naive
Bayes with 87% accuracy, linear SVM with 89% accuracy, random forest with 91% accuracy,
and gradient boosting with 90% accuracy. Since it only calculated document correlation in
the word-count space rather than using a similarity score, the accuracy outcomes could be
promising in this problem.

On the other hand, the continuous skip-gram model for word2vec and fastText per-
formed really well with regression models and the proposed neural networks achieving up
to 93% accuracy. Details of test classification results of each class can also be seen in the
confusion matrix shown in Figure 15a,b, where 0 refers to the “neutral” class, 1 refers to the
“politically medium” class and 2 refers to the “politically offensive” class. In the CNN clas-
sification for the politically offensive class Figure 15a, only 39 comments were mislabeled
as neutral and 60 as politically medium, while 764 comments were classified accurately
as politically offensive. For the politically medium class, 871 were correctly labeled and
only 29 and 48 were mislabeled as neutral and politically offensive, respectively. For the
neutral class, 875 were correctly labeled as neutral and only 17 and 23 were mislabeled as
politically medium and politically offensive, respectively. Similarly, in the feed-forward
NN Figure 15b classification for the politically offensive class, 777 comments were clas-
sified accurately as politically offensive. Only 40 and 46 comments were mislabeled as
politically medium and neutral, respectively. For the politically medium class, 870 were
correctly labeled and only 45 and 33 were mislabeled as neutral and politically offensive,
respectively. For the neutral class, 878 were correctly labeled as neutral, and only 15 and 22
were mislabeled as politically medium and politically offensive, respectively.



Mathematics 2023, 11, 969 22 of 26

(a) (b)
Figure 15. Confusion matrices for RU-PHS dataset classification: (a) CNN confusion matrix; (b) feed-
forward NN confusion matrix.

Table 10. Summary of results achieved by conventional machine learning approaches and proposed
neural network architectures with five different word representations. The results in bold are the
best results out of five feature extraction techniques in each model. For example, highest accuracy
achieved by TF-IDF using Multinomial NB. Similarly in Neural Networks FastText(CSG) achieved
highest accuracy out of four other feature extraction techniques.

Technique Classifier Features Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Bayes Multinomial
naïve Bayes

TF-IDF
word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

87
50
60
66
69

88
57
64
70
72

88
51
60
67
70

87
52
61
66
69

SVM Linear
TF-IDF
word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

89
62
70
74
75

90
70
75
76
77

90
73
70
74
76

90
73
70
74
77

Random Forest
TF-IDF
word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

91
88
91
91
93

92
89
92
89
92

91
89
92
91
93

91
89
92
91
93

Regression Gradient
boosting

TF-IDF
word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

90
91
92
90
90

91
90
92
91
90

91
91
92
94
92

91
91
92
91
92

XgBoost
TF-IDF
word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

84
70
77
82
89

86
74
80
84
90

85
70
78
83
91

85
70
78
83
91

Neural
networks

Feed-forward
neural network

word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

65
72
85
93

71
77
86
90

65
72
91
92

65
72
89
93

Convolutional
neural network

word2vec(CBOW)
word2vec(CSG)
fastText(CBOW)
fastText(CSG)

70
89
85
92

75
91
88
92

71
90
89
91

71
89
89
92

From Table 10, it can be inferred that the proposed feed-forward neural network
with the fastText continuous skip-gram model outperformed the baseline models and
the convolutional neural network with a better classification convergence for the RU-
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PHS dataset. The time taken to build the models is presented in Table 11, and since the
architecture and hyperparameters for all the classification models were different and were
fine-tuned for achieving maximum accuracy, this comparison in terms of time complexity
gives some insight into the results obtained and the respective time consumed.

Table 11. Comparison of time performance of machine learning models on RU-PHS dataset

Classifier MNB LSVM RF GB FFNN CNN

Features TF-IDF TF-IDF fastText(CSG) W2V(CSG) fastText(CSG) fastText(CSG)
Time 2 s 6 s 80 s 60 s 17 s 20 s

8. Conclusions and Future Directions

This research work presented the automatic detection of political hate speech in
Roman Urdu. Our significant contribution was to present an entire dataset of political
hate speech from Twitter posts. The classification of Roman Urdu is challenging due to
its vast lexical structure. To address this problem, we proposed an algorithm for unifying
the RU-PHS dataset. In this work, we developed three different word representation
techniques using TF-IDF, word2vec, and fastText to convert word-level information to
vector representations. We explored the performance of seven machine learning models
for the classification of the RU-PHS dataset. A comparison of the effectiveness of word
representations with conventional machine learning techniques and the proposed neural
networks was made. By analyzing the results from different equations, it was found
that the skip-gram model of fastText, which works on character n-grams, achieved the
highest empirical scores compared to word2vec, which takes into account the word n-
grams. Overall, regression-based models achieved a promising accuracy but could not
be considered the best approaches due to their time complexity. The proposed feed-
forward neural network achieved a 93% accuracy with fastText vector representations on
the RU-PHS dataset. After validation through various machine learning and deep learning
methods, the dataset was mapped using the spatial information in ArcMap. The statistical
information helped in the identification of trends and patterns, and the hotspot and cluster
analysis assisted in pinpointing the highly susceptible areas in Pakistan. Due to a lack of
resources, the information was only obtained at the city level. The results demonstrated
that Punjab cities were the most affected and key locations of hate and sarcastic tweet
generation.

For future work, we aim to develop a more robust algorithm for the lexical unification
of Roman languages. We also consider collecting area-specific location information of
tweets for a better predictability of affected regions. We also aim to train the proposed
model for generic speech classification. Our dataset RU_PHS was made available for the
research community to reproduce results. It will help in the development of more generic
machine learning models for the detection of political hate speech in Roman Urdu.
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