
Citation: Duressa, G.F.; Daba, I.T.;

Deressa, C.T. A Systematic Review on

the Solution Methodology of

Singularly Perturbed Differential

Difference Equations. Mathematics

2023, 11, 1108. https://doi.org/

10.3390/math11051108

Academic Editor: Yury Shestopalov

Received: 7 February 2023

Revised: 19 February 2023

Accepted: 20 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Review

A Systematic Review on the Solution Methodology of
Singularly Perturbed Differential Difference Equations
Gemechis File Duressa 1,*,† , Imiru Takele Daba 2,† and Chernet Tuge Deressa 1,†

1 Department of Mathematics, Jimma University, Jimma P.O. Box 378, Ethiopia
2 Department of Mathematics, Dilla University, Dilla P.O. Box 419, Ethiopia
* Correspondence: gammeef@gmail.com; Tel.: +251-942565096
† These authors contributed equally to this work.

Abstract: This review paper contains computational methods or solution methodologies for sin-
gularly perturbed differential difference equations with negative and/or positive shifts in a spatial
variable. This survey limits its coverage to singular perturbation equations arising in the modeling
of neuronal activity and the methods developed by numerous researchers between 2012 and 2022.
The review covered singularly perturbed ordinary delay differential equations with small or large
negative shift(s), singularly perturbed ordinary differential–differential equations with mixed shift(s),
singularly perturbed delay partial differential equations with small or large negative shift(s) and
singularly perturbed partial differential–difference equations of the mixed type. The main aim of this
review is to find out what numerical and asymptotic methods were developed in the last ten years to
solve such problems. Further, it aims to stimulate researchers to develop new robust methods for
solving families of the problems under consideration.

Keywords: singularly perturbed problems; differential–difference equations; systematic review

MSC: 34K10; 34K27; 65L03; 65L11; 65M06; 65M20; 65M50; 65M60

1. Background of the Problem

Many scientific problems describe the relations between causes and their effects.
The study of this relation in the subject of the perturbations theory has a long history [1].
Despite this long history, the topic is still in a state of irrepressible development and is
termed as the theory of singular perturbation problems (SPPs). The SPPs containing a
small parameter value (say ε), where 0 < ε � 1 received remarkable attention from
mathematicians and physicists. Scholars working on the solution methodologies of SPPs
have carried out numerous studies and reviews. A survey on the asymptotic and numerical
methods for solving SPPs was conducted by [2]. In 2002, ref. [3] reviewed the work of
numerous researchers in SPPs from 1984 to 2000. Ref. [4] reviewed solution methodology
for singularly perturbed partial differential equations. Ref. [5] carried out a survey on
computational techniques for solving singularly perturbed boundary value problems.
Ref. [6] briefly reviewed the computational methods developed to solve various classes of
SPPs. Ref. [7] reviewed the development of computational methods for solving singularly
perturbed (SP) boundary value problems. Ref. [8] discussed the numerical analysis of
singularly perturbed convection–diffusion–reaction problems that appeared in 2008–2012,
mainly focused on layer-adapted meshes. Ref. [9] reviewed singularly perturbed differential
equations with turning point and interior layers. Ref. [10] discussed the review of singularly
perturbed delay differential equations. This systematic review briefly assesses the solution
methodologies on singularly perturbed differential–difference equations (SPDDEs).

The differential equations in which the highest order derivative is multiplied by a small
positive parameter and contains a delay parameter (negative shift) and/or advance pa-
rameter(positive shift) is known as a singularly perturbed differential–difference equation
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(SPDDE). Such problems frequently arise in modeling biosciences, vibrational models in
control theory, physiological processes, diseases, economics, engineering, and so on. A few
application fields are the mathematical modeling of population dynamics [11], immune
response [12], variational problem in control theory [13,14], model of HIV infection [15–17],
activation of neuronal variability [17,18], modeling of biological oscillators [19], mathe-
matical ecology [20], models for physiological processes [21,22], evolutionary biology [23],
neuronal variability [24], and others.

Due to the dual presence of singular perturbation (ε) and shift arguments in the
SPDDEs, it is very difficult to obtain oscillation-free solutions on a uniform mesh unless
using specially designed meshes. A thoughtful examination of the results from the conven-
tional numerical methods, such as the finite difference method (FDM), the finite element
method (FEM), the finite volume method(FVM), the spline method, and other methods,
on uniform meshes as ε→ 0 fails for a satisfactory numerical solution, and the truncation
error becomes unbounded unless a large number of mesh points or adaptive layer mesh is
used in the approximation process [25]. This shows that the classical numerical method
is computationally costly and inefficient. Sometimes, the increase in mesh points also
causes the resulting systems of algebraic equations to be ill-conditioned. This drawback
motivates researchers to develop robust numerical methods for SPDDEs. In this context,
the fitted operator method (FOM) and fitted mesh method (FMM) are popular techniques
to overcome the drawbacks of classical numerical methods. For more details about FOMs
and FMMs, refer to the books and articles [18,25–27] and the references therein.

In this review, we investigate the solution methodology for the class of singularly
perturbed delay ordinary differential equations (SPDODEs) with small or large negative
shift(s), singularly perturbed ordinary differential–differential equations (SPODDEs) with
mixed shift(s), singularly perturbed delay partial differential equations(SPDPDEs) with
small or large negative shift(s), and singularly perturbed partial differential–difference
equations (SPPPDDEs) of the mixed type that were solved from 2012 to 2022 using different
numerical and asymptotic methods.

2. Models Depicting Singular Perturbation of Difference–Differential Problems

Several real-life problems are described by singularly perturbed differential–difference
with mixed shifts of which the following are the major ones to consider for this particu-
lar study.

2.1. The Modeling of the Activation of a Neuron [28]

The authors in [28] generalized the Stein’s model in terms of SPODDEs to consider
the time evolution trajectories of the membrane potential:

γ2

2 u
′′
(x) + (λ− x)u

′′
(x) + σeu(x + ae) + σiu(x− ai − (σe + σi)u(x) = −1,

subject to the boundary conditions:

u(x) = 0, x /∈ (x1, x2),

where the values x = x1 and x = x2 relate to the inhibitory reversal potential and to the
threshold value of membrane potential for action potential generation, respectively, and to
the non-derivative terms related to excitatory and inhibitory synaptic inputs.

2.2. Neuronal Variability [29]

The authors in [29] generalized the Stein’s model and proposed the following math-
ematical model in terms of SPPPDDEs to consider the time evolution trajectories of the
membrane potential:

−∂z
∂t

=
γ2

2
∂2z
∂x2 + (σD− x

λ
)

∂z
∂x

+ τsz(x + as, t) + wsz(x + is, t)− (τs + ws)z(x, t),
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where the non-derivative terms are allied to the superposition of excitatory and inhibitory
inputs.

3. Criteria for Including Studies and Selection Procedure
3.1. Literature Search

The relevant studies were identified by the use of electronic databases: Web of Science,
SCOPUS, and PubMed. In addition, the relevant articles were collected from different
Internet sources via Google Scholar, ResearchGate, and Sci-hub, library genius. Whenever
possible, search organizers were used to align the initial survey results more thoroughly
with the eligibility criteria. For example, studies written in English and published on
SCOPUS/Web of Science (SCIE/SSCI) indexed journals during the years 2012 to 2022 were
included. The search was completed in 30 January 2022.

3.2. Screening Process

Electronic and manual searches identified 496 potentially relevant studies and screened
for retrieval via title, abstract, keywords, and references. Then, 78 studies included in this
review were screened according to the screening criteria given in Table 1. Figure 1 shows
various steps in the process of selecting studies and depicting how we ended up with the
78 original studies we further analyzed.

Figure 1. Review inclusion flowchart.

Table 1. Inclusion and exclusion criteria of studies included in the review.

Criterion Include Exclude

1. Studies focusing on SPODDEs with small or large delay, SPODDEs without shift(s)
small mixed shifts and small delays

2. Studies focusing on SPPPDDEs with small or large delay, SPPPDDEs without shift(s)
small mixed shifts and small delays

3. Boundary conditions Dirichlet BC Non-Dirichlet BC
4. Publication year 2012–2022 Before 2012
5. Language English Non-English
6. Indexed on SCOPUS/Web of science not SCOPUS/Web of science

/PubMed /PubMed
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4. Developments toward Solution Methodology for SPDDEs

In this paper, we discuss a survey in chronological order on the asymptotic and
numerical treatment of SPDDEs of both ordinary and partial differential equations. For the
sake of convenience, we divide this survey into twelve parts chronologically. We would
like to apologize if there are any omissions, which are totally unintentional.

4.1. Developments toward Solution Methodology for SPODDEs

In this subsection, we give a brief description of the developed numerical methods for
SPODDE of the form on the domain D = (−1, 1):

−ε2 d2u(x)
dx2 + a(x) du(x)

dx + b(x)u(x− δ) + c(x)u(x, ) + d(x)u(x + η) = f (x), x ∈ D, (1)

subject to the following interval boundary conditions (IBCs):

u(x) = ς1(x), x ∈ [−δ, 0],
u(x) = ς2(x), x ∈ [1, 1 + η],

(2)

where 0 < ε � 1 is a singular perturbation parameter, δ is delay, and η is an advance
parameter satisfying either δ, η ≤ ε or δ, η ≥ ε . For the existence and uniqueness of
the solution, the functions a(x), b(x), c(x), d(x), u(x), ς1(x), and ς2(x) are assumed to be
sufficiently smooth and bounded with b(x) + c(x) + d(x) ≥ θ > 0 for all x ∈ D and for
some positive constant θ.

As can be seen from Tables 2 and 3, most of the solution methodologies presented
to solve problems (1) and (2) were developed based on uniform mesh except for three
works presented by [30–33]. Further, the majority of the methods are finite-difference-
based. This implies that it is possible to think of other alternative techniques to solve the
governing equation of the problem under consideration on either uniform or adaptive
mesh discretization techniques.

Table 2. Various methods and mesh used to solve Equations (1) and (2).

Author(s) Solution Methodology Meshes

[34] Exponentially fitted FDM
based on Il’in-Allen-Southwell fitting Specially designed mesh

[30] Fitted modified upwind finite
difference method Uniform mesh

[35] Collocation in combination with
matrices of Fibonacci polynomials Uniform mesh

[36] Domain decomposition method Uniform mesh
[37] Asymptotic-numerical method Uniform mesh

[38] Fitted non-standard finite
difference method Uniform mesh

[39] Galerkin method with exponential
fitting Uniform mesh

[40] Fourth order finite difference
method Uniform mesh

[41] Mixed FDM via domain
decomposition Uniform mesh

[42] New exponentially fitted three
term finite difference scheme Uniform mesh

[43] Fourth-order Runge–Kutta method Uniform mesh

[44] Numerical integration scheme using
non polynomial interpolation function Uniform mesh

[45] Exponentially fitted non-standard
FDM Uniform mesh
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Table 2. Cont.

Author(s) Solution Methodology Meshes

[46]
Exponentially fitted operator
finite difference method with
Richardson extrapolation

Uniform mesh

[47] Hybrid of the midpoint upwind FDM
and the central FDM

Piecewise
uniform
Shishkin mesh

[31] Hybrid finite difference scheme
with the cubic spline

Piecewise
uniform
Shishkin mesh

Table 3. Various methods and mesh used to solve Equations (1) and (2).

Author(s) Solution Methodology Meshes

[32] FDM Uniform mesh

[48] Finite element
method Bakhvalov-S-mesh

[33] Non-standard FDM Uniform mesh

[49] Finite difference approach
with a parametric spline Uniform mesh

[50] Fitted non-polynomial
spline approach Uniform mesh

[51] Successive complementary
expansion method (SCEM) Uniform mesh

[52] Haar wavelet collocation
method Uniform mesh

4.2. Developments toward Solution Methodology for SP Convection Diffusion Problem with Large
Shift in Space

In this subsection, we want to look at the static SPP given by

−ε
d2u(x)

dx2 − b(x) du(x)
dx + c(x)u(x) + d(x)u(x− 1) = f (x), x ∈ (0, 2), (3)

subject to the following boundary conditions (BCs):

u(2) = 0, u(x) = φ(x), x ∈ (−1, 0], (4)

where 0 < ε� 1, b(x) ≥ β > 0, d ≥ 0, c− b′L∞(1,2)
2 ≥ γ > 0 .

The results in Table 4 reveal that all the methods developed to solve the problem
under consideration in Equations (3) and (4) followed a uniform mesh discretization
approach. However, only scholars in [53] applied the nonuniform or adaptive mesh
approach, particularly the Shshikin mesh technique. It is also observable from the results
in the table that very few methods have been developed to solve the problem under
consideration in Equations (3) and (4). Hence, the solution methodology development for
the problem is at its infant stage.

Table 4. Various methods and mesh used to solve Equations (3) and (4).

Author(s) Solution Methodology Meshes

[53] Asymptotic initial value technique (AIVT) Piece-wise uniform Shishkin mesh
[54] Exponentially fitted FDM Uniform mesh
[55] Fourth FDM Uniform mesh
[56] Cubic spline in compression method Uniform mesh
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4.3. Developments toward Solution Methodology for SP Reaction Diffusion Problem with Large
Shift in Space

In this subsection, we want to look at the static SPP given by

−ε2 d2u(x)
dx2 + a(x)u(x) + b(x)u(x− 1) = f (x), x ∈ (0, 2), (5)

with IBCs:
u(2) = L, u(x) = φ(x), x ∈ (−1, 0], (6)

where 0 < ε� 1, a(x) ≥ α > 0, β0 ≤ b(x) ≤ β < 0, α + β0 ≥ η > 0, ∀x ∈ [0, 2] .
The results presented in Table 5 belong to the solution methodologies developed

for Equations (5) and (6). It reveals that most numerical methods developed were based
on nonuniform discretization techniques, namely Shihikin-, Bakhavlov-, and Shishkin–
Bakhavlov-type discretization techniques. Furthermore, all the methods developed are
based on finite difference approximation techniques except [57], a finite element method.

Table 5. Various methods and mesh used to solve Equations (5) and (6).

Author(s) Solution Methodology Meshes

[57] Non-symmetric discontinuous
Galerkin FEM

Shishkin
polynomial Shishkin(pS)
Bakhvalov–Shishkin (BS)
modified Bakhvalov–Shishkin
(mBS-) mesh

[58] Hybrid finite difference scheme Piece-wise uniform
Shishkin mesh

[59] Exponentially fitted numerical scheme
via domain decomposition Uniform mesh

[60] Classical FDM Piece-wise uniform
Shishkin mesh

[61] Numerov FDM Uniform mesh

[62] Iterative method
Shishkin mesh and
Bakhvalov Shishkin mesh
(BS mesh).

[63] Numerov method Uniform Mesh.
[64] Central FDM Uniform Mesh.

4.4. Developments toward Solution Methodology for SP Reaction Diffusion Problem with
Small Shift

In this subsection, we want to look at the static SPP given by

−ε
d2u(x)

dx2 + a(x)u(x− δ) + b(x)u(x) = f (x), x ∈ (0, 1), (7)

subject to the following IBCs:

u(1) = L, u(x) = φ(x),−δ ≤ x ≤ 0. (8)

Table 6 consists of the results of the solution methodology developed for the SP
reaction–diffusion problem given in Equations (7) and (8). As can be seen from the review
result, very few numerical methods have been developed to solve the problems described
by the governing Equations (7) and (8), and they are all based on uniform discretization
techniques. The methods are mainly finite difference methods and numerical integration
techniques. Hence, one can look for finite elements and other quadrature techniques based
on adaptive mesh approaches.
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Table 6. Various methods and mesh used to solve Equations (7) and (8).

Author(s) Solution Methodology Meshes

[65] Non-polynomial cubic spline method Uniform mesh
[55] Fourth FDM Uniform mesh
[66] Fourth order exponentially FDM Uniform mesh
[67] Trapezoidal rule Uniform mesh
[68] Simpson rule Uniform mesh

4.5. Developments toward Solution Methodology for SP Convection Diffusion Problem with
Negative Shift

In this subsection, we review numerical schemes developed for SPP given by

−ε
d2u(x)

dx2 + a(x) du(x−δ)
dx + b(x)u(x) = f (x), x ∈ (0, 1), (9)

with IBCs:
u(1) = A, u(x) = ψ(x), − δ ≤ x ≤ 0. (10)

Table 7 reveals that only a few finite-difference-based solution methodologies on a
uniform mesh discretization approach were generally developed to solve the problem of
the family of SPDDEs described by the governing equation in (9) and (10). This implies
that this area needs the attention of scholars working in this and related research areas.

Table 7. Various methods and mesh used to solve Equations (9) and (10).

Author(s) Solution Methodology Meshes

[69] Exponential spline method Uniform mesh
[70] Non-polynomial spline method Uniform mesh
[71] Novel FDM Uniform mesh

4.6. Developments toward Solution Methodology for SP Convection Diffusion Problem with
Negative Shift

In this subsection, we want to look at the static SPP given by

−ε
d2u(x)

dx2 + a(x) du(x)
dx + b(x)u(x− δ) = f (x), x ∈ (0, 1), (11)

with IBCs:
u(1) = β, u(x) = φ(x), − δ ≤ x ≤ 0. (12)

As seen from Table 8, the family of SP problems described by the governing equation
in (11) and (12) is solved by using various numerical methods, namely fitted operator finite
difference methods, spline intention methods, and new Lioville–Green transform methods.
Furthermore, all the techniques were developed based on uniform mesh discretization
techniques. Like others, finite element approaches and adaptive mesh techniques can be
considered an alternative to solve the problem.

Table 8. Various methods and mesh used to solve Equations (11) and (12).

Author(s) Solution Methodology Meshes

[72] Tension splines method Uniform mesh

[73] New Liouville–Green
Transform method Uniform mesh

[74] Exponentially fitted spline method Uniform mesh
[75] Exponentially fitted FDM Equidistant mesh
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4.7. Developments toward Solution Methodology for SPODDE with Negative Shifts

In this subsection, we give a brief description of the developed numerical methods for
SPODDE of the form :

−ε
d2u(x)

dx2 + a(x) du(x−δ)
dx + b(x)u(x− δ) + c(x)u(x) = f (x), x ∈ (0, 1), (13)

subject to IBCs:
u(x) = φ(x), x ∈ [−δ, 0], u(1) = ψ(1). (14)

Table 9 summarizes the solution methodologies developed to solve SP problems
involving small negative shifts both in convection and reaction terms given in (13) and (14).
Almost all the developed methods are the families of fitted operator finite difference
methods except [76], the B-spline collocation method. In this case, the peculiarity is that
some of the fitted operator methods are developed on layer adaptive meshes, which are
unique approaches.

Table 9. Various methods and mesh used to solve Equations (13) and (14).

Author(s) Solution Methodology Meshes

[77]
Non-standard mid-point upwind FDM,
Standard mid-point upwind FDM,
Non-standard mid-point upwind FDM

Uniform mesh,
Shiskin mesh,
Shiskin mesh

[78] Exponentially fitted operator
Mid-point upwind FDM Uniform mesh

[79] Exponentially fitted upwind FDM
with Richardson extrapolation technique Uniform mesh

[80] Central FDM Uniform mesh

[76] B-spline collocation method Piecewise uniform
Shishkin mesh

4.8. Developments toward Solution Methodology for SPPPDDEs with Mixed Shifts

In this subsection, we give a brief description of the developed numerical methods for
SPPPDDE of the form on the domain = = =x ×=t = (0, 1)× (0, T] for some fixed number
T > 0:

∂w(x,t)
∂t − ε2 ∂2w(x,t)

∂x2 + ω(x) ∂w(x,t)
∂x + v(x)ζ(x− δ, t) + $(x)w(x, t) + ϕ(x)w(x + η, t)

= f (x, t), (x, t) ∈ =,
(15)

subject to the following initial interval boundary conditions (I-IBCs):

w(x, 0) = w0(x), x ∈ =x,
w(x, t) = w1(x, t), − δ ≤ x ≤ 0, t ∈ (0, T],
w(x, t) = w2(x, t), 1 ≤ x ≤ 1 + η, t ∈ (0, T],

(16)

where 0 < ε� 1, δ is the delay, and η is the advance parameter satisfying either δ, η ≤ ε or
δ, η ≥ ε.

Tables 10 and 11 summarize the solution methodologies for singularly perturbed
families of partial differential–difference equations given in (15) and (16). The majority of
the methods developed are mainly from the families of finite difference methods except for
a few methods, namely [81–86]. From the point of view of the discretization techniques,
almost all have used either the implicit Euler method or the Crank–Nicholson method
for temporal discretization, whereas both uniform and nonuniform are used for spatial
mesh discretization.
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Table 10. Various methods and mesh used to solve Equations (15) and (16).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[87] Implicit Euler method FDM Uniform mesh
[88] Implicit Euler method Non-standard FDM Special type of mesh

[87] Implicit Euler method Combined FDM made out of modified upwind
and central difference schemes Uniform mesh

[89] Crank–Nicolson FDM Midpoint upwind FDM Piecewise-uniform Shishkin mesh

[90] Implicit Euler FDM Hybrid of midpoint upwind FDM and classical
central FDM Piecewise-uniform Shishkin mesh

[91] Backward Euler formula Exponentially fitted FDMs Uniform mesh
[92] Implicit Runge–Kutta method Non-standard FDM Uniform mesh
[81] Implicit Euler method Extended cubic B-spline basis functions Uniform mesh
[93] Implicit Euler method Exponentially fitted operator FDM Uniform mesh
[94] Backward Euler method New FDM Uniform mesh
[95] Implicit Euler method Central FDM Uniform mesh

Table 11. Various Methods and Mesh used to solve Equations (15) and (16).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[96] Crank–Nicolson method Quadratic B-spline collocation method Exponentially graded
[82] Implicit Euler method Specially designed FDM Uniform mesh

[97] Implicit Euler method
Hybrid computational method consisting of
midpoint upwind FDM and cubic spline in
tension method

Piecewise-uniform Shishkin mesh

[83] Crank–Nicolson method Non-standard FDM Uniform mesh
[84] Crank–Nicolson method Modified cubic B-spline basis functions Shishkin mesh
[85] Implicit Euler method Cubic B-collocation method Uniform mesh
[86] Implicit Euler method Cubic spline in tension method Uniform mesh

4.9. Developments toward Solution Methodology for SPDPDEs with Large Delay in Space

In this subsection, we give a brief description of the developed numerical methods for
SPDPDEs of the form on the domain D = Ωx ×Ωt = (0, 2)× (0, T] for some fixed number
T > 0:

∂y(x,t)
∂t − ε

∂2y(x,t)
∂x2 + r(x)y(x, t) + s(x)y(x− 1, t) = g(x, t), (x, t) ∈ D, (17)

subject to the following I-IBCs:

y(x, 0) = y0(x), x ∈ Ωx,
y(x, t) = φ(x, t), − 1 ≤ x ≤ 0, t ∈ (0, T],
y(2, t) = ψ(2, t), t ∈ (0, T].

(18)

As can be seen from Table 12, only three types of solution methodologies have been
developed for the SP reaction–diffusion partial differential equation with a large negative
shift given by the governing equation in (17) and (18). All are designed on an adaptive
mesh discretization approach which guarantees the parameter uniformity of the methods.

Table 12. Various methods and mesh used to solve Equations (17) and (18).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[98] Implicit Euler method Central FDM Piecewise-uniform
Shishkin mesh

[99] Crank–Nicolson method FDM Piecewise-uniform
Shishkin mesh

[100] Discontinuous Galerkin method
β-weighted
continuous
Galerkin FEM

Duran- and S-type
meshes
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4.10. Developments toward Solution Methodology for SPDPDEs with Small Negative Shift
in Space

In this subsection, we give a brief description of the developed numerical methods for
SPDPDEs of the form on the domain Λ = Γx × Γt = (0, 1)× (0, T] for some fixed number
T > 0:

∂z(x,t)
∂t − ε

∂2z(x,t)
∂x2 + a(x) ∂z(x,t)

∂x + r(x)z(x, t) + s(x)z(x− δ, t) = h(x, t), (x, t) ∈ Λ, (19)

subject to the following I-IBCs:

z(x, 0) = z0(x), x ∈ Γx,
z(x, t) = γ(x, t),−δ ≤ x ≤ 0, t ∈ Γt,
z(1, t) = ζ(1, t), t ∈ Γt.

(20)

The solution methodologies developed to solve the SP convection–diffusion PDEs
with a small negative shift given in (19) and (20) are summarized in Table 13. The methods
applied the Crank–Nicholson, implicit Runge–Kutta, implicit Euler, and θ-methods for the
mesh discretization of the temporal discretization.

Table 13. Various methods and mesh used to solve Equations (19) and (20).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[101] Crank–Nicolson method

Hybrid method
is designed
using mid-point
upwind with
central FDM

Piecewise
-uniform
Shishkin mesh

[102] Implicit Runge–Kutta method Non-standard FDM Uniform mesh

[103] θ-method Exponentially cubic
spline method Uniform mesh

[104] Implicit Euler method

Hybrid numerical
scheme consisting
of the midpoint
upwind method
and the cubic spline
method

Piecewise
-uniform
Shishkin mesh

4.11. Developments toward Solution Methodology for SP Convection-Diffusion Parabolic
Equations Involving Small Shifts

In this subsection, we give a brief description of the developed numerical methods
for SP convection–diffusion parabolic equations involving small shifts of the form on the
domain D = Ωx ×Ωt = (0, 1)× (0, T] for some fixed number T > 0:

∂y(x,t)
∂t − ε

∂2y(x,t)
∂x2 + a(x) ∂y(x−δ,t)

∂x + r(x)y(x, t) + s(x)y(x− δ, t) = g(x, t), (x, t) ∈ D, (21)

subject to the following I-IBCs:

y(x, 0) = y0(x), x ∈ Ωx,
y(x, t) = φ(x, t),−δ ≤ x ≤ 0, t ∈ (0, T],
y(1, t) = ψ(1, t), t ∈ (0, T].

(22)

As can be observed from Table 14, only a single solution methodology, namely the
non-standard finite difference method with the θ-method on a uniform mesh discretization
approach, has been developed for solving the SP convection diffusion parabolic partial
differential equation given in (21) and (22) and involving a small negative shift both in
convection and reaction terms. This indicates the existence of a huge gap in developing a
solution method for the families of the problem under consideration.
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Table 14. Various methods and mesh used to solve Equations (21) and (22).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[105] θ-method Non-standard FDM with
Richardson extrapolation Uniform mesh

4.12. Developments toward Solution Methodology for Singularly Perturbed Parabolic Delay
Differential Equation (SPPDDE) with Discontinuous Coefficients

In this subsection, we surveyed the numerical method developed to solve the following
SPPDDE with discontinuous coefficients and source terms on the domain ∪ = =− ∪ =+ =
(0, 1)× (0, T] ∪ (1, 2)× (0, T], where =− = (0, 1)× (0, T],=+ = (1, 2)× (0, T], ∂∪ = ∪\∪,
and T is some fixed positive time:

ε
∂2z(x,t)

∂x2 + u(x) ∂z(x,t)
∂x − s(x)z(x− 1, t)− r(x)z(x, t)− ∂z(x,t)

∂t = γ(x, t), (23)

subject to the following I-IBCs:

z(x, t) = ξ0(x), x ∈ [0, 2],
z(x, t) = ξ1(x, t), in[−1, 0]× [0, T],
z(2, t) = ξ2(2, t), t ∈ [0, 2],

(24)

where 0 < ε � 1, s(x), and r(x) are sufficiently smooth functions such that 0 < λ ≤
u(x), s(x) < 0, r(x) > 0, and s(x) + r(x) ≥ 0, ∀ x ∈ [0, 2]. Further, we consider that

u(x) =
{

u1(x), if 0 ≤ x ≤ 1,
u2(x), if 1 < x ≤ 2,

v(x) =
{

v1(x), if (x, t) ∈ =−,
v2(x), if (x, t) ∈ =+,

− λ∗1 < u1(x) < −λ1 < 0, − λ∗2 > u2(x) > λ2 > 0, |[u]| ≤ C, |[v]| ≤ C, (25)

where λ = min{λ1, λ2}, and λ∗ = max
{

λ∗1 , λ∗2
}

.
Table 15 summarizes the solution methodologies developed for solving the SP parabolic

PDEs containing a large negative shift and with discontinuous coefficients and source terms
given in (23)–(25). There are only three methods developed so far for solving the problem
under consideration, which indicates that it is a potential area for scholars to work on.

Table 15. Various methods and mesh used to solve Equations (23)–(25).

Numerical Scheme

Author(s) Temporal Direction Spatial Direction Meshes

[106] Backward Euler method Upwind FDM Piecewise-uniform
Shishkin mesh

[107] Implicit FDM
Hybrid scheme
composition of
a central difference
scheme and a midpoint
upwind scheme

Piecewise-uniform
Shishkin mesh

[108] Implicit Euler method Cubic-spline in
compression method

Uniform mesh

5. Conclusions and Further Directions

The class of SPDODEs with small or large negative shift(s), SPODDEs with mixed
shift(s), SPDPDEs with small or large negative shift(s), and SPPPDDEs of the mixed type
have been researched because of their numerous applications in many mathematical models.
The future behaviors of these problems are assumed to be described by their solutions.
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However, it is not easy to solve SPDDEs analytically due to the presence of a thin boundary
layer in the solution. Therefore, it is desirable to develop numerical methods, more precisely
ε−uniform convergent that solves SPDDEs effectively and efficiently. This survey indicates
that a wide variety of studies in the last ten years were mainly based on the development of
parameter uniform numerical methods than asymptotic method for SPDDEs. The primary
contribution of this survey is the investigation of the numerical and asymptotic methods
numerous researchers developed between 2012 and 2022 to solve SPDDEs.

Designing a low-cost uniformly convergent numerical method for such problems is
always a desirable task [109] and an active topic of the current research area. Most of the
numerical methods developed for SPDDEs were based on finite-difference schemes or
spline schemes, except for one paper of the finite-element method (FEM). One can consider
FEM to obtain better results in case of irregular boundaries. Spline techniques have become
popular and the ultimate tool to achieve the goal. However, the survey reveals that the
spline schemes considered for solving SPDDEs are up to the third order only.

Thus, we believe that more than third-order spline techniques for SPDDEs are one
of the possible directions of future research work. One can try to extend the techniques
used for solving SPDDEs to develop robust numerical schemes for multiple turning point
problems, non-linear problems, higher-order problems, and so on. This review paper
will serve as the building block for scholars working in this area to develop new robust
computational methods for solving SPDDEs.
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