Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli

Halit Orhan ${ }^{1}$, Murat Çağlar ${ }^{2}$ (D) and Luminiţa-Ioana Cotîrlă ${ }^{3, *}$ (D)

1 Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Türkiye
2 Department of Mathematics, Faculty of Science, Erzurum Technical University, 25100 Erzurum, Türkiye
3 Department of Mathematics, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania

* Correspondence: luminita.cotirla@math.utcluj.ro

Abstract

The main goal of this investigation is to obtain sharp upper bounds for Fekete-Szegö functional and the third Hankel determinant for a certain subclass $\mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$ of holomorphic functions defined by the Carlson-Shaffer operator in the unit disk. Finally, for some special values of parameters, several corollaries were presented.

Keywords: Hankel determinant; Carlson-Shaffer operator; Lemniscate of Bernoulli; holomorphic function; univalent function; Fekete-Szegö problem; starlike function; Zalcman functional

MSC: 30C45; 30C50; 30C80

1. Introduction and Definitions

Denote by \mathcal{A} the family of holomorphic functions defined in the unit disk $\Omega=\{\varsigma \in \mathbb{C}:|\varsigma|<1\}$, with expansion

$$
\begin{equation*}
l(\varsigma)=\varsigma+\sum_{k=2}^{\infty} m_{k} \zeta^{k} \tag{1}
\end{equation*}
$$

and let \mathcal{S} be the subset of \mathcal{A}, consisting of functions which are univalent in Ω.
Let \mathcal{P} be a family of the holomorphic functions t of the form

$$
\begin{equation*}
t(\varsigma)=1+\sum_{k=1}^{\infty} t_{k} \zeta^{k}, \quad(\varsigma \in \Omega) \tag{2}
\end{equation*}
$$

satisfying $\operatorname{Re}(t(\varsigma))>0$ in Ω. The family of starlike functions in Ω are represented by the symbol \mathcal{S}^{*}, which satisfies

$$
\frac{\varsigma l^{\prime}(\varsigma)}{l(\varsigma)} \in \mathcal{P}, \quad(\text { for all } \varsigma \in \Omega)
$$

In addition, the symbol $\mathcal{S} \mathcal{L}^{*}$ represents the family of functions that satisfy

$$
\left|\left(\frac{\varsigma l^{\prime}(\varsigma)}{l(\varsigma)}\right)^{2}-1\right|<1, \quad(\varsigma \in \Omega)
$$

As a result, $l \in \mathcal{S} \mathcal{L}^{*}$ can be expressed by

$$
\left|w^{2}-1\right|<1
$$

if and only if $\frac{\varsigma l^{\prime}(\varsigma)}{l(\varsigma)}$ is the inside region bounded by the right half of the Bernoulli lemniscate.

This class was introduced by Sokól [1] and Sokól et al. [2]. If there is a Schwarz function w that is holomorphic in Ω, with $w(0)=0,|w(\varsigma)|<1$, such that $l(\varsigma)=h(w(\varsigma))$, $\varsigma \in \Omega$, then the function l is subordinate to h, denoted by the notation $l \prec h$. If the function h is univalent in Ω, then $l \prec h$ if

$$
l(0)=h(0) \text { and } l(\Omega) \subset h(\Omega)
$$

A function $l \in \mathcal{A}$ is said to be starlike of order α if and only if

$$
\operatorname{Re}\left\{\frac{\varsigma l^{\prime}(\varsigma)}{l(\varsigma)}\right\}>\alpha, \quad(\varsigma \in \Omega)
$$

for some $\alpha(0 \leq \alpha<1)$. We denote the class of all starlike functions of order α by $\mathcal{S}^{*}(\alpha)$. We also note that $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ is the well-known class of all normalized starlike functions in Ω.

Now, the function

$$
\begin{equation*}
\mathcal{K}_{\alpha}(\varsigma)=\frac{\varsigma}{(1-\zeta)^{2(1-\alpha)}} \tag{3}
\end{equation*}
$$

is a well known extremal function for the class $\mathcal{S}^{*}(\alpha)$, (see [3-5]).
Setting

$$
\begin{equation*}
\psi(\alpha, k)=\frac{\Pi_{k=2}^{k}(k-2 \alpha)}{(k-1)!}, \quad(k \geq 2) \tag{4}
\end{equation*}
$$

the function \mathcal{K}_{α} can be written in the form as follows:

$$
\begin{equation*}
\mathcal{K}_{\alpha}(\varsigma)=\varsigma+\sum_{k=2}^{\infty} \psi(\alpha, k) \varsigma^{k} \tag{5}
\end{equation*}
$$

We denote by $\mathcal{F}(\alpha, k, \psi)$ the class of functions \mathcal{K}_{α}. Then, we note that $\psi(\alpha, k)$ is a decreasing function in α and satisfies

$$
\lim _{k \rightarrow \infty} \psi(\alpha, k)=\left\{\begin{array}{cc}
\infty & \left(\alpha<\frac{1}{2}\right) \\
1 & \left(\alpha=\frac{1}{2}\right) \\
0 & \left(\alpha>\frac{1}{2}\right)
\end{array} .\right.
$$

Let $(l * h)(\varsigma)$ be the Hadamard product (or convolution) of two functions l and h, that is, if l given by (1) and h is given by

$$
h(\varsigma)=\varsigma+\sum_{k=2}^{\infty} n_{k} \varsigma^{k}
$$

Then,

$$
\begin{equation*}
(l * h)(\varsigma)=\varsigma+\sum_{k=2}^{\infty} m_{k} n_{k} \varsigma^{k}=(h * l)(\varsigma), \quad(\varsigma \in \Omega) \tag{6}
\end{equation*}
$$

Let $\Theta(u, v, \varsigma)$ be defined by

$$
\Theta(u, v, \varsigma)=\varsigma+\sum_{k=2}^{\infty} \frac{(u)_{k-1}}{(v)_{k-1}} \varsigma^{k}, \quad\left(u \in \mathbb{C}, v \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-}, \mathbb{Z}_{0}^{-}=\{\ldots-2,-1,0\} ; \varsigma \in \Omega\right) .
$$

The function, $\Theta(u, v, \varsigma)$ is known as the incomplete beta function. The term $(\varkappa)_{k}$ is the Pochhammer symbol that can be expanded in Gamma functions as

$$
(\varkappa)_{k}=\frac{\Gamma(\varkappa+k)}{\Gamma(\varkappa)}=\left\{\begin{array}{cc}
1, & k=0 \\
\varkappa(\varkappa+1)(\varkappa+2) \ldots(\varkappa+k-1), & k \in \mathbb{N}=\{1,2,3, \cdots\}
\end{array}\right.
$$

Corresponding to the $\Theta(u, v, \varsigma)$ Carlson-Shaffer function [6], an operator $\mathcal{L}(u, v)$ is introduced for $l \in \mathcal{A}$ using the Hadamard product as follows:

$$
\mathcal{L}(u, v) l(\varsigma)=\Theta(u, v, \varsigma) * l(\varsigma)=\varsigma+\sum_{k=2}^{\infty} \frac{(u)_{k-1}}{(v)_{k-1}} m_{k} \varsigma^{k} \quad(\varsigma \in \Omega)
$$

Further, for the function $\mathcal{L}(u, v) l(\varsigma)$

$$
\begin{equation*}
\tau(\varsigma)=\mathcal{L}(u, v) l(\varsigma) * \mathcal{K}_{\alpha}(\varsigma)=\varsigma+\sum_{k=2}^{\infty} \frac{(u)_{k-1}}{(v)_{k-1}} \psi(\alpha, k) m_{k} \varsigma^{k} \tag{7}
\end{equation*}
$$

where $\mathcal{L}(u, v)$ is called the Carlson-Shaffer operator [6], and the operator $*$ stands for the Hadamard product (or convolution product) of two power series as given by (6). We will show by $\widetilde{\mathcal{F}}(\alpha, k, \psi)$ the family of functions $\tau(\varsigma)$.

Definition 1. We consider that $\mathcal{S L}^{*}(u, v, \alpha)$ is the family of holomorphic functions given by

$$
\begin{align*}
\mathcal{S} \mathcal{L}^{*}(u, v, \alpha)= & \left\{\tau(\varsigma) \in \widetilde{\mathcal{F}}(\alpha, k, \psi):\left|\left(\frac{\varsigma \tau^{\prime}(\varsigma)}{\tau(\varsigma)}\right)^{2}-1\right|<1\right\}, \tag{8}\\
& \frac{\varsigma \tau^{\prime}(\varsigma)}{\tau(\varsigma)} \prec \sqrt{1+\varsigma}, \quad(\varsigma \in \Omega), \tag{9}
\end{align*}
$$

where

$$
\begin{equation*}
\tau(\varsigma)=\varsigma+\sum_{k=2}^{\infty} \frac{(u)_{k-1}}{(v)_{k-1}} \psi(\alpha, k) m_{k} \varsigma^{k} \tag{10}
\end{equation*}
$$

Hankel matrices arise naturally in a wide range of applications in science, engineering, and other related areas, such as signal processing and control theory. For a survey of Hankel matrices and polynomials, the reader is referred to $[7,8]$ and the references therein.

The Hankel determinant $\mathcal{H}_{q, k}(l)(q, k \in \mathbb{N})$ for a function $l \in \mathcal{S}$ of the form (1) was defined by Pommerenke (see $[9,10]$) as

$$
\mathcal{H}_{q, k}(l)=\left|\begin{array}{cccc}
m_{k} & m_{k+1} & \cdots & m_{k+q-1} \\
m_{k+1} & m_{k+2} & \cdots & m_{k+q} \\
\vdots & \vdots & & \vdots \\
m_{k+q-1} & m_{k+q} & \cdots & m_{k+2 q-2}
\end{array}\right| \quad\left(m_{1}=1\right) .
$$

For fixed integer q and k, the growth of $\mathcal{H}_{q, k}(l)$ has been studied for different subfamilies of univalent functions. These studies focus on the main subclasses of certain holomorphic functions. In fact, the majority of papers discuss the determinants $\mathcal{H}_{2,2}(l)$ and $\mathcal{H}_{3,1}(l)$. Case $\mathcal{H}_{2,1}(l)=m_{3}-m_{2}^{2}$ is also very well known. In the year 1933, Fekete and Szegö (see [11]) obtained a sharp bound of the function $m_{3}-\mu m_{2}^{2}$ with real $\mu \in \mathbb{R}$ for a univalent function l. For $\mu \in \mathbb{C}$ this functional was generalized as $\left|m_{3}-\mu m_{2}^{2}\right|$. Estimating for the upper bound of $\left|m_{3}-\mu m_{2}^{2}\right|$ is known as the Fekete-Szegö problem, (see [12-14]). The second Hankel determinant $\mathcal{H}_{2,2}(l)$ is given by $\mathcal{H}_{2,2}(l)=m_{2} m_{4}-m_{3}^{2}$. In recent years, the research on Hankel determinants has focused on the estimation of $\left|\mathcal{H}_{2,2}(l)\right|$. Several authors obtained results for different classes of univalent functions. For example, the sharp bounds for the second Hankel determinant $\mathcal{H}_{2,2}(l)$ were obtained for the classes of starlike and convex functions in [15-18]. Lee et al. [19] established the sharp bound for $\left|\mathcal{H}_{2,2}(l)\right|$ by generalizing their classes by means of the principle of subordination between holomorphic functions. Our main focus in this investigation is for the class $\mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$ on the Hankel determinant $\mathcal{H}_{3,1}(l)$. The calculation of $\left|\mathcal{H}_{3,1}(l)\right|$ is far more challenging compared to find-
ing the bound of $\left|\mathcal{H}_{2,2}(l)\right|$. Further, in this work, we find the sharp bounds for $\left|\mathcal{H}_{2,2}(l)\right|$, when $l \in \mathcal{S} \mathcal{L}^{*}(u, v, \alpha), \alpha \in[0,1)$, together with the sharp bound of the functional

$$
\mathcal{Z}=\left|m_{2} m_{3}-m_{4}\right|,
$$

when $l \in \mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$ and $\alpha \in[0,1)$.

2. Preliminary Lemmas

Some preliminary results required in the following section are now listed.
Lemma 1 ([20]). Suppose that \mathcal{P} denotes the family of holomorphic functions t normalized by

$$
\begin{equation*}
t(\varsigma)=1+t_{1} \varsigma+t_{2} \varsigma^{2}+\ldots \tag{11}
\end{equation*}
$$

and satisfying the condition $\operatorname{Re}(t(\varsigma))>0, \varsigma \in \Omega$. Then, for any $\eta \in \mathbb{R}$,

$$
\left|t_{2}-\eta t_{1}^{2}\right| \leq\left\{\begin{array}{cc}
-4 \eta+2, & \eta<0 \tag{12}\\
2, & 0 \leq \eta \leq 1 \\
4 \eta-2, & \eta \geq 1
\end{array}\right.
$$

The equality holds true in (12) if and only if

$$
t(\varsigma)=\frac{1+\varsigma}{1-\varsigma}
$$

or one of its rotations, when $\eta<0$ or $\eta>1$. If $0<\eta<1$, then the equality holds true in (12) if and only if

$$
t(\varsigma)=\frac{1+\varsigma^{2}}{1-\varsigma^{2}}
$$

or one of its rotations. If $\eta=0$, the equality holds true in (12) if and only if

$$
t(\varsigma)=\left(\frac{1+\delta}{2}\right) \frac{1+\varsigma}{1-\varsigma}+\left(\frac{1-\delta}{2}\right) \frac{1-\varsigma}{1+\varsigma}, \quad 0 \leq \delta \leq 1
$$

or one of its rotations. If $\eta=1$, then the equality in (12) holds true if $t(\varsigma)$ is a reciprocal of one of the functions, such that the equality holds true in the case when $\eta=0$.

Lemma 2 ([21]). Assume that $t \in \mathcal{P}$ is the form Equation (2), and $\eta \in \mathbb{C}$, we have

$$
\left|t_{2}-\eta t_{1}^{2}\right| \leq 2 \max \{1,|1-2 \eta|\}
$$

Lemma 3 ([22,23]). If $t \in \mathcal{P}$ and has the form (11) then

$$
2 t_{2}=t_{1}^{2}+x\left(4-t_{1}^{2}\right)
$$

for some $x,|x| \leq 1$ and

$$
4 t_{3}=t_{1}^{3}+2\left(4-t_{1}^{2}\right) t_{1} x-\left(4-t_{1}^{2}\right) t_{1} x^{2}+2\left(4-t_{1}^{2}\right)\left(1-|x|^{2}\right) \varsigma
$$

for some $\varsigma,|\varsigma| \leq 1$.
Lemma 4 ([24]). If $t \in \mathcal{P}$ and has the form (11), then

$$
\left|t_{k}\right| \leq 2 \quad(k \in \mathbb{N})
$$

and the inequality is sharp.

3. Main Results

In the remainder of this work, we will assume that $u \geq v>0$ until explicitly stated otherwise.

We now prove our first result asserted by Theorem 1 below.
Theorem 1. If the function l, given by (1) belongs to the class $\mathcal{S}^{*}(u, v, \alpha)$, then $\mu \in \mathbb{R}$, we have

$$
\left|m_{3}-\mu m_{2}^{2}\right| \leq\left\{\begin{array}{cc}
\frac{1}{16}\left(\frac{v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}-\mu \frac{v^{2}}{u^{2}(1-\alpha)^{2}}\right) & \mu \leq-\frac{3 u(v+1)(1-\alpha)}{v(u+1)(3-2 \alpha)} \\
\frac{1}{4} \frac{v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}, & -\frac{3 u(v+1)(1-\alpha)}{v(u+1)(3-2 \alpha)} \leq \mu \leq \frac{5 u(v+1)(1-\alpha)}{v(u+1)(3-2 \alpha)} \\
\frac{1}{16}\left(-\frac{v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}+\mu \frac{v^{2}}{u^{2}(1-\alpha)^{2}}\right), & \mu \geq \frac{5 u(v+1)(1-\alpha)}{v(u+1)(3-2 \alpha)}
\end{array} .\right.
$$

Proof. From Equation (9), it follows that

$$
\frac{\zeta \tau^{\prime}(\zeta)}{\tau(\zeta)} \prec \Phi(\varsigma) .
$$

Define the function first,

$$
t(\varsigma)=1+\sum_{k=1}^{\infty} t_{k} \varsigma^{k}=\frac{1+w(\varsigma)}{1-w(\varsigma)}
$$

Since $t \in \mathcal{P}$,

$$
w(\varsigma)=\frac{t(\varsigma)-1}{t(\zeta)+1}
$$

Using Equation (9), we have

$$
\frac{\varsigma \tau^{\prime}(\varsigma)}{\tau(\varsigma)}=\Phi(w(\varsigma))
$$

Now as

$$
\left[\frac{2 t(\zeta)}{1+t(\zeta)}\right]^{\frac{1}{2}}=\left[2-\frac{2}{1+t(\zeta)}\right]^{\frac{1}{2}}
$$

so, we have

$$
\begin{aligned}
{\left[\frac{2 t(\varsigma)}{1+t(\varsigma)}\right]^{\frac{1}{2}}=} & 1+\frac{1}{4} t_{1} \varsigma+\left(\frac{1}{4} t_{2}-\frac{5}{32} t_{1}^{2}\right) \varsigma^{2}+\left(\frac{1}{4} t_{3}-\frac{5}{16} t_{1} t_{2}+\frac{13}{128} t_{1}^{3}\right) \varsigma^{3} \\
& +\left(\frac{19}{8} t_{1} t_{3}-\frac{3}{2} t_{4}+\frac{361}{512} t_{1}^{4}+\frac{9}{8} t_{2}^{2}-\frac{34}{16} t_{1}^{2} t_{2}\right) \varsigma^{4}+\ldots
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\frac{\varsigma \tau^{\prime}(\varsigma)}{\tau(\varsigma)}= & 1+Q_{2} m_{2} \varsigma+\left(2 Q_{3} m_{3}-Q_{2}^{2} m_{2}^{2}\right) \varsigma^{2}+\left(3 Q_{4} m_{4}+Q_{2}^{3} m_{2}^{3}-3 Q_{2} Q_{3} m_{2} m_{3}\right) \varsigma^{3} \\
& +\left(4 Q_{5} m_{5}-4 Q_{2} Q_{4} m_{2} m_{4}-2 Q_{3}^{2} m_{3}^{2}-Q_{2}^{4} m_{2}^{4}+4 Q_{2}^{2} Q_{3} m_{2}^{2} m_{3}\right) \varsigma^{4}+\ldots
\end{aligned}
$$

where

$$
\begin{aligned}
Q_{2} & =\frac{u}{v}(2-2 \alpha) \\
Q_{3} & =\frac{u(u+1)}{2 v(v+1)}(2-2 \alpha)(3-2 \alpha) \\
Q_{4} & =\frac{u(u+1)(u+2)}{6 v(v+1)(v+2)}(2-2 \alpha)(3-2 \alpha)(4-2 \alpha), \\
Q_{5} & =\frac{u(u+1)(u+2)(u+2)}{24 v(v+1)(v+2)(v+2)}(2-2 \alpha)(3-2 \alpha)(4-2 \alpha)(5-2 \alpha) .
\end{aligned}
$$

Thus,

$$
\begin{gather*}
m_{2}=\frac{v}{4 u(2-2 \alpha)} t_{1} \tag{13}\\
m_{3}=\frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left[\frac{1}{4} t_{2}-\frac{3}{32} t_{1}^{2}\right], \tag{14}\\
m_{4}=\frac{v(v+1)(v+2)}{u(u+1)(u+2)(2-2 \alpha)(3-2 \alpha)(4-2 \alpha)}\left[\frac{1}{2} t_{3}-\frac{7}{16} t_{1} t_{2}+\frac{13}{128} t_{1}^{3}\right] \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
m_{5}=\frac{v(v+1)(v+2)(v+3)}{u(u+1)(u+2)(u+3)(2-2 \alpha)(3-2 \alpha)(4-2 \alpha)(5-2 \alpha)}\left[\frac{19}{8} t_{1} t_{3}-\frac{3}{2} t_{4}+\frac{361}{512} t_{1}^{4}+\frac{9}{8} t_{2}^{2}-\frac{34}{16} t_{1}^{2} t_{2}\right] . \tag{16}
\end{equation*}
$$

We now have the following using the Equations (13) and (14):

$$
\begin{array}{r}
m_{3}-\mu m_{2}^{2}=\frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left[\frac{1}{4} t_{2}-\frac{3}{32} t_{1}^{2}\right]-\mu \frac{v^{2}}{16 u^{2}(2-2 \alpha)^{2}} t_{1}^{2}, \\
\left|m_{3}-\mu m_{2}^{2}\right| \leq \frac{v(v+1)}{8 u(u+1)(1-\alpha)(3-2 \alpha)}\left|t_{2}-\frac{1}{8}\left(\mu \frac{v(u+1)(3-2 \alpha)}{u(1-\alpha)(v+1)}+3\right) t_{1}^{2}\right| . \tag{17}
\end{array}
$$

We obtained the required result by applying Lemma 1 to Equation (17). This completes the proof of Theorem 1.

Theorem 2. If the function l, given by (1), belongs to the class $\mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$, then $\mu \in \mathbb{C}$, we have

$$
\left|m_{3}-\mu m_{2}^{2}\right| \leq \frac{v(v+1)}{4 u(u+1)(1-\alpha)(3-2 \alpha)} \max \left\{1,\left|\frac{1}{4} \mu \frac{v(u+1)(3-2 \alpha)}{u(v+1)(1-\alpha)}-\frac{1}{4}\right|\right\} .
$$

Proof. By making use of Equations (13) and (14), we have

$$
\begin{gathered}
m_{3}-\mu m_{2}^{2}=\frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left[\frac{1}{4} t_{2}-\frac{3}{32} t_{1}^{2}\right]-\mu \frac{v^{2}}{16 u^{2}(2-2 \alpha)^{2}} t_{1}^{2} \\
\left|m_{3}-\mu m_{2}^{2}\right| \leq \frac{v(v+1)}{8 u(u+1)(1-\alpha)(3-2 \alpha)}\left|t_{2}-\frac{1}{8}\left(\mu \frac{v(u+1)(3-2 \alpha)}{u(v+1)(1-\alpha)}+3\right) t_{1}^{2}\right|
\end{gathered}
$$

therefore, using Lemma 2, we obtain the result,

$$
\left|m_{3}-\mu m_{2}^{2}\right| \leq \frac{v(v+1)}{4 u(u+1)(2-2 \alpha)(3-2 \alpha)} \max \left\{1,\left|\frac{1}{4} \mu \frac{v(u+1)(3-2 \alpha)}{u(v+1)(1-\alpha)}-\frac{1}{4}\right|\right\} .
$$

Thus, the proof of Theorem 2 is completed.
For the case $\mu \in \mathbb{C}$ and $u=v$ in Theorem 2, this reduces to the following result.

Corollary 1. Let $\alpha \in[0,1)$ and $\mu \in \mathbb{C}$. If the function l, given by (1), belongs to the class $\mathcal{S} \mathcal{L}^{*}(u, u, \alpha)=\mathcal{S} \mathcal{L}^{*}(u, \alpha)$, then

$$
\left|m_{3}-\mu m_{2}^{2}\right| \leq \frac{1}{4(1-\alpha)(3-2 \alpha)} \max \left\{1,\left|\frac{1}{4} \mu \frac{(3-2 \alpha)}{(1-\alpha)}-\frac{1}{4}\right|\right\}
$$

and the inequality is sharp.

4. The Hankel Determinant $\mathcal{H}_{2,2}(l)$

In this section, we find the sharp bound for the modulus of the second Hankel determinant $\mathcal{H}_{2,2}(l)=m_{2} m_{4}-m_{3}^{2}$, when $l \in \mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$.

Theorem 3. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, v, \alpha)$, then

$$
\left|m_{2} m_{4}-m_{3}^{2}\right| \leq \frac{v^{2}(v+1)^{2}}{16 u^{2}(u+1)^{2}(1-\alpha)^{2}(3-2 \alpha)^{2}} .
$$

Proof. Using the Equations (13)-(15), we obtain the following

$$
\begin{aligned}
m_{2} m_{4}-m_{3}^{2}= & \left(\frac{v}{4 u(2-2 \alpha)} t_{1}\right)\left\{\frac{v(v+1)(v+2)}{u(u+1)(u+2)(2-2 \alpha)(3-2 \alpha)(4-2 \alpha)}\left[\frac{1}{2} t_{3}-\frac{7}{16} t_{1} t_{2}+\frac{13}{128} t_{1}^{3}\right]\right\} \\
& -\left[\frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left(\frac{1}{4} t_{2}-\frac{3}{32} t_{1}^{2}\right)\right]^{2}
\end{aligned}
$$

After simplification, we have

$$
\begin{aligned}
m_{2} m_{4}-m_{3}^{2}= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{\frac{1536(v+2)}{(u+2)(4-2 \alpha)} t_{1} t_{3}-\frac{768(v+1)}{(u+1)(3-2 \alpha)} t_{2}^{2}\right. \\
& \left.+\left(\frac{576(v+1)}{(u+1)(3-2 \alpha)}-\frac{1344(v+2)}{(u+2)(4-2 \alpha)}\right) t_{1}^{2} t_{2}+\left(\frac{312(v+2)}{(u+2)(4-2 \alpha)}-\frac{108(v+1)}{(u+1)(3-2 \alpha)}\right) t_{1}^{4}\right\}
\end{aligned}
$$

By substituting values of t_{2} and t_{3} from Lemma 3, after some simplification, we arrive at

$$
\begin{aligned}
m_{2} m_{4}-m_{3}^{2}= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{\left(\frac{312(v+2)}{(u+2)(4-2 \alpha)}-\frac{108(v+1)}{(u+1)(3-2 \alpha)}\right) t_{1}^{4}\right. \\
& +\frac{384(v+2)}{(u+2)(4-2 \alpha)} t_{1}\left[t_{1}^{3}+2 t_{1}\left(4-t_{1}^{2}\right) x-t_{1}\left(4-t_{1}^{2}\right) x^{2}+2\left(4-t_{1}^{2}\right)\left(1-|x|^{2} \varsigma\right)\right] \\
& +\left(\frac{288(v+1)}{(u+1)(3-2 \alpha)}-\frac{672(v+2)}{(u+2)(4-2 \alpha)}\right) t_{1}^{2}\left[t_{1}^{2}+\left(4-t_{1}^{2}\right) x\right] \\
& \left.-\frac{192(v+1)}{(u+1)(3-2 \alpha)}\left[t_{1}^{2}+\left(4-t_{1}^{2}\right) x\right]^{2}\right\}
\end{aligned}
$$

Now, taking the module and replacing $|x|$ by ρ and t_{1} by t, we have

$$
\begin{align*}
\left|m_{2} m_{4}-m_{3}^{2}\right| \leq & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{\left(\frac{12(v+2)}{(u+2)(2-\alpha)}-\frac{12(v+1)}{(u+1)(3-2 \alpha)}\right) t^{4}\right. \\
& +\left(\frac{96(v+1)}{(u+1)(3-2 \alpha)}-\frac{48(v+2)}{(u+2)(2-\alpha)}\right) t^{2}\left(4-t^{2}\right) \rho+\frac{384(v+2)}{(u+2)(2-\alpha)} t\left(4-t^{2}\right) \\
& \left.+\left(\frac{192(v+2)}{(u+2)(2-\alpha)} t^{2}+\frac{384(v+2)}{(u+2)(2-\alpha)} t+\frac{192(v+1)}{(u+1)(3-2 \alpha)}\left(4-t^{2}\right)\right) \rho^{2}\left(4-t^{2}\right)\right\} \\
= & F(t, \rho) . \tag{18}
\end{align*}
$$

Upon differentiating both sides (18) with respect to ρ, we obtain

$$
\begin{aligned}
\frac{\partial F(t, \rho)}{\partial \rho}= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{\left(\frac{96(v+1)}{(u+1)(3-2 \alpha)}-\frac{48(v+2)}{(u+2)(2-\alpha)}\right) t^{2}\left(4-t^{2}\right)\right. \\
& \left.+\left(\frac{192(v+2)}{(u+2)(2-\alpha)} t^{2}+\frac{384(v+2)}{(u+2)(2-\alpha)} t+\frac{192(v+1)}{(u+1)(3-2 \alpha)}\left(4-t^{2}\right)\right) 2 \rho\left(4-t^{2}\right)\right\}
\end{aligned}
$$

It is clear that

$$
\frac{\partial F(t, \rho)}{\partial \rho}>0
$$

which show that $F(t, \rho)$ is an increasing function of ρ on the closed interval $[0,1]$. This implies that the maximum value occurs at $\rho=1$. This implies that

$$
\max \{F(t, \rho)\}=F(t, 1)=G(t)
$$

We now observe that

$$
\begin{align*}
G(t)= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{\left(\frac{12(v+2)}{(u+2)(2-\alpha)}-\frac{12(v+1)}{(u+1)(3-2 \alpha)}\right) t^{4}\right. \\
& +\left(\frac{96(v+1)}{(u+1)(3-2 \alpha)}-\frac{48(v+2)}{(u+2)(2-\alpha)}\right) t^{2}\left(4-t^{2}\right)+\frac{384(v+2)}{(u+2)(2-\alpha)} t\left(4-t^{2}\right) \tag{19}\\
& \left.+\left(\frac{192(v+2)}{(u+2)(2-\alpha)} t^{2}+\frac{384(v+2)}{(u+2)(2-\alpha)} t+\frac{192(v+1)}{(u+1)(3-2 \alpha)}\left(4-t^{2}\right)\right)\left(4-t^{2}\right)\right\} .
\end{align*}
$$

Differentiating (19) with respect to t, we obtain

$$
\begin{aligned}
G^{\prime}(t)= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{4\left(\frac{84(v+1)}{(u+1)(3-2 \alpha)}-\frac{132(v+2)}{(u+2)(2-\alpha)}\right) t^{3}\right. \\
& \left.-\frac{96(v+2)}{(u+2)(2-\alpha)} t^{2}+16\left(\frac{72(v+2)}{(u+2)(2-\alpha)}-\frac{144(v+1)}{(u+1)(3-2 \alpha)}\right) t+\frac{3072(v+2)}{(u+2)(2-\alpha)}\right\} .
\end{aligned}
$$

Differentiating again above equation with respect to t, we have

$$
\begin{aligned}
G^{\prime \prime}(t)= & \frac{v^{2}(v+1)}{12,288 u^{2}(u+1)(2-2 \alpha)^{2}(3-2 \alpha)}\left\{12\left(\frac{84(v+1)}{(u+1)(3-2 \alpha)}-\frac{132(v+2)}{(u+2)(2-\alpha)}\right) t^{2}\right. \\
& \left.-\frac{192(v+2)}{(u+2)(2-\alpha)} t+16\left(\frac{72(v+2)}{(u+2)(2-\alpha)}-\frac{144(v+1)}{(u+1)(3-2 \alpha)}\right)\right\} .
\end{aligned}
$$

For $t=0,(t \in[0,2])$ shows that the maximum value of $G(t)$ occurs at $t=0$. Hence, we obtain,

$$
\left|m_{2} m_{4}-m_{3}^{2}\right| \leq \frac{v^{2}(v+1)^{2}}{16 u^{2}(u+1)^{2}(1-\alpha)^{2}(3-2 \alpha)^{2}}
$$

Thus, the proof of Theorem 3 is completed.
Upon setting $u=v$ in Theorem 3, we are led to the following results, respectively:
Corollary 2. Let $\alpha \in[0,1)$. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, u, \alpha)=$ $\mathcal{S L}^{*}(u, \alpha)$, then

$$
\left|m_{2} m_{4}-m_{3}^{2}\right| \leq \frac{1}{16(1-\alpha)^{2}(3-2 \alpha)^{2}}
$$

and the inequality is sharp.
If we choose $\alpha=0$ in Corollary 2, we obtain the following corollary.

Corollary 3. Let $\alpha \in[0,1)$. If the function l, given by (1), belongs to the class $\mathcal{S}^{*}(u, u, 0)=$ $\mathcal{S L}^{*}(u)$, then

$$
\left|m_{2} m_{4}-m_{3}^{2}\right| \leq \frac{1}{144}
$$

and the inequality is sharp.

5. The Zalcman Functional

In this section, we prove the following theorem on the upper bound estimate of the Zalcman functional $\left|m_{2} m_{3}-m_{4}\right|$, noting that a non-sharp inequality was found in [25-29].

Theorem 4. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, v, \alpha)$, then

$$
\left|m_{2} m_{3}-m_{4}\right| \leq \frac{v(v+1)(v+2)}{4 u(u+1)(u+2)(1-\alpha)(2-\alpha)(3-2 \alpha)}
$$

Proof. Using the values given in (13)-(15) we have

$$
\begin{aligned}
m_{2} m_{3}-m_{4}= & \left(\frac{v}{4 u(2-2 \alpha)} t_{1}\right)\left[\frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left(\frac{1}{4} t_{2}-\frac{3}{32} t_{1}^{2}\right)\right] \\
& -\left\{\frac{v(v+1)(v+2)}{u(u+1)(u+2)(2-2 \alpha)(3-2 \alpha)(4-2 \alpha)}\left[\frac{1}{2} t_{3}-\frac{7}{16} t_{1} t_{2}+\frac{13}{128} t_{1}^{3}\right]\right\} .
\end{aligned}
$$

By substituting values of t_{2} and t_{3} from Lemma 3, after some simplification, we have

$$
\begin{aligned}
m_{2} m_{3}-m_{4}= & \frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\frac{v}{4 u(2-2 \alpha)}\left(\frac{1}{4} t_{1} t_{2}-\frac{3}{32} t_{1}^{3}\right)\right. \\
& \left.-\frac{(v+2)}{(u+2)(4-2 \alpha)}\left[\frac{1}{2} t_{3}-\frac{7}{16} t_{1} t_{2}+\frac{13}{128} t_{1}^{3}\right]\right\} \\
= & \frac{v(v+1)}{u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\frac{1}{32} \frac{v}{u(2-2 \alpha)} t_{1}\left[t_{1}^{2}+\left(4-t_{1}^{2}\right) x\right]-\frac{3 v}{128 u(2-2 \alpha)} t_{1}^{3}\right. \\
& -\frac{1}{8} \frac{(v+2)}{(u+2)(4-2 \alpha)}\left[t_{1}^{3}+2 t_{1}\left(4-t_{1}^{2}\right) x-t_{1}\left(4-t_{1}^{2}\right) x^{2}+2\left(4-t_{1}^{2}\right)\left(1-|x|^{2} \varsigma\right)\right] \\
& \left.+\frac{7(v+2)}{32(u+2)(4-2 \alpha)} t_{1}\left[t_{1}^{2}+\left(4-t_{1}^{2}\right) x\right]-\frac{13(v+2)}{128(u+2)(4-2 \alpha)} t_{1}^{3}\right\} .
\end{aligned}
$$

Using Lemma 3, and since $t_{1} \leq 2$ by Lemma 4 , let $t_{1}=t$ and assume, without restriction, that $t \in[0,2]$. By using the triangle inequality with $\rho=|x|$, we arrive at

$$
\begin{aligned}
\left|m_{2} m_{3}-m_{4}\right| \leq & \frac{v(v+1)}{768 u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\left(\frac{3 v}{u(1-\alpha)}-\frac{3 v}{(u+2)(2-\alpha)}\right) t^{3}\right. \\
& +\left(\frac{12 v}{u(1-\alpha)}-\frac{12(v+2)}{(u+2)(2-\alpha)}\right) t\left(4-t^{2}\right) \rho \\
& \left.+\left(\frac{96(v+2)}{(u+2)(2-\alpha)}+\frac{96(v+2)}{(u+2)(2-\alpha)} \rho^{2}+\frac{48(v+2)}{(u+2)(2-\alpha)} t^{2}\right)\left(4-t^{2}\right)\right\} \\
= & F_{1}(t, \rho) .
\end{aligned}
$$

Differentiating $F_{1}(t, \rho)$ with respect to ρ, we have

$$
\begin{aligned}
F_{1}^{\prime}(\rho)= & \frac{v(v+1)}{768 u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\left(\frac{12 v}{u(1-\alpha)}-\frac{12(v+2)}{(u+2)(2-\alpha)}\right) t\left(4-t^{2}\right)\right. \\
& \left.+\frac{192(v+2)}{(u+2)(2-\alpha)} \rho\left(4-t^{2}\right)+\frac{96(v+2)}{(u+2)(2-\alpha)} t \rho\left(4-t^{2}\right)\right\} \\
> & 0 .
\end{aligned}
$$

This implies that $F_{1}(t, \rho)$ is an increasing function of ρ on the closed interval [0,1$]$. Hence, $F_{1}(\rho) \leq F_{1}(0)$ for all $\rho \in[0,1]$, that is

$$
\begin{aligned}
F_{1}(\rho)= & \frac{v(v+1)}{768 u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\left(\frac{3 v}{u(1-\alpha)}-\frac{3 v}{(u+2)(2-\alpha)}\right) t^{3}\right. \\
& \left.+\frac{96(v+2)}{(u+2)(2-\alpha)}\left(4-t^{2}\right)\right\} \\
= & G_{1}(t) .
\end{aligned}
$$

Differentiating $G_{1}(t)$ with respect to t, we have

$$
\begin{aligned}
G_{1}^{\prime}(t)= & \frac{v(v+1)}{768 u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\left(\frac{9 v}{u(1-\alpha)}-\frac{9 v}{(u+2)(2-\alpha)}\right) t^{2}\right. \\
& \left.-\frac{192(v+2)}{(u+2)(2-\alpha)} t\right\} .
\end{aligned}
$$

Again, differentiating the above equation with respect to t, we have

$$
\begin{aligned}
G_{1}^{\prime \prime}(t)= & \frac{v(v+1)}{768 u(u+1)(2-2 \alpha)(3-2 \alpha)}\left\{\left(\frac{18 v}{u(1-\alpha)}-\frac{18 v}{(u+2)(2-\alpha)}\right) t\right. \\
& \left.-\frac{192(v+2)}{(u+2)(2-\alpha)}\right\} \\
< & 0
\end{aligned}
$$

Since $t \in[0,2]$, by the assumption, it follows that $G_{1}(t)$ attains maximum at $t=0$, which corresponds to $\rho=0$, and it is the desired upper bound. Hence, we obtain

$$
\left|m_{2} m_{3}-m_{4}\right| \leq \frac{v(v+1)(v+2)}{4 u(u+1)(u+2)(1-\alpha)(2-\alpha)(3-2 \alpha)}
$$

The proof of Theorem 4 is thus completed.
If we put $u=v$ in Theorem 4, we have the following results, respectively:
Corollary 4. Let $\alpha \in[0,1)$. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, u, \alpha)=$ $\mathcal{S} \mathcal{L}^{*}(u, \alpha)$, then

$$
\left|m_{2} m_{3}-m_{4}\right| \leq \frac{1}{4(1-\alpha)(2-\alpha)(3-2 \alpha)}
$$

and the inequality is sharp.
If we choose $\alpha=0$ in Corollary 4, we arrive at the following result.
Corollary 5. Let $\alpha \in[0,1)$. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, u, 0)=$ $\mathcal{S} \mathcal{L}^{*}(u)$, then

$$
\left|m_{2} m_{3}-m_{4}\right| \leq \frac{1}{24}
$$

and the inequality is sharp.
Theorem 5. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, v, \alpha)$, then

$$
\begin{aligned}
\left|H_{3}(1)\right| \leq & \frac{v^{2}(v+1)^{2}}{512 u^{2}(u+1)^{2}(1-\alpha)^{2}(3-2 \alpha)^{2}} \\
& \times\left\{\frac{2 v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}+\frac{50(v+2)^{2}}{(u+2)^{2}(2-\alpha)^{2}}+\frac{169(v+2)(v+3)}{(u+2)(u+3)(2-\alpha)(5-2 \alpha)}\right\}
\end{aligned}
$$

Proof. Since

$$
\left|H_{3}(1)\right| \leq\left|m_{3}\right|\left|m_{2} m_{4}-m_{3}^{2}\right|+\left|m_{4}\right|\left|m_{2} m_{3}-m_{4}\right|+\left|m_{5}\right|\left|m_{3}-m_{2}^{2}\right|
$$

using the fact that $m_{1}=1$, with Theorems 1, 3 and 4 and Lemma 4, we have the required result

$$
\begin{aligned}
\left|H_{3}(1)\right| \leq & \left|m_{3}\right|\left|m_{2} m_{4}-m_{3}^{2}\right|+\left|m_{4}\right|\left|m_{2} m_{3}-m_{4}\right|+\left|m_{5}\right|\left|m_{1} m_{3}-m_{2}^{2}\right| \\
= & \frac{v(v+1)}{16 u(u+1)(1-\alpha)(3-2 \alpha)}\left[\frac{1}{16}\left(\frac{v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}\right)^{2}\right] \\
& +\frac{25 v(v+1)(v+2)}{64 u(u+1)(u+2)(1-\alpha)(3-2 \alpha)(2-\alpha)}\left[\frac{1}{4}\left(\frac{v(v+1)(v+2)}{u(u+1)(u+2)(1-\alpha)(2-\alpha)(3-2 \alpha)}\right)\right] \\
& +\frac{169 v(v+1)(v+2)(v+3)}{128 u(u+1)(u+2)(u+3)(1-\alpha)(3-2 \alpha)(2-\alpha)(5-2 \alpha)}\left[\frac{1}{4} \frac{v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}\right] \\
= & \frac{v^{2}(v+1)^{2}}{512 u^{2}(u+1)^{2}(1-\alpha)^{2}(3-2 \alpha)^{2}} \\
& \times\left\{\frac{2 v(v+1)}{u(u+1)(1-\alpha)(3-2 \alpha)}+\frac{50(v+2)^{2}}{(u+2)^{2}(2-\alpha)^{2}}+\frac{169(v+2)(v+3)}{(u+2)(u+3)(2-\alpha)(5-2 \alpha)}\right\} .
\end{aligned}
$$

The proof of Theorem 5 is thus completed.
If we set $u=v$ in Theorem 5, we establish the below inequality.
Corollary 6. Let $\alpha \in[0,1)$. If the function l, given by (1), belongs to the class $\mathcal{S L}^{*}(u, u, \alpha)=$ $\mathcal{S} \mathcal{L}^{*}(u, \alpha)$, then

$$
\left|H_{3}(1)\right| \leq \frac{1}{512(1-\alpha)^{2}(3-2 \alpha)^{2}}\left\{\frac{2}{(1-\alpha)(3-2 \alpha)}+\frac{50}{(2-\alpha)^{2}}+\frac{169}{(2-\alpha)(5-2 \alpha)}\right\}
$$

and the inequality is sharp.

6. Conclusions

In the present investigation, we have estimated smaller upper bounds and more accurate estimations for the functionals $\left|m_{3}-\mu m_{2}^{2}\right|$ and $\left|m_{2} m_{4}-m_{3}^{2}\right|$ for the class $\mathcal{S} \mathcal{L}^{*}(u, v, \alpha)$ of holomorphic functions associated with the Carlson-Shaffer operator in the unit disk.

Author Contributions: Conceptualization, H.O., M.Ç. and L.I.C.; Methodology, H.O., M.Ç. and L.I.C.; Software, L.I.C.; Investigation, M.Ç. and L.I.C.; Resources, H.O. and L.I.C.; Writing-review \& editing, M.Ç.; Supervision, H.O. and M.Ç.; Project administration, H.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Data Availability Statement: Not applicale.
Acknowledgments: The authors thank the referees for useful suggestions that essentially improved the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sokół́, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349-353. [CrossRef]
2. Sokół́, J. Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat 1996, 19, 101-105.
3. Ahuja, O.P.; Silverman, H. Convolutions of prestarlike functions. Int. J. Math. Math. Sci. 1983, 6, 59-68. [CrossRef]
4. Robertson, M.I. On the theory of univalent functions. Ann. Math. 1936, 374-408. [CrossRef]
5. Ruscheweyh, S. Convolutions in Geometric Function Theory; Gaetan Morin Editeur Ltee.St.: Boucherville, QC, Canada, 1982; p. 48.
6. Carlson, B.C.; Shaffer, S.B. Starlike and prestarlike hypergrometric functions. SIAM J. Math. Anal. 2002, 15, 737-745. [CrossRef]
7. Henrici, P. Applied and Computational Complex Analysis; Wiley: New York, NY, USA, 1974; Volume 1.
8. Householder, A.S. The Numerical Treatment of a Single Nonlinear Equation; McGraw Hill: New York, NY, USA, 1970.
9. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108-112. [CrossRef]
10. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111-122. [CrossRef]
11. Fekete, M.; Szegö, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85-89. (In German) [CrossRef]
12. Choi, J.H.; Kim, Y.C.; Sugawa, T.A. General approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707-727. [CrossRef]
13. Soh, S.C.; Mohamad, D. Second Hankel determinant for a class of close-to-convex functions with Fekete-Szego parameter. Int. J. Math. Anal. 2014, 12, 561-570. [CrossRef]
14. Zaprawa, P. On the Fekete-Szegö type functionals for starlike and convex functions. Turk. J. Math. 2018, 42, 537-547. [CrossRef]
15. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619-625.
16. Mohapatra, R.; Panigrahi, T. Second Hankel determinant for a class of analytic functions defined by Komatu integral operator. Rend. Mat. Appl. 2020, 41, 51-58.
17. Motamednezhad, A.; Bulboaca, T.; Adegani, E.A.; Dibagar, N. Second Hankel determinant for a subclass of analytic bi-univalent functions defined by subordination. Turk. J. Math. 2018, 42, 2798-2808. [CrossRef]
18. Murugusundarmoorthy, G.; Magesh, N. Coefficient inequality for certain classes of analytic functions associated with Hankel determinant. Bull. Math. Anal. Appl. 2009, 1, 85-89.
19. Lee, S.K.; Ravich, ran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 2013, 218. [CrossRef]
20. Li, Z.; Ren, F.; Yang, L.; Zhang, S. (Eds.) Conference Proceedings and Lecture Notes in Analysis; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157-169.
21. Ma, W. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19-23 June 1992; International Press Inc.: Somerville, MA, USA, 1992.
22. Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Amer. Math. Soc. 1982, 85, 225-230. [CrossRef]
23. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P. Proc. Amer. Math. Soc. 1983, 87, 251-257 [CrossRef]
24. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1983; Volume 259.
25. Breaz, D.; Cătaș, A.; Cotîrlă, L. On the upper bound of the third Hankel determinant for certain class of analytic functions related with exponential function. An. Ştiinţifice Ale Univ. Ovidius Constanţa. Ser. Mat. 2022, 30, 75-89. [CrossRef]
26. Cho, N.E.; Kwon, O.S.; Lecko, A.; Sim, Y.J. Sharp estimates of generalized Zalcman functional of early coeffcients for Ma-Minda type functions. Filomat 2018, 32, 6267-6280. [CrossRef]
27. Ma, W. Generalized Zalcman conjecture for starlike and typically real functions. J. Math. Anal. Appl. 1999, 234, 328-339. [CrossRef]
28. Miller, S.S.; Mocanu, P.T.; Reade, M.O. All a-convex functions are univalent and starlike. Proc. Amer. Math. Soc. 1973, 37, 553-554. [CrossRef]
29. Mahmood, S.; Srivastava, H.M.; Khan, N.; Ahmad, Q.Z.; Khan, B.; Ali, I. Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 2019, 11, 347. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

