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1. Introduction and Definitions

Denote by A the family of holomorphic functions defined in the unit disk
Ω = {ς ∈ C : |ς| < 1}, with expansion

l(ς) = ς +
∞

∑
k=2

mkςk (1)

and let S be the subset of A, consisting of functions which are univalent in Ω.
Let P be a family of the holomorphic functions t of the form

t(ς) = 1 +
∞

∑
k=1

tkςk, (ς ∈ Ω) (2)

satisfying Re(t(ς))> 0 in Ω. The family of starlike functions in Ω are represented by the
symbol S∗, which satisfies

ςl′(ς)
l(ς)

∈ P , (for all ς ∈ Ω).

In addition, the symbol SL∗ represents the family of functions that satisfy∣∣∣∣∣
(

ςl′(ς)
l(ς)

)2

− 1

∣∣∣∣∣ < 1, (ς ∈ Ω).

As a result, l ∈ SL∗ can be expressed by∣∣∣w2 − 1
∣∣∣ < 1.

if and only if ςl′(ς)
l(ς) is the inside region bounded by the right half of the Bernoulli lemniscate.
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This class was introduced by Sokól [1] and Sokól et al. [2]. If there is a Schwarz
function w that is holomorphic in Ω, with w(0) = 0, |w(ς)| < 1, such that l(ς) = h(w(ς)),
ς ∈ Ω, then the function l is subordinate to h, denoted by the notation l ≺ h. If the function
h is univalent in Ω, then l ≺ h if

l(0) = h(0) and l(Ω) ⊂ h(Ω).

A function l ∈ A is said to be starlike of order α if and only if

Re
{

ςl′(ς)
l(ς)

}
> α, (ς ∈ Ω)

for some α(0 ≤ α < 1). We denote the class of all starlike functions of order α by S∗(α). We
also note that S∗(0) = S∗ is the well-known class of all normalized starlike functions in Ω.

Now, the function
Kα(ς) =

ς

(1− ς)2(1−α)
(3)

is a well known extremal function for the class S∗(α), (see [3–5]).
Setting

ψ(α, k) =
Πk

k=2(k− 2α)

(k− 1)!
, (k ≥ 2), (4)

the function Kα can be written in the form as follows:

Kα(ς) = ς +
∞

∑
k=2

ψ(α, k)ςk. (5)

We denote by F (α,k, ψ) the class of functions Kα. Then, we note that ψ(α,k) is a
decreasing function in α and satisfies

lim
k→∞

ψ(α, k) =


∞

(
α < 1

2

)
1

(
α = 1

2

)
0

(
α > 1

2

) .

Let (l ∗ h)(ς) be the Hadamard product (or convolution) of two functions l and h, that
is, if l given by (1) and h is given by

h(ς) = ς +
∞

∑
k=2

nkςk.

Then,

(l ∗ h)(ς) = ς +
∞

∑
k=2

mknkςk = (h ∗ l)(ς), (ς ∈ Ω). (6)

Let Θ(u, v, ς) be defined by

Θ(u, v, ς) = ς +
∞

∑
k=2

(u)k−1
(v)k−1

ςk, (u ∈ C, v ∈ C\Z−0 , Z−0 = {...− 2,−1, 0}; ς ∈ Ω).

The function, Θ(u, v, ς) is known as the incomplete beta function. The term (κ)k is
the Pochhammer symbol that can be expanded in Gamma functions as

(κ)k =
Γ(κ + k)

Γ(κ) =

{
1, k = 0

κ(κ + 1)(κ + 2)...(κ + k− 1), k ∈ N = {1, 2, 3, · · · }.



Mathematics 2023, 11, 1147 3 of 12

Corresponding to the Θ(u, v, ς) Carlson-Shaffer function [6], an operator L(u, v) is
introduced for l ∈ A using the Hadamard product as follows:

L(u, v)l(ς) = Θ(u, v, ς) ∗ l(ς) = ς +
∞

∑
k=2

(u)k−1
(v)k−1

mkςk (ς ∈ Ω).

Further, for the function L(u, v)l(ς)

τ(ς) = L(u, v)l(ς) ∗ Kα(ς) = ς +
∞

∑
k=2

(u)k−1
(v)k−1

ψ(α, k)mkςk (7)

where L(u, v) is called the Carlson-Shaffer operator [6], and the operator ∗ stands for the
Hadamard product (or convolution product) of two power series as given by (6). We will
show by F̃ (α,k, ψ) the family of functions τ(ς).

Definition 1. We consider that SL∗(u, v, α) is the family of holomorphic functions given by

SL∗(u, v, α) =

{
τ(ς) ∈ F̃ (α, k, ψ) :

∣∣∣∣∣
(

ςτ′(ς)

τ(ς)

)2

− 1

∣∣∣∣∣ < 1

}
, (8)

ςτ′(ς)

τ(ς)
≺
√

1 + ς, (ς ∈ Ω), (9)

where

τ(ς) = ς +
∞

∑
k=2

(u)k−1
(v)k−1

ψ(α, k)mkςk. (10)

Hankel matrices arise naturally in a wide range of applications in science, engineering,
and other related areas, such as signal processing and control theory. For a survey of
Hankel matrices and polynomials, the reader is referred to [7,8] and the references therein.

The Hankel determinant Hq,k(l) (q, k ∈ N) for a function l ∈ S of the form (1) was
defined by Pommerenke (see [9,10]) as

Hq,k(l) =

∣∣∣∣∣∣∣∣∣
mk mk+1 · · · mk+q−1

mk+1 mk+2 · · · mk+q
...

...
...

mk+q−1 mk+q · · · mk+2q−2

∣∣∣∣∣∣∣∣∣ (m1 = 1).

For fixed integer q and k, the growth of Hq,k(l) has been studied for different sub-
families of univalent functions. These studies focus on the main subclasses of certain
holomorphic functions. In fact, the majority of papers discuss the determinants H2,2(l)
andH3,1(l). CaseH2,1(l) = m3 −m2

2 is also very well known. In the year 1933, Fekete and
Szegö (see [11]) obtained a sharp bound of the function m3 − µm2

2 with real µ ∈ R for a
univalent function l. For µ ∈ C this functional was generalized as

∣∣m3 − µm2
2

∣∣. Estimating
for the upper bound of

∣∣m3 − µm2
2

∣∣ is known as the Fekete-Szegö problem, (see [12–14]).
The second Hankel determinantH2,2(l) is given byH2,2(l) = m2m4 −m2

3. In recent years,
the research on Hankel determinants has focused on the estimation of |H2,2(l)|. Several
authors obtained results for different classes of univalent functions. For example, the sharp
bounds for the second Hankel determinantH2,2(l) were obtained for the classes of starlike
and convex functions in [15–18]. Lee et al. [19] established the sharp bound for |H2,2(l)| by
generalizing their classes by means of the principle of subordination between holomorphic
functions. Our main focus in this investigation is for the class SL∗(u, v, α) on the Hankel
determinantH3,1(l). The calculation of |H3,1(l)| is far more challenging compared to find-
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ing the bound of |H2,2(l)|. Further, in this work, we find the sharp bounds for |H2,2(l)|,
when l ∈ SL∗(u, v, α), α ∈ [0, 1), together with the sharp bound of the functional

Z =|m2m3 −m4|,

when l ∈ SL∗(u, v, α) and α ∈ [0, 1).

2. Preliminary Lemmas

Some preliminary results required in the following section are now listed.

Lemma 1 ([20]). Suppose that P denotes the family of holomorphic functions t normalized by

t(ς) = 1 + t1ς + t2ς2 + ... (11)

and satisfying the condition Re(t(ς)) > 0, ς ∈ Ω. Then, for any η ∈ R,

∣∣∣t2 − ηt2
1

∣∣∣ ≤

−4η + 2, η < 0

2, 0 ≤ η ≤ 1
4η − 2, η ≥ 1

(12)

The equality holds true in (12) if and only if

t(ς) =
1 + ς

1− ς

or one of its rotations, when η < 0 or η > 1. If 0 < η < 1, then the equality holds true in (12) if
and only if

t(ς) =
1 + ς2

1− ς2

or one of its rotations. If η = 0, the equality holds true in (12) if and only if

t(ς) =
(

1 + δ

2

)
1 + ς

1− ς
+

(
1− δ

2

)
1− ς

1 + ς
, 0 ≤ δ ≤ 1

or one of its rotations. If η = 1, then the equality in (12) holds true if t(ς) is a reciprocal of one of
the functions, such that the equality holds true in the case when η = 0.

Lemma 2 ([21]). Assume that t ∈ P is the form Equation (2), and η ∈ C, we have∣∣∣t2 − ηt2
1

∣∣∣ ≤ 2 max{1, |1− 2η|}.

Lemma 3 ([22,23]). If t ∈ P and has the form (11) then

2t2 = t2
1 + x(4− t2

1)

for some x, |x| ≤ 1 and

4t3 = t3
1 + 2(4− t2

1)t1x− (4− t2
1)t1x2 + 2(4− t2

1)(1− |x|
2)ς

for some ς, |ς| ≤ 1.

Lemma 4 ([24]). If t ∈ P and has the form (11), then

|tk| ≤ 2 (k ∈ N)

and the inequality is sharp.



Mathematics 2023, 11, 1147 5 of 12

3. Main Results

In the remainder of this work, we will assume that u ≥ v > 0 until explicitly stated
otherwise.

We now prove our first result asserted by Theorem 1 below.

Theorem 1. If the function l, given by (1) belongs to the class S∗(u, v, α), then µ ∈ R, we have

∣∣∣m3 − µm2
2

∣∣∣ ≤


1
16

(
v(v+1)

u(u+1)(1−α)(3−2α)
− µ v2

u2(1−α)2

)
µ ≤ − 3u(v+1)(1−α)

v(u+1)(3−2α)

1
4

v(v+1)
u(u+1)(1−α)(3−2α)

, − 3u(v+1)(1−α)
v(u+1)(3−2α)

≤ µ ≤ 5u(v+1)(1−α)
v(u+1)(3−2α)

1
16

(
− v(v+1)

u(u+1)(1−α)(3−2α)
+ µ v2

u2(1−α)2

)
, µ ≥ 5u(v+1)(1−α)

v(u+1)(3−2α)

.

Proof. From Equation (9), it follows that

ςτ′(ς)

τ(ς)
≺ Φ(ς).

Define the function first,

t(ς) = 1 +
∞

∑
k=1

tkςk =
1 + w(ς)

1− w(ς)
.

Since t ∈ P ,

w(ς) =
t(ς)− 1
t(ς) + 1

.

Using Equation (9), we have

ςτ′(ς)

τ(ς)
= Φ(w(ς)).

Now as [
2t(ς)

1 + t(ς)

] 1
2
=

[
2− 2

1 + t(ς)

] 1
2
,

so, we have[
2t(ς)

1 + t(ς)

] 1
2

= 1 +
1
4

t1ς +

(
1
4

t2 −
5
32

t2
1

)
ς2 +

(
1
4

t3 −
5

16
t1t2 +

13
128

t3
1

)
ς3

+

(
19
8

t1t3 −
3
2

t4 +
361
512

t4
1 +

9
8

t2
2 −

34
16

t2
1t2

)
ς4 + ...

Similarly,

ςτ′(ς)

τ(ς)
= 1 + Q2m2ς +

(
2Q3m3 −Q2

2m2
2

)
ς2 +

(
3Q4m4 + Q3

2m3
2 − 3Q2Q3m2m3

)
ς3

+
(

4Q5m5 − 4Q2Q4m2m4 − 2Q2
3m2

3 −Q4
2m4

2 + 4Q2
2Q3m2

2m3

)
ς4 + ...
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where

Q2 =
u
v
(2− 2α),

Q3 =
u(u + 1)
2v(v + 1)

(2− 2α)(3− 2α),

Q4 =
u(u + 1)(u + 2)
6v(v + 1)(v + 2)

(2− 2α)(3− 2α)(4− 2α),

Q5 =
u(u + 1)(u + 2)(u + 2)

24v(v + 1)(v + 2)(v + 2)
(2− 2α)(3− 2α)(4− 2α)(5− 2α).

Thus,
m2 =

v
4u(2− 2α)

t1, (13)

m3 =
v(v + 1)

u(u + 1)(2− 2α)(3− 2α)

[
1
4

t2 −
3

32
t2
1

]
, (14)

m4 =
v(v + 1)(v + 2)

u(u + 1)(u + 2)(2− 2α)(3− 2α)(4− 2α)

[
1
2

t3 −
7
16

t1t2 +
13

128
t3
1

]
(15)

and

m5 =
v(v + 1)(v + 2)(v + 3)

u(u + 1)(u + 2)(u + 3)(2− 2α)(3− 2α)(4− 2α)(5− 2α)

[
19
8

t1t3 −
3
2

t4 +
361
512

t4
1 +

9
8

t2
2 −

34
16

t2
1t2

]
. (16)

We now have the following using the Equations (13) and (14):

m3 − µm2
2 =

v(v + 1)
u(u + 1)(2− 2α)(3− 2α)

[
1
4

t2 −
3

32
t2
1

]
− µ

v2

16u2(2− 2α)2 t2
1,

∣∣∣m3 − µm2
2

∣∣∣ ≤ v(v + 1)
8u(u + 1)(1− α)(3− 2α)

∣∣∣∣t2 −
1
8

(
µ

v(u + 1)(3− 2α)

u(1− α)(v + 1)
+ 3
)

t2
1

∣∣∣∣. (17)

We obtained the required result by applying Lemma 1 to Equation (17). This completes
the proof of Theorem 1.

Theorem 2. If the function l, given by (1), belongs to the class SL∗(u, v, α), then µ ∈ C, we have∣∣∣m3 − µm2
2

∣∣∣ ≤ v(v + 1)
4u(u + 1)(1− α)(3− 2α)

max
{

1,
∣∣∣∣14 µ

v(u + 1)(3− 2α)

u(v + 1)(1− α)
− 1

4

∣∣∣∣}.

Proof. By making use of Equations (13) and (14), we have

m3 − µm2
2 =

v(v + 1)
u(u + 1)(2− 2α)(3− 2α)

[
1
4

t2 −
3

32
t2
1

]
− µ

v2

16u2(2− 2α)2 t2
1,

∣∣∣m3 − µm2
2

∣∣∣ ≤ v(v + 1)
8u(u + 1)(1− α)(3− 2α)

∣∣∣∣t2 −
1
8

(
µ

v(u + 1)(3− 2α)

u(v + 1)(1− α)
+ 3
)

t2
1

∣∣∣∣
therefore, using Lemma 2, we obtain the result,∣∣∣m3 − µm2

2

∣∣∣ ≤ v(v + 1)
4u(u + 1)(2− 2α)(3− 2α)

max
{

1,
∣∣∣∣14 µ

v(u + 1)(3− 2α)

u(v + 1)(1− α)
− 1

4

∣∣∣∣}.

Thus, the proof of Theorem 2 is completed.

For the case µ ∈ C and u = v in Theorem 2, this reduces to the following result.
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Corollary 1. Let α ∈ [0, 1) and µ ∈ C. If the function l, given by (1), belongs to the class
SL∗(u, u, α) = SL∗(u, α), then∣∣∣m3 − µm2

2

∣∣∣ ≤ 1
4(1− α)(3− 2α)

max
{

1,
∣∣∣∣14 µ

(3− 2α)

(1− α)
− 1

4

∣∣∣∣}
and the inequality is sharp.

4. The Hankel Determinant H2,2(l)

In this section, we find the sharp bound for the modulus of the second Hankel deter-
minantH2,2(l) = m2m4 −m2

3, when l ∈ SL∗(u, v, α).

Theorem 3. If the function l, given by (1), belongs to the class SL∗(u, v, α), then

∣∣∣m2m4 −m2
3

∣∣∣ ≤ v2(v + 1)2

16u2(u + 1)2(1− α)2(3− 2α)2 .

Proof. Using the Equations (13)–(15), we obtain the following

m2m4 −m2
3 =

(
v

4u(2− 2α)
t1

){
v(v + 1)(v + 2)

u(u + 1)(u + 2)(2− 2α)(3− 2α)(4− 2α)

[
1
2

t3 −
7

16
t1t2 +

13
128

t3
1

]}
−
[

v(v + 1)
u(u + 1)(2− 2α)(3− 2α)

(
1
4

t2 −
3

32
t2
1

)]2
.

After simplification, we have

m2m4 −m2
3 =

v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{
1536(v + 2)

(u + 2)(4− 2α)
t1t3 −

768(v + 1)
(u + 1)(3− 2α)

t2
2

+

(
576(v + 1)

(u + 1)(3− 2α)
− 1344(v + 2)

(u + 2)(4− 2α)

)
t2
1t2 +

(
312(v + 2)

(u + 2)(4− 2α)
− 108(v + 1)

(u + 1)(3− 2α)

)
t4
1

}
.

By substituting values of t2 and t3 from Lemma 3, after some simplification, we
arrive at

m2m4 −m2
3 =

v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{(
312(v + 2)

(u + 2)(4− 2α)
− 108(v + 1)

(u + 1)(3− 2α)

)
t4
1

+
384(v + 2)

(u + 2)(4− 2α)
t1

[
t3
1 + 2t1

(
4− t2

1

)
x− t1

(
4− t2

1

)
x2 + 2

(
4− t2

1

)(
1− |x|2ς

)]
+

(
288(v + 1)

(u + 1)(3− 2α)
− 672(v + 2)

(u + 2)(4− 2α)

)
t2
1

[
t2
1 +

(
4− t2

1

)
x
]

− 192(v + 1)
(u + 1)(3− 2α)

[
t2
1 +

(
4− t2

1

)
x
]2
}

.

Now, taking the module and replacing |x| by ρ and t1 by t, we have

∣∣∣m2m4 −m2
3

∣∣∣ ≤ v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{(
12(v + 2)

(u + 2)(2− α)
− 12(v + 1)

(u + 1)(3− 2α)

)
t4

+

(
96(v + 1)

(u + 1)(3− 2α)
− 48(v + 2)

(u + 2)(2− α)

)
t2
(

4− t2
)

ρ +
384(v + 2)

(u + 2)(2− α)
t
(

4− t2
)

+

(
192(v + 2)

(u + 2)(2− α)
t2 +

384(v + 2)
(u + 2)(2− α)

t +
192(v + 1)

(u + 1)(3− 2α)

(
4− t2

))
ρ2
(

4− t2
)}

= F(t, ρ). (18)
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Upon differentiating both sides (18) with respect to ρ, we obtain

∂F(t, ρ)

∂ρ
=

v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{(
96(v + 1)

(u + 1)(3− 2α)
− 48(v + 2)

(u + 2)(2− α)

)
t2
(

4− t2
)

+

(
192(v + 2)

(u + 2)(2− α)
t2 +

384(v + 2)
(u + 2)(2− α)

t +
192(v + 1)

(u + 1)(3− 2α)

(
4− t2

))
2ρ
(

4− t2
)}

.

It is clear that
∂F(t, ρ)

∂ρ
> 0,

which show that F(t, ρ) is an increasing function of ρ on the closed interval [0, 1]. This
implies that the maximum value occurs at ρ = 1. This implies that

max{F(t, ρ)} = F(t, 1) = G(t).

We now observe that

G(t) =
v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{(
12(v + 2)

(u + 2)(2− α)
− 12(v + 1)

(u + 1)(3− 2α)

)
t4

+

(
96(v + 1)

(u + 1)(3− 2α)
− 48(v + 2)

(u + 2)(2− α)

)
t2
(

4− t2
)
+

384(v + 2)
(u + 2)(2− α)

t
(

4− t2
)

(19)

+

(
192(v + 2)

(u + 2)(2− α)
t2 +

384(v + 2)
(u + 2)(2− α)

t +
192(v + 1)

(u + 1)(3− 2α)

(
4− t2

))(
4− t2

)}
.

Differentiating (19) with respect to t, we obtain

G′(t) =
v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{
4
(

84(v + 1)
(u + 1)(3− 2α)

− 132(v + 2)
(u + 2)(2− α)

)
t3

− 96(v + 2)
(u + 2)(2− α)

t2 + 16
(

72(v + 2)
(u + 2)(2− α)

− 144(v + 1)
(u + 1)(3− 2α)

)
t +

3072(v + 2)
(u + 2)(2− α)

}
.

Differentiating again above equation with respect to t, we have

G′′(t) =
v2(v + 1)

12,288u2(u + 1)(2− 2α)2(3− 2α)

{
12
(

84(v + 1)
(u + 1)(3− 2α)

− 132(v + 2)
(u + 2)(2− α)

)
t2

− 192(v + 2)
(u + 2)(2− α)

t + 16
(

72(v + 2)
(u + 2)(2− α)

− 144(v + 1)
(u + 1)(3− 2α)

)}
.

For t = 0, (t ∈ [0, 2]) shows that the maximum value of G(t) occurs at t = 0. Hence,
we obtain, ∣∣∣m2m4 −m2

3

∣∣∣ ≤ v2(v + 1)2

16u2(u + 1)2(1− α)2(3− 2α)2 .

Thus, the proof of Theorem 3 is completed.

Upon setting u = v in Theorem 3, we are led to the following results, respectively:

Corollary 2. Let α ∈ [0, 1). If the function l, given by (1), belongs to the class SL∗(u, u, α) =
SL∗(u, α), then ∣∣∣m2m4 −m2

3

∣∣∣ ≤ 1

16(1− α)2(3− 2α)2

and the inequality is sharp.

If we choose α = 0 in Corollary 2, we obtain the following corollary.
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Corollary 3. Let α ∈ [0, 1). If the function l, given by (1), belongs to the class SL∗(u, u, 0) =
SL∗(u), then ∣∣∣m2m4 −m2

3

∣∣∣ ≤ 1
144

and the inequality is sharp.

5. The Zalcman Functional

In this section, we prove the following theorem on the upper bound estimate of the
Zalcman functional |m2m3 −m4|, noting that a non-sharp inequality was found in [25–29].

Theorem 4. If the function l, given by (1), belongs to the class SL∗(u, v, α), then

|m2m3 −m4| ≤
v(v + 1)(v + 2)

4u(u + 1)(u + 2)(1− α)(2− α)(3− 2α)
.

Proof. Using the values given in (13)–(15) we have

m2m3 −m4 =

(
v

4u(2− 2α)
t1

)[
v(v + 1)

u(u + 1)(2− 2α)(3− 2α)

(
1
4

t2 −
3

32
t2
1

)]
−
{

v(v + 1)(v + 2)
u(u + 1)(u + 2)(2− 2α)(3− 2α)(4− 2α)

[
1
2

t3 −
7
16

t1t2 +
13

128
t3
1

]}
.

By substituting values of t2 and t3 from Lemma 3, after some simplification, we have

m2m3 −m4 =
v(v + 1)

u(u + 1)(2− 2α)(3− 2α)

{
v

4u(2− 2α)

(
1
4

t1t2 −
3

32
t3
1

)
− (v + 2)
(u + 2)(4− 2α)

[
1
2

t3 −
7

16
t1t2 +

13
128

t3
1

]}
=

v(v + 1)
u(u + 1)(2− 2α)(3− 2α)

{
1

32
v

u(2− 2α)
t1

[
t2
1 +

(
4− t2

1

)
x
]
− 3v

128u(2− 2α)
t3
1

−1
8

(v + 2)
(u + 2)(4− 2α)

[
t3
1 + 2t1

(
4− t2

1

)
x− t1

(
4− t2

1

)
x2 + 2

(
4− t2

1

)(
1− |x|2ς

)]
+

7(v + 2)
32(u + 2)(4− 2α)

t1

[
t2
1 +

(
4− t2

1

)
x
]
− 13(v + 2)

128(u + 2)(4− 2α)
t3
1

}
.

Using Lemma 3, and since t1 ≤ 2 by Lemma 4, let t1 = t and assume, without
restriction, that t ∈ [0, 2]. By using the triangle inequality with ρ = |x|, we arrive at

|m2m3 −m4| ≤
v(v + 1)

768u(u + 1)(2− 2α)(3− 2α)

{(
3v

u(1− α)
− 3v

(u + 2)(2− α)

)
t3

+

(
12v

u(1− α)
− 12(v + 2)

(u + 2)(2− α)

)
t
(

4− t2
)

ρ

+

(
96(v + 2)

(u + 2)(2− α)
+

96(v + 2)
(u + 2)(2− α)

ρ2 +
48(v + 2)

(u + 2)(2− α)
tρ2
)(

4− t2
)}

= F1(t, ρ).

Differentiating F1(t, ρ) with respect to ρ, we have

F′1(ρ) =
v(v + 1)

768u(u + 1)(2− 2α)(3− 2α)

{(
12v

u(1− α)
− 12(v + 2)

(u + 2)(2− α)

)
t
(

4− t2
)

+
192(v + 2)

(u + 2)(2− α)
ρ
(

4− t2
)
+

96(v + 2)
(u + 2)(2− α)

tρ
(

4− t2
)}

> 0.
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This implies that F1(t, ρ) is an increasing function of ρ on the closed interval [0, 1].
Hence, F1(ρ) ≤ F1(0) for all ρ ∈ [0, 1], that is

F1(ρ) =
v(v + 1)

768u(u + 1)(2− 2α)(3− 2α)

{(
3v

u(1− α)
− 3v

(u + 2)(2− α)

)
t3

+
96(v + 2)

(u + 2)(2− α)

(
4− t2

)}
= G1(t).

Differentiating G1(t) with respect to t, we have

G′1(t) =
v(v + 1)

768u(u + 1)(2− 2α)(3− 2α)

{(
9v

u(1− α)
− 9v

(u + 2)(2− α)

)
t2

− 192(v + 2)
(u + 2)(2− α)

t
}

.

Again, differentiating the above equation with respect to t, we have

G′′1 (t) =
v(v + 1)

768u(u + 1)(2− 2α)(3− 2α)

{(
18v

u(1− α)
− 18v

(u + 2)(2− α)

)
t

− 192(v + 2)
(u + 2)(2− α)

}
< 0.

Since t ∈ [0, 2], by the assumption, it follows that G1(t) attains maximum at t = 0,
which corresponds to ρ = 0, and it is the desired upper bound. Hence, we obtain

|m2m3 −m4| ≤
v(v + 1)(v + 2)

4u(u + 1)(u + 2)(1− α)(2− α)(3− 2α)
.

The proof of Theorem 4 is thus completed.

If we put u = v in Theorem 4, we have the following results, respectively:

Corollary 4. Let α ∈ [0, 1). If the function l, given by (1), belongs to the class SL∗(u, u, α) =
SL∗(u, α), then

|m2m3 −m4| ≤
1

4(1− α)(2− α)(3− 2α)

and the inequality is sharp.

If we choose α = 0 in Corollary 4, we arrive at the following result.

Corollary 5. Let α ∈ [0, 1). If the function l, given by (1), belongs to the class SL∗(u, u, 0) =
SL∗(u), then

|m2m3 −m4| ≤
1
24

and the inequality is sharp.

Theorem 5. If the function l, given by (1), belongs to the class SL∗(u, v, α), then

|H3(1)| ≤
v2(v + 1)2

512u2(u + 1)2(1− α)2(3− 2α)2

×
{

2v(v + 1)
u(u + 1)(1− α)(3− 2α)

+
50(v + 2)2

(u + 2)2(2− α)2 +
169(v + 2)(v + 3)

(u + 2)(u + 3)(2− α)(5− 2α)

}
.
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Proof. Since

|H3(1)| ≤ |m3|
∣∣∣m2m4 −m2

3

∣∣∣+ |m4||m2m3 −m4|+ |m5|
∣∣∣m3 −m2

2

∣∣∣
using the fact that m1 = 1, with Theorems 1, 3 and 4 and Lemma 4, we have the
required result

|H3(1)| ≤ |m3|
∣∣∣m2m4 −m2

3

∣∣∣+ |m4||m2m3 −m4|+ |m5|
∣∣∣m1m3 −m2

2

∣∣∣
=

v(v + 1)
16u(u + 1)(1− α)(3− 2α)

[
1

16

(
v(v + 1)

u(u + 1)(1− α)(3− 2α)

)2
]

+
25v(v + 1)(v + 2)

64u(u + 1)(u + 2)(1− α)(3− 2α)(2− α)

[
1
4

(
v(v + 1)(v + 2)

u(u + 1)(u + 2)(1− α)(2− α)(3− 2α)

)]
+

169v(v + 1)(v + 2)(v + 3)
128u(u + 1)(u + 2)(u + 3)(1− α)(3− 2α)(2− α)(5− 2α)

[
1
4

v(v + 1)
u(u + 1)(1− α)(3− 2α)

]
=

v2(v + 1)2

512u2(u + 1)2(1− α)2(3− 2α)2

×
{

2v(v + 1)
u(u + 1)(1− α)(3− 2α)

+
50(v + 2)2

(u + 2)2(2− α)2 +
169(v + 2)(v + 3)

(u + 2)(u + 3)(2− α)(5− 2α)

}
.

The proof of Theorem 5 is thus completed.

If we set u = v in Theorem 5, we establish the below inequality.

Corollary 6. Let α ∈ [0, 1). If the function l, given by (1), belongs to the class SL∗(u, u, α) =
SL∗(u, α), then

|H3(1)| ≤
1

512(1− α)2(3− 2α)2

{
2

(1− α)(3− 2α)
+

50

(2− α)2 +
169

(2− α)(5− 2α)

}

and the inequality is sharp.

6. Conclusions

In the present investigation, we have estimated smaller upper bounds and more accu-
rate estimations for the functionals

∣∣m3 − µm2
2

∣∣ and
∣∣m2m4 −m2

3

∣∣ for the class SL∗(u, v, α)
of holomorphic functions associated with the Carlson-Shaffer operator in the unit disk.

Author Contributions: Conceptualization, H.O., M.Ç. and L.I.C.; Methodology, H.O., M.Ç. and
L.I.C.; Software, L.I.C.; Investigation, M.Ç. and L.I.C.; Resources, H.O. and L.I.C.; Writing—review &
editing, M.Ç.; Supervision, H.O. and M.Ç.; Project administration, H.O. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicale.

Acknowledgments: The authors thank the referees for useful suggestions that essentially improved
the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sokół, J. Coefficient estimates in a class of strongly starlike functions. Kyungpook Math. J. 2009, 49, 349–353. [CrossRef]
2. Sokół, J. Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat

1996, 19, 101–105.
3. Ahuja, O.P.; Silverman, H. Convolutions of prestarlike functions. Int. J. Math. Math. Sci. 1983, 6, 59–68. [CrossRef]

http://doi.org/10.5666/KMJ.2009.49.2.349
http://dx.doi.org/10.1155/S0161171283000034


Mathematics 2023, 11, 1147 12 of 12

4. Robertson, M.I. On the theory of univalent functions. Ann. Math. 1936, 374–408. [CrossRef]
5. Ruscheweyh, S. Convolutions in Geometric Function Theory; Gaetan Morin Editeur Ltee.St.: Boucherville, QC, Canada, 1982; p. 48.
6. Carlson, B.C.; Shaffer, S.B. Starlike and prestarlike hypergrometric functions. SIAM J. Math. Anal. 2002, 15, 737–745. [CrossRef]
7. Henrici, P. Applied and Computational Complex Analysis; Wiley: New York, NY, USA, 1974; Volume 1.
8. Householder, A.S. The Numerical Treatment of a Single Nonlinear Equation; McGraw Hill: New York, NY, USA, 1970.
9. Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [CrossRef]
10. Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122.

[CrossRef]
11. Fekete, M.; Szegö, G. Eine Bemerkung uber ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 8, 85–89. (In German)

[CrossRef]
12. Choi, J.H.; Kim, Y.C.; Sugawa, T.A. General approach to the Fekete-Szegö problem. J. Math. Soc. Jpn. 2007, 59, 707–727. [CrossRef]
13. Soh, S.C.; Mohamad, D. Second Hankel determinant for a class of close-to-convex functions with Fekete-Szego parameter. Int. J.

Math. Anal. 2014, 12, 561–570. [CrossRef]
14. Zaprawa, P. On the Fekete–Szegö type functionals for starlike and convex functions. Turk. J. Math. 2018, 42, 537–547. [CrossRef]
15. Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625.
16. Mohapatra, R.; Panigrahi, T. Second Hankel determinant for a class of analytic functions defined by Komatu integral operator.

Rend. Mat. Appl. 2020, 41, 51–58.
17. Motamednezhad, A.; Bulboaca, T.; Adegani, E.A.; Dibagar, N. Second Hankel determinant for a subclass of analytic bi-univalent

functions defined by subordination. Turk. J. Math. 2018, 42, 2798–2808. [CrossRef]
18. Murugusundarmoorthy, G.; Magesh, N. Coefficient inequality for certain classes of analytic functions associated with Hankel

determinant. Bull. Math. Anal. Appl. 2009, 1, 85–89.
19. Lee, S.K.; Ravich, ran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities

Appl. 2013, 2013, 218. [CrossRef]
20. Li, Z.; Ren, F.; Yang, L.; Zhang, S. (Eds.) Conference Proceedings and Lecture Notes in Analysis; International Press: Cambridge, MA,

USA, 1994; Volume I, pp. 157–169.
21. Ma, W. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis,

Tianjin, China, 19–23 June 1992; International Press Inc.: Somerville, MA, USA, 1992.
22. Libera, R.J.; Zlotkiewicz, E.J. Early coefficient of the inverse of a regular convex function. Proc. Amer. Math. Soc. 1982, 85, 225–230.

[CrossRef]
23. Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in P . Proc. Amer. Math. Soc. 1983, 87,

251–257 [CrossRef]
24. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1983;

Volume 259.
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