
Citation: Wang, K.; Chen, Z.; Ying, S.;

Xu, X. Low-Rank Matrix Completion

via QR-Based Retraction on

Manifolds. Mathematics 2023, 11, 1155.

https://doi.org/10.3390/math11051155

Academic Editors: Adrian Deaconu,

Petru Adrian Cotfas and Daniel

Tudor Cotfas

Received: 17 January 2023

Revised: 23 February 2023

Accepted: 23 February 2023

Published: 26 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Low-Rank Matrix Completion via QR-Based Retraction
on Manifolds
Ke Wang 1, Zhuo Chen 1 , Shihui Ying 1 and Xinjian Xu 2,*

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
2 Qianweichang College, Shanghai University, Shanghai 200444, China
* Correspondence: xinjxu@shu.edu.cn

Abstract: Low-rank matrix completion aims to recover an unknown matrix from a subset of observed
entries. In this paper, we solve the problem via optimization of the matrix manifold. Specially, we
apply QR factorization to retraction during optimization. We devise two fast algorithms based on
steepest gradient descent and conjugate gradient descent, and demonstrate their superiority over the
promising baseline with the ratio of at least 24%.

Keywords: matrix completion; QR factorization; gradient algorithm; manifold

MSC: 90C29; 57R57; 49Q10; 90C30

1. Introduction

The problem of matrix completion (MC) has generated a great deal of interest over the last
decade [1], and several variant problems have been considered, such as non-negative matrix
completion (NMC) [2], structured matrix completion [3,4] (including Hankel matrices [5]), and
low-rank matrix completion (LRMC) [6,7]. Because of its wide applications in sensor network
localization [8], system identification [9], machine learning [10,11], computer vision [12],
recommendation systems [13], etc., LRMC has drawn a great deal of attention. Let M ∈ Rn×n

be an observed matrix and Ω ⊂ {(i, j), i, j = 1, . . . , n} be an index set of the observed
position. Then, the desired low-rank matrix X can be recovered by solving the following rank
minimization problem [14,15]:

min
X∈Rn×n

rank(X) s.t. PΩ(X) = PΩ(M), (1)

where [PΩ(X)]ij = Xij, (i, j) ∈ Ω and 0, otherwise. Unfortunately, the calculation of the
rank function is (non-deterministic polynomial) NP-hard, and thus all known algorithms
need double exponential time on the dimension of n.

To overcome this limitation, many approaches have been proposed [13]. For instance,
Candès and Recht [16] replaced the rank function with the nuclear norm, and (1) can be
rewritten as

min
X
‖X‖∗ s.t. PΩ(X) = PΩ(M), (2)

where ‖X‖∗ = ∑i σi(X) and σi(X) represents the i-th largest non-zero singular value.
They proved that if the number of observed entries m = |Ω| obeys m ≥ cn1.2r log(n)
with c being some positive constant and r being the rank of X, then most matrices of
rank r can be perfectly recovered with very high probability by solving a simple convex
optimization program. However, when the size of the matrix is large, the computation
is still burdensome. To mitigate the computational burden, Cai et al. [17] introduced
the singular value thresholding algorithm. The key idea of this approach is to place the
regularization term into the objective function of the nuclear norm minimization problem.

Mathematics 2023, 11, 1155. https://doi.org/10.3390/math11051155 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051155
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-2863-9274
https://orcid.org/0000-0001-9423-0146
https://orcid.org/0000-0001-6088-976X
https://doi.org/10.3390/math11051155
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051155?type=check_update&version=2

Mathematics 2023, 11, 1155 2 of 17

On the other hand, given the rank of a matrix, Lee and Bresler [18] replaced the rank
function with the Frobenius norm, and (1) can be rewritten as

min
X

1
2
‖PΩ(M)− PΩ(X)‖2

F s.t. rank(X) ≤ r. (3)

According to matrix theory, the matrix M ∈ Rn1×n2 of rank r can be decomposed into
two matrices X ∈ Rn1×r and Y ∈ Rn2×r such that M = XYT . A straightforward method is
to determine X and Y by minimizing the residual between the original M and the recovered
one (that is, XYT) on the sampling set [19,20]:

min
X,Y

1
2
‖PΩ(M)− PΩ(XYT)‖2

F. (4)

To solve this multiple objective optimization program, one can employ the alternating
minimization technique: (i) set X first and determine Y via minimizing the residual and;
(ii) fix Y and determine X in the same way.

To accelerate the completing process, a novel utilization of the rank information is
definition of an inner product and a differentiable structure, which formulates a manifold-
based optimization program [21,22]. Then, one can compute the Riemannian gradient and
Hessian matrix to solve the following problem [14,23]:

min
X∈Mr

‖PΩ(X−M)‖, (5)

whereMr := {X ∈ Rn1×n2 , rank(X) = r}. Specially, Mishra et al. [24] discussed singular
value decomposition, rank factorization, and QR factorization on manifolds. Following
this line, Cambier and Absil [25] simultaneously considered singular value decomposition
and regularization:

min
X∈Mr

‖PΩ(X−M)‖l1 + λ‖PΩ(X)‖2
F, (6)

where ‖X‖l1 = Σi,j|Xi,j| and λ is a regularization parameter. Yet, the improvement of
the accuracy is not remarkable. More recently, Dong et al. [26] devised a preconditioned
gradient descent algorithm for the rank factorization problem:

min
(G,H)∈Rm×k×Rn×k

1
2
‖PΩ(GHT −M)‖2

F, (7)

which is a multiple objective problem on the product space that can be defined as a manifold.
Although it shows good performance in comparison to single-objective problems, the
algorithm hardly considers the structure on a per matrix basis.

In this paper, we consider QR factorization on manifolds. Different from single-
objective optimization on the manifold [24,27,28], we study LRMC using multiple objective
optimization in the product space Rn1×r × Rr×n2 . During iteration, we first obtain the
gradient of the objective function in the tangent space and then retract it with QR factoriza-
tion. Specially, we introduce a measure to characterize the degree of orthogonality of Q
for retraction, based on which we design two fast algorithms and show their advantage in
comparison to rank factorization [26].

The paper is organized as follows. In Section 2, we introduce some preliminaries,
including basic notations, problem formulation, and the element of manifolds. In Section 3,
we show algorithms based on the choice of initial point, descent direction, step size, and
retraction. In Section 4, we prove convergence and analyze the reason why the proposed
algorithms outperform those in [26]. In Section 5, we demonstrate the superior performance
of the proposed algorithms using numerical experiments. Finally, in Section 6 we provide
a conclusion.

Mathematics 2023, 11, 1155 3 of 17

2. Preliminary

Notation. The Euclidean inner product and norm for the product space Rn1×r ×Rr×n2 ,
respectively, denoted with 〈·, ·〉 and ‖ · ‖, are defined by

〈x, y〉 = Tr(QT
x Qy) + Tr(RxRT

y) and ‖x‖ =
√
〈x, x〉, (8)

for any pair of points x = (Qx, Rx), y = (Qy, Ry) ∈ Rn1×r ×Rr×n2 .
Problem statement. The purpose of this paper is to solve the problem (5). With QR

factorization, it becomes:

min
(Q,R)∈Rn1×r×Rr×n2

fΩ(Q, R) :=
1
2
‖PΩ(QR−M)‖2

F. (9)

QR factorization. QR factorization [29] can be carried out by using Householder
transformation, Givens rotations, Gram–Schmidt process, and their variants. In this paper,
we choose the modified Gram–Schmidt algorithm for a more reliable procedure. (see
Algorithm 7 for details.)

Geometric element on Rn1×r × Rr×n2 . The tangent space (see Figure 1) at a point
x ∈ Rn1×r ×Rr×n2 is the finite Cartesian product of the tangent spaces of the two element
matrix spaces. Then, Tx(Rn1×r ×Rr×n2) ' Rn1×r ×Rr×n2 (see Section 3.5.2, [21]) where
X ' Y indicates that there is a homeomorphism between the topological space X and Y.

𝑥𝑡

𝑥𝑡+1 = 𝑅𝑥𝑡(𝑠𝑡𝜂
𝑡)

−𝜉𝑡

𝛽𝑡𝜂𝑡−1

𝜂𝑡
𝑇𝑥𝑡ℳ𝑟

ℳ𝑟

𝜆 ↦ 𝑅𝑥𝑡(𝜆𝜂
𝑡)

ℳ𝑟

𝑥𝑡
𝜂𝑡

𝑥𝑡 + 𝜂𝑡

𝑅𝑥𝑡(𝜂
𝑡)

𝑥𝑡+1 = 𝑅𝑥𝑡(𝑠𝑡𝜂
𝑡)

Figure 1. Illustration of the tangent space, the conjugate direction, and the retraction process.

Comparing the performance of several metrics, we consider the following. Given
two tangent vectors ξ, η ∈ Tx(Rn1×r ×Rr×n2) (see Section 4, [26]) at point x = (Q, R) ∈
Rn1×r ×Rr×n2 , the preconditioned metric is

Mx(ξ, η) = Tr(ξT
QηQ(RRT + δIr)) + Tr(ξRηT

R(1 + δ)), (10)

where ξ = (ξQ, ξR), η = (ηQ, ηR), δ > 0 is a constant, which keeps the metric well defined
and positive definite if Q or R does not have full rank. Furthermore, if ξ = η, one can write
‖ξ‖2

x = Mx(ξ, ξ) as a kind of norm at point x.

Definition 1. For a point x ∈ Rn1×r × Rr×n2 , the gradient of fΩ is the unique vector in
Tx(Rn1×r ×Rr×n2), denoted with ∇ fΩ(x), such that

Mx(ξ,∇ fΩ(x)) = D fΩ(x)[ξ], ∀ξ ∈ Tx(Rn1×r ×Rr×n2), (11)

where D fΩ(x)[ξ] = Tr(ξT
QPΩ(QR−M)RT)) + Tr(ξRPT

Ω(QR−M)Q) is directional derivative
defined [21] by

D fΩ(x)[ξ] = lim
t→0

fΩ(x + tξ)− fΩ(x)
t

.

Combing Equations (8) and (11), it follows that

∇ fΩ(Q, R) = (∂Q fΩ(Q, R)(RRT + δIr)
−1, ∂R fΩ(Q, R)(1 + δ)−1), (12)

Mathematics 2023, 11, 1155 4 of 17

where ∂Q fΩ(Q, R) = PΩ(QR−M)RT and ∂R fΩ(Q, R) = QT PΩ(QR−M).

3. Algorithms

Initial point x0. Following the widely used spectral initialization [30], we apply k−SVD
to a zero-filled matrix M0 := PΩ(M) and yield three matrices U0, Σ0, and V0 such that
M0 = U0Σ0VT

0 . Then, the initial point x0 := (Q0, R0) is set as (see Algorithm 1 for details)

(Q0, R0) = (U0Σ1/2
0 , Σ1/2

0 VT
0). (13)

Algorithm 1 Initialization
Input: data M and rank r
Output: initialization x0

1: Use singular value decomposition (SVD) to compute U, Σ, V (that satisfies M = UΣVT).

2: Trim matrices U0 = U(:, 1 : r), Σ0 = Σ(1 : r, 1 : r), V0 = V(:, 1 : r).
3: Set x0 = [U0(Σ0)

1/2; V0(Σ1/2
0)T].

Descent direction ηt. Here, we consider two kinds of directions, the steepest descent
(SD) direction (see Algorithm 2) and the conjugate descent (CD) direction (see Algorithm 3
and Figure 1), defined, respectively, by

ηt = −∇ f (xt), (14)

ηt = −∇ f (xt) + βtη
t−1. (15)

Although there are several calculations of βt, we adopt βDY
t = ‖ξt‖2

x/Mx(ηt−1, ∆ξt−1)
from [31] because it outperforms the others.

Algorithm 2 Steepest descent (SD) direction of the function in (9) with orthogonality of Q

Input: Data M, iterate xt = [Q; RT], rank r, and metric constant δ.
Output: SD direction ξt

1: S = PΩ(QR−M).
2: ∇ fΩ(xt) = (SRT/(RRT + δIr), STQ/(1 + δ))(= ∇ f , for omitted).
3: ξt = −∇ f

Algorithm 3 Conjugate descent (CD) direction of the function in (9)

Input: Last conjugate direction ηt−1(Set η0 = 0), conjugate direction βt.
Output: Conjugate direction ηt.

1: Compute ∇ f using Algorithm 2.
2: ηt = −∇ f + βtη

t−1.

Stepsize st. For the SD direction, we apply exact line search (ELS) [22] (see Algorithm 4).
Let η = (ηQ, ηR) ∈ Tx(Rn1×r ×Rr×n2) be a given descent direction; then,

arg mins fΩ(Q + sηQ, R + sηR)

= arg mins
1
2
‖PΩ((Q + sηQ)(R + sηR)−M)‖2

F

= arg mins
1
2
‖PΩ(ηQηR)s2 + PΩ(QηR + ηQR)s + PΩ(QR−M)‖2

F

= arg mins
1
2

Tr
[
(As2 + Bs + O)T(As2 + Bs + O)

]
= arg mins

1
2

[
Tr(AT A)s4 + 2Tr(AT B)s3 + (2Tr(ATO) + Tr(BT B))s2 + 2Tr(BTO)s + Tr(OTO)

]
,

Mathematics 2023, 11, 1155 5 of 17

where A = PΩ(ηQηR), B = PΩ(QηR + ηQR), and O = PΩ(QR−M). The differential of
the formula above reads as:

2Tr(AT A)s3 + 3Tr(AT B)s2 + (2Tr(ATO) + Tr(BT B))s + Tr(BTO) = 0. (16)

As a cubic equation, one can obtain its roots easily. The step size st is exactly the real
positive root.

Algorithm 4 Exact line search

Input: Data M, iterate x = [Q; RT], Conjugate direction η = [ηQ; ηT
R].

Output: Step size s.
1: Set A = PΩ(ηQηR), B = PΩ(QηR + ηQR) and O = PΩ(QR−M).
2: Furthermore, solve the cubic equation 2Tr(AT A)x3 + 3Tr(AT B)x2 + (2Tr(ATO) +

Tr(BT B))x + Tr(BTO) = 0.
3: Let the smallest absolute value s of their solutions be the step size.

For the CD direction, we apply the inexact line search (IELS) [32] (see Algorithm 5). For
this purpose, we set s0 = −Mx(ξt, ηt)/(L‖ηt‖2

x), where L > 0 is constant, and σ ∈ (0, 0.5].
Then, the step size st at the t−th iteration is the largest one in the set {s0, 0.5s0, 0.52s0, · · · },
and therefore

f (xt)− f (xt + stη
t) ≥ −σst Mx(ξ

t, ηt). (17)

Algorithm 5 Inexact line search
Input: Data M, iterate x, constant L > 0, times limitation im, parameter σ ∈ (0, 0.5], SD
direction ξ, and CD direction η.
Output: Stepsize s.

1: Set s0 = −Mx(ξ, η)/(L‖η‖2
x).

2: k← 0
3: while fΩ(x)− fΩ(x + sη) + σsMx(ξ, η) < 0&& k < im do
4: s← 0.5s
5: k← k + 1
6: end while

Retraction. With the descent direction η = (ηQ, ηR) and stepsize s, one can apply
retraction (see Figure 1 and Algorithm 6). For this purpose, we introduce the concept of the
degree of orthogonality.

Definition 2. For a matrix Q ∈ Rn1×r, we definite its degree of orthogonality as:

Orth(Q) =

∣∣∣∣Tr(QTQ)− r
r

∣∣∣∣. (18)

Algorithm 6 Retraction with QR factorization

Input: Iteration x = [Q; RT], direction η = [ηQ; ηT
R], stepsize st and parameter θ.

Output: Next iterate xt+1 = (Qt+1, Rt+1).
1: if Orth(Qt + stη

t
Q) < θ (see (18)) then

2: xt+1 = xt

3: else {obtain Q̃ and R̃ from Qt + stη
t
Q using Algorithm 7}

4: xt+1 = [Q̃; ((Rt)T + st(ηt
R)

T)(R̃)T]
5: end if

Mathematics 2023, 11, 1155 6 of 17

Algorithm 7 Modified Gram–Schmidt algorithm

Input: A ∈ Rn1×r with rank(A) = r.
Output: Q ∈ Rn1×r and R ∈ Rr×r.

1: for k = 1 : r do
2: Rx,x =

√
Σn1

i=1 A2
i,k

3: for i = 1 : n1 do
4: Qi,k = Ai,k/Rk,k
5: end for
6: for k = k + 1 : r do
7: Rk,j = Σn1

i=1Qi,k Ai,j
8: for i = 1 : n1 do
9: Ai,j = Ai,j −Qi,kRk,j

10: end for
11: end for
12: end for

Given a small parameter θ, we say that the matrix Q + sηQ has good orthogonality if
Orth(Q + sηQ) < θ. Then, we adopt (Q + sηQ, R + sηR) as the value for the next iterate.
On the contrary, we have to decompose Q + sηQ [33] and obtain Q̃, R̃, and hence, the next
iteration point (Q̃, R̃(R + sηR)).

In summary, we present Algorithms 8 and 9 as the whole process of solving the
optimization problem (9), respectively.

Algorithm 8 QR Riemannian gradient descent (QRRGD)

Input: Function f : Rn1×r ×Rr×n2 → R (see (9)), initial point x0 ∈ Rn1×r ×Rr×n2 (gener-
ated by Algorithm 1), tolerance parameter ε > 0
Output: xt

1: t← 0
2: Compute the gradient by Algorithm 2
3: while ‖ξt‖x > ε do
4: Find step size st by Algorithm 4
5: Update via retraction (Algorithm 6): xt+1 = Rxt(stη

t)
6: t← t + 1
7: Compute the steepest direction by Algorithm 2
8: end while

Algorithm 9 QR Riemannian conjugate gradient (QRRCG)

Input: Function f : Rn1×r ×Rr×n2 → R(see (9)), initial point x0 ∈ Rn1×r ×Rr×n2 , tolerance
parameter ε > 0
p Output: xt

1: t← 0
2: Compute the gradient using Algorithm 2
3: while ‖ξt‖x > ε do
4: Find step size st using Algorithm 4
5: Update via retraction (Algorithm 6): xt+1 = Rxt(stη

t)
6: t← t + 1
7: Compute the conjugate direction using Algorithm 3
8: end while

4. Analysis
4.1. Convergence

We conduct analysis of Algorithm 8 as an instance and Algorithm 9 can be proved
using a similar method. First, we prove that the objective function (9) is Lipschitz continu-
ously differentiable [34] on the product space Rn1×r ×Rr×n2 over the Euclidean geometry.

Mathematics 2023, 11, 1155 7 of 17

Then, we demonstrate that the proposed Riemannian gradient descent direction (14) has
a sufficient decrease in the function value provided that the step size is selected properly
depending on the local geometry at each iteration.

The Lipschitz continuity of the gradient of f in the sublevel set [35]

S0 = {x ∈ Rn1×r ×Rr×n2 , f (x) ≤ f (x0)}. (19)

with respect to a point x0 ∈ Rn1×r ×Rr×n2 is shown below.

Lemma 1. (Lipschitz continuous). Given a point x0 ∈ Rn1×r ×Rr×n2 , there exists a Lipschitz
constant L0 > 0 such that the gradient of f in Rn1×r ×Rr×n2 is L0−Lipschitz continuous for any
x, y ∈ Rn1×r ×Rr×n2 belonging to the sublevel set S0 (19) (see [36] for details to this lemma),

f (y)− f (x) ≤ 〈∇ f (x), y− x〉+ L0

2
‖y− x‖2. (20)

Proof. By the definition of function (9), set S0, where S0 is bounded with respect to any
x < ∞. Furthermore, let B be a closed ball that contains S0. For all x, y ∈ B, according to f
is C∞, we have

f (y) = f (x) +
∫ 1

0
〈∇ f (x + τ(y− x)), y− x〉dτ

= f (x) + 〈 f (x), y− x〉+
∫ 1

0
〈∇ f (x + τ(y− x))−∇ f (x), y− x〉dτ

Then,

| f (y)− f (x)− 〈∇ f (x), y− x〉| = |
∫ 1

0
〈 f (x + τ(y− x))−∇ f (x), y− x〉dτ|

≤
∫ 1

0
|〈∇ f (x + τ(y− x))−∇ f (x), y− x〉|dτ

≤
∫ 1

0
‖∇ f (x + τ(y− x))−∇ f (x)‖‖y− x‖dτ

≤ τL0‖y− x‖2dτ

=
L0

2
‖y− x‖2.

This means that (20) is true on B, and it functions on its subset S0.

Next, we obtain the following sufficient decrease property with Lemma 1.

Lemma 2. At any iterate xt = (Qt, Rt) produced by Algorithm 8 before stopping, the following
sufficient decrease property holds, provided that the step size s satisfies 0 < s < 2Ht/L0 for a
positive value Ht > 0,

f (xt+1)− f (xt) ≤ −Ct(s)‖∇ f (xt)‖2, (21)

where Ct(s) = s(Ht − L0s
2) > 0 and Ht is defined by

Ht = δ + min(1, σ2
min(Rt)), (22)

under the gradient setting (14).

Proof. In Algorithm 8, at iterate xt ∈ Rn1×r × Rr×n2 , the Riemannian gradient descent
step is ηt = −∇ f (xt). Let s > 0 denote the step size for producing the next iterate:
xt+1 = xt + sηt = (ηQ, ηR). In the gradient setting (14), the partial differentials are

∂Q f (x) = ηQ(RRT + δIr) and ∂H f (x) = ηR(1 + δ). (23)

Mathematics 2023, 11, 1155 8 of 17

According to Lemma 1, it follows that

f (xt+1)− f (xt) ≤
〈
∇ f (xt), xt+1 − xt

〉
+

L0

2
‖xt+1 − xt‖2

= −s
〈
∇ f (xt),∇ f (xt)

〉
+

L0s2

2
‖ηt‖2

= −s(Tr(ηT
QηQ(RRT + δIr)) + Tr(ηRηT

R(Q
TQ + δIr))) +

L0s2

2
‖ηt‖2

≤ −s(δ‖ηt‖2 + σ2
min(R)‖ηQ‖2

F + σ2
min(Q)‖ηR‖2

F) +
L0s2

2
‖ηt‖2

≤ −s‖ηt‖2(δ + min(1, σ2
min(Rt))) +

L0s2

2
‖ηt‖2

= −Ct(s)‖∇ f (xt)‖2.

Next, we prove that Algorithm 8 with the step size selected by the exact line search (16)
ensures sufficient decrease at each iteration.

Lemma 3. The iterates produced by Algorithm 8, with step size chosen by the exact line search (see
Algorithm 4) satisfy the following sufficient decrease property,

f (xt+1)− f (xt) ≤ −(H2
t /2L0)‖∇ f (xt)‖2. (24)

Proof. In Algorithm (8), let η = −∇ f (xt) denote the Riemannian gradient descent direc-
tion at the iterate xt ∈ Rn1×r ×Rr×n2 . From Lemmas 2 and 3, one obtains

f (xt + sη) ≤ f (xt)− Ct(s)‖∇ f (xt)‖2.

for s ∈ [0, 2Ht/L0] with Ht defined in (22). On the other hand, let ŝ be the step size
computed using Algorithm 4, and the next iterate xt+1 = xt + ŝη is the minimum of f along
the direction η: f (xt+1) ≤ f (xt + sη) by procession, for all s ≥ 0. Therefore,

f (xt+1) ≤ min
s∈[0,2Ht/L0]

f (xt + sη) (25)

≤ min
s∈[0,2Ht/L0]

(f (xt)− Ct(s)‖∇ f (xt)‖2) (26)

= f (xt)− (H2
t /2L0)‖∇ f (xt)‖2. (27)

In Equation (27), the conclusion maxs∈[0,2Ht/L0]
Ct(s) = maxs∈[0,2Ht/L0]

s(Ht − L0s
2) =

H2
t /2L0 is applied.

In both Lemmas 2 and 3, the sufficient decrease quantity depends on the local parame-
ter Ht. The quality Ht is useful only when it is a strictly positive number. We address this
in Proposition 1 for the gradient setting (12).

Proposition 1. Under the same settings as in Lemmas 2 and 3, there exists a positive numerical
constant H∗ > 0 such that the quantities (22) are lower bounded,

inf
t≥0

Ht ≥ H∗. (28)

Proof. In the gradient setting (12),

Ht = δ + min(σ2
min(Q

t), σ2
min(Rt)) ≥ σ > 0.

It is easy to find the result (28) can be ensured by H∗ := σ as claimed.

Mathematics 2023, 11, 1155 9 of 17

Now, we reach the main result using the following theorem.

Theorem 1. Under the problem statement (9), given the initial point x0 and the gradient setting
(12), the sequence generated by Algorithm 8 with the step size (16) converges and a upper bound of
the gradient norm shows as follows,

‖∇ f (xN)‖ ≤

√
2L0(f (x0)− f ∗)

H∗N
(29)

after N iterations, where L0 > 0 is the Lipschitz constant in Lemma 1, the numerical constant
H∗ > 0 is given in Proposition (28), and f ∗ is a lower bound of the function value of (9).

Proof. The convergence of the sequence (xt)t≥0 is a direct result of the sufficient decrease
property (21) in Lemma 2 and the boundedness of the sequence of function values f (xt)t≥0.

Let N ≥ 1 denote the number of iterations needed for reaching an iterate xN such that
‖∇ f (xN)‖ ≤ ε, for a tolerance parameter ε > 0.

Because Algorithm 8 does not terminate at t ≤ N− 1, the gradient norms ‖∇ f (xt)‖ >
ε for all t ≤ N − 1. Adding up the right hand sides of (24) for t = 0, . . . , N − 1 follows

f (xN)− f (x0) ≤ −
N−1

∑
t=0

(H2
t /2L0)‖∇ f (xt)‖2 (30)

≤ −(ε2/2L0)
N−1

∑
t=0

H2
t (31)

= −(H∗/2L0)ε
2N. (32)

In Equation (32), Proposition 1 is applied. Therefore, the number of iterations satisfies

N ≤ 2L0(f (x0)− f (xN))

H∗ε2 ≤ 2L0(f (x0)− f ∗)
H∗ε2 .

In other words, the iterate produced by the algorithm after N iteration obeys

‖∇ f (xN)‖ ≤

√
2L0(f (x0)− f ∗))

H∗N
.

4.2. Computational Cost

In this subsection, we analyze the computation cost of our QR-based method with the
other. It demonstrates the reason that we can obtain better performance than the compared
method. After we make a QR factorization to matrix Q, it leads to some computational
cost, but what the factorization reaps, the benefits greatly exceeds what it costs using an
ingenious trick.

Cost increase. In Figure 2, we mark three parts including computations in retraction
as C1, C2, and C3, respectively. For C1, we compute Tr(QTQ) as the leading part where
Q ∈ Rn1×r, the cost of which is 2n1r2. For C2, we compute the QR decomposition of a
matrix in Rn1×r by the MGS algorithm, which costs 2n1r2. For C3, it just computes the
product of matrices R̃ ∈ Rr×r and R ∈ Rr×n2 ; hence, it costs 2n2r2. Assume that the rate of
the good orthogonality is 1− θ0, and the iteration number is kiter; then, the whole increasing
cost is kiter(C1 + θ0(C2 + C3)).

Mathematics 2023, 11, 1155 10 of 17

𝑅𝑡 + 𝑠𝑡𝜂𝑅
𝑡𝑄𝑡 + 𝑠𝑡𝜂𝑄

𝑡

𝑂𝑟𝑡ℎ 𝑄𝑡 + 𝑠𝑡𝜂𝑄
𝑡 < 𝜃?

𝑅𝑡 + 𝑠𝑡𝜂𝑅
𝑡𝑄𝑡 + 𝑠𝑡𝜂𝑄

𝑡

𝑄𝑅 dec.

෨𝑄 ෨𝑅 𝑅𝑡 + 𝑠𝑡𝜂𝑅
𝑡

𝑅𝑡+1𝑄𝑡+1

No

Yes

𝐶1

𝐶2

𝐶3

Figure 2. Illustration of the QR factorization in retraction.

Cost decrease. A simple thought is to reduce the cost in each iteration process. First, we
consider the gradient of the objective function (9), and the computational costs are summarized
in Table 1, where Cchol = 1/3 is a coefficient in the Cholesky decomposition while computing
the inverse. Therefore, once we compute the gradient we have D1 = 2(n1 + n2)r2 + Ccholr3

reductions directly with respect to algorithms without QR. Second, we consider the metric (10),
and the computational costs are summarized in Table 2. When we compute the metric, the
reduction is D2 = 2(n1 + r)r2 under the QR method than those without it.

Table 1. Computational costs of the gradients of the objective function.

Computation Cost

PΩ(QR−M)RT(RRT + δIr)−1 (4r + 1)|Ω|+ 2(n1 + n2)r2 + Ccholr3

QT PΩ(QR−M)(QTQ + δIr)−1 (4r + 1)|Ω|+ 2(n1 + n2)r2 + Ccholr3

QT PΩ(QR−M)/(1 + δ) (4r + 1)|Ω|

Table 2. Computation costs of the metric.

Computation Cost

Tr(ξT
QηQ(RRT + δIr)) 2(n1 + n2 + r)r2

Tr(ξRηT
R(Q

TQ + δIr)) 2(n1 + n2 + r)r2

Tr(ξRηT
R(1 + δ)) 2n2r2

In Algorithm 8, if we find the step size st using the exact line search (Algorithm 4),
then the reduction is kiterD1, because the exact line search needs not to compute the metric.
Furthermore, the reduction in the computational cost at one iteration is D1 − (C1 + θ0(C2 +
C3)) =

1
3 r3 + 2(1− θ0)n2r2 − 2n1r2.

In Algorithm 9, if we find the step size st using the inexact line search (Algorithm 5),
the reduction in the worst case is kiter(D1 + imD2). Furthermore, the reduction in the
computational cost at one iteration is (D1 + imD2)− (C1 + θ0(C2 + C3)) = (2im + 1

3)r
3 +

2(im− r)n1r2 + 2(1− θ0)n2r2.

Mathematics 2023, 11, 1155 11 of 17

5. Numerical Experiments

This section shows a numerical comparison of our algorithms with the recent RGD/RCG
algorithms [26], which outperforms existing matrix factorization models on manifolds. The
experiments are divided into two parts: in the first part, we test our algorithm on synthetic data,
whereas in the second part, we provide the results on an empirical dataset PeMS Traffic[37].

To assess the algorithmic performance, we use the root mean square error (RMSE).
Given a matrix M ∈ Rn1×n2 observed on Ω, the RMSE of X ∈ Rn1×n2 with respect to M is
defined by

RMSE(X; Ω) =
√

Σ(i,j)∈Ω(Xij −Mij)2/|Ω|. (33)

Other parameters used in experiments are as follows: (1) p is the probability of an
entry being observed; (2) the stopping parameter ε = 10−10 is one of the two parameters
stop the iteration process when RMSE reaches it; (3) the iteration budget parameter λ = 250
is another parameter that stops the iteration process when iterating a specific amount
of times over it; (4) the metric parameter δ = 10−4 helps the metric be well defined;
(5) the orthogonality parameter θ = 0.01 is used to judge whether a matrix has good
orthogonality; and (6) the oversampling factor OSF ∈ (2.5, 3) according to [14], defined by
OSF = |Ω|/(r(n1 + n2 − r)), which decides the difficulty of the problem.

In our experiment, we first fix the values of n1, n2, and p. Next, we determine
the difficulty of recovery, which can be characterized by the over sampling factor (OSF).
Following [14], we set the OSF in (2.5, 3). Finally, we determine the value of the rank by
r = b11/30n1n2 p/(n1 + n2)c. To ensure that the matrix M is low ranked (e.g., r = 10),
there are two methods. One is setting n1 and n2 as small as possible given the values of p.
For example, given p = 0.2, the values of n1 and n2 are about 250. Because of the small size,
the problem is trivial. The other is letting p be smaller given the larger values of n1 and
n2. This is what was performed in our experiment. For example, given n1 = n2 = 2000 in
Figure 2, we set p = 0.05 and obtain r = 18.

All numerical experiments were performed on a desktop with 16-core Intel i7-10700F
CPUs and 32GB of memory running Windows10 and MATLAB R2022b. The source code is
available at https://github.com/Cz1544252489/qrcode (accessed on 14 February 2023) .

5.1. Synthetic Data

Initially, we provide some comments about the chosen rank on synthetic data. We first
fix the values of n1, n2, and p. Next, we determine the difficulty of recovery, which can be
characterized by the oversampling factor (OSF). Following [14], we set the OSF in (2.5, 3).
Finally, we can determine the value of the rank by r = b11/30n1n2 p/(n1 + n2)c.

We generate two observed matrices M1 and M2 with probability p, which is the
ratio of an entry being observed defined by M1 = FQ with (F, QT) ∈ Rn1×r ×Rn2×r and
M2 = M1/(max(M1)−min(M1)), where (F, QT) are composed of columns that are i.i.d.
Gaussian vectors. The reason why we generate them is to test our algorithm on different
scale of entries, and it will be measured by E(M) that is the average of random entries.

Table 3 and Table 4 show the results with matrices size of 2000× 2000 and 4000× 4000.
And Table 5 shows the results with matrices size ranging from 2000× 2000 to 8000× 2000.

https://github.com/Cz1544252489/qrcode

Mathematics 2023, 11, 1155 12 of 17

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

101

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

101

R
M

S
E

(a)

(b)

R
M

S
E

time

(c)

time

(d)

Figure 3. Performance comparison of RGD (a,b) and RCG (c,d) with and without QR factorization.
Simulations were carried out on square matrices M1 (a,c) and M2 (b,d). We apply the ELS and IELS
to find the step size. The parameter values are n1 = 2000, n2 = 2000, r = 18, and p = 0.05.

Table 3. Computational results for Figure 3 with matrices size of 2000× 2000. The time is rounded to
three decimal places and RMSE is rounded to five decimal places.

Subfigure Method Time RMSE Iteration

(a)

QRRGD+ELS 108.282 9.42416× 10−11 223
RGD+ELS 120.644 5.65317× 10−6 250

QRRGD+IELS 58.763 2.66777× 10−2 250
RGD+IELS 57.905 2.88969× 10−2 250

(b)

QRRGD+ELS 113.655 9.89826× 10−11 237
RGD+ELS 122.815 1.21759× 10−5 250

QRRGD+IELS 59.640 2.27510× 10−1 250
RGD+IELS 59.400 2.45927× 10−1 250

(c)

QRRCG+ELS 109.363 9.39990× 10−11 227
RCG+ELS 118.726 3.69309× 10−3 250

QRRCG+IELS 58.677 2.50264× 10−2 250
RCG+IELS 59.849 2.68750× 10−2 250

(d)

QRRCG+ELS 121.740 9.28316× 10−10 250
RCG+ELS 119.905 1.36830× 10−5 250

QRRCG+IELS 59.449 2.24703× 10−1 250
RCG+IELS 58.432 2.45275× 10−1 250

Mathematics 2023, 11, 1155 13 of 17

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

101

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

1 10 100

10-9

10-7

10-5

10-3

10-1

101

R
M

S
E

(a)

(b)

R
M

S
E

time

(c)

time

(d)

Figure 4. Performance comparison of the RCG with and without QR factorization. Simulations were
carried out on square matrices M1 (a,c) and M2 (b,d). We apply ELS and IELS to find the step size.
The parameter values are n1 = 4000, n2 = 4000, r = 36, and p = 0.05.

Table 4. Computational results for Figure 4 with matrices size of 4000× 4000. The time is rounded to
three decimal places and RMSE is rounded to five decimal places.

Subfigure Method Time RMSE Iteration

(a)

QRRGD+ELS 529.851 9.89657× 10−11 181
RGD+ELS 733.993 2.40792× 10−10 250

QRRGD+IELS 337.730 1.76829× 10−2 250
RGD+IELS 335.950 2.82502× 10−2 250

(b)

QRRGD+ELS 586.522 9.55942× 10−11 201
RGD+ELS 745.970 4.96694× 10−4 250

QRRGD+IELS 349.708 1.53603× 10−1 250
RGD+IELS 348.213 3.59285× 10−1 250

(c)

QRRCG+ELS 547.370 9.03539× 10−11 173
RCG+ELS 782.545 1.99382× 10−8 250

QRRCG+IELS 351.655 1.77931× 10−2 250
RCG+IELS 350.344 2.56178× 10−2 250

(d)

QRRCG+ELS 586.297 9.00940× 10−11 199
RCG+ELS 738.357 1.38944× 10−7 250

QRRCG+IELS 341.237 1.66425× 10−1 250
RCG+IELS 338.835 3.59287× 10−1 250

Mathematics 2023, 11, 1155 14 of 17

1 10 100

10−10

10−8

10−6

10−4

10−2

100

R
M

SE

time

 2k*2k+QRRCG
 2k*2k+RCG
 4k*2k+QRRCG
 4k*2k+RCG
 6k*2k+QRRCG
 6k*2k+RCG
 8k*2k+QRRCG
 8k*2k+RCG

Figure 5. Performance comparison of RCG with and without QR factorization. Simulations were
carried out on square matrices M1. We applied ELS. The parameter values are n1 = 2000, 4000, 6000,
8000, n2 = 2000, p = 0.05, then r = 18, 24, 27, 29.

Table 5. Computational results for Figure 5 with matrices size ranging from 2000× 2000 to 8000× 2000.
The time is rounded to three decimal places and RMSE is rounded to five decimal places.

r,OSF Size Method Time RMSE Iteration

18,2.79 2000× 2000 QRRCG 102.939 9.78333×
10−11 210

RCG 118.397 1.71532×
10−3 250

24,2.79 4000× 2000 QRRCG 211.122 9.43873×
10−11 234

RCG 230.015 5.98057×
10−3 250

27,2.79 6000× 2000 QRRCG 335.745 1.03872×
10−8 250

RCG 336.917 1.07408×
10−2 250

29,2.77 8000× 2000 QRRCG 442.133 1.74723×
10−9 250

RCG 449.752 1.17567×
10−1 250

5.2. Empirical Data

In this part, we test our algorithm on the PeMS Traffic [37] dataset. It is a matrix with a
size of 963× 10560 containing traffic occupancy rates (between 0 and 1) recorded across time
by m = 963 sensors placed along different lanes of freeways in the San Francisco Bay Area.
The recordings are sampled every 10 minutes, covering a period of 15 months. The column
index set corresponds to the time domain and the row index set corresponds to geographical
points (sensors), which are referred to as the spatial domain. In the experiment, we use the

Mathematics 2023, 11, 1155 15 of 17

part of test dataset; it has 173 rows and 6837 columns with p = 0.05. Table 6 shows the
results on the empirical data.

Table 6. Computational results for Figure 6 on PeMS Traffic. The time is rounded to three decimal
places and RMSE is rounded to five decimal places.

Subfigure Method Time RMSE Iteration

(a)

QRG+ELS 189.945 1.57521× 10−2 250
RGD+ELS 192.104 1.57584× 10−2 250

QRRGD+IELS 116.213 1.62539× 10−2 250
RGD+IELS 116.576 1.62615× 10−2 250

(b)

QRRGD+ELS 198.433 1.59324× 10−2 250
RGD+ELS 196.615 1.59392× 10−2 250

QRRGD+IELS 115.070 1.63650× 10−2 250
RGD+IELS 113.418 1.63721× 10−2 250

(c)

QRRCG+ELS 196.291 1.54291× 10−2 250
RCG+ELS 194.373 1.54170× 10−2 250

QRRCG+IELS 112.798 1.59846× 10−2 250
RCG+IELS 122.820 1.59796× 10−2 250

(d)

QRRCG+ELS 201.373 1.44327× 10−2 250
RCG+ELS 196.029 1.44283× 10−2 250

QRRCG+IELS 112.663 1.48999× 10−2 250
RCG+IELS 112.358 1.48827× 10−2 250

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

0 50 100 150 200

0.016

0.017

0.018

0.019

0.020

0.021

 QRRGD+ELS
 RGD+ELS
 QRRGD+IELS
 RGD+IELS

0 50 100 150 200

0.016

0.017

0.018

0.019

0.020

0.021

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

0 100 200

0.016

0.017

0.018

0.019

0.020

0.021

 QRRCG+ELS
 RCG+ELS
 QRRCG+IELS
 RCG+IELS

0 100 200

0.015

0.016

0.017

0.018

0.019

0.020

R
M

S
E

(a)

(b)

R
M

S
E

time

(c)

time

(d)

Figure 6. Performance comparison of RGD (a,b) and RCG (c,d) with and without QR factorization.
Simulations were carried out on the same matrices M built by PeMS Traffic. We applied ELS and IELS
to find the step size. The parameter values are n1 = 173, n2 = 6837, p = 0.05, r = 3, and OSF = 2.82

Mathematics 2023, 11, 1155 16 of 17

As shown above, solid lines represent the results of our algorithms with QR factoriza-
tion, whereas dashed lines correspond to those of the algorithms with rank factorization [26].
For synthetic data, our algorithms either yield better solutions or run with less time in
comparison to [26] on most cases. Whereas for the empirical dataset, it shows a slight
advantage for weak structures on earth. It has been demonstrated that the algorithms
in [26] outperform the state-of-the-art methods using alternating minimization and the
manifold concept.

Furthermore, we briefly measure the ratio of speedup from the compared algorithm. It
can be defined by the means of speedup on all our experiment, that is, SU = Σi∈ESUi/|E|,
where E is the set of experiments. Furthermore, a single speedup SUi defined as below:

SUi =

{
0 if t1 > t2 and ε1 > ε2

| t2ε2
t1ε1
− 1| otherwise (34)

where t1 and ε1 are the time in seconds and theRMSE of the QR method, respectively,
whereas t2 and ε2 are the time in seconds and the RMSE of the compared method. Finally,
we obtain SU = 24.00%.

6. Conclusions

We have proposed two LRMC algorithms, QRRGD and QRRCG, for reconstruction
of an observed matrix via QR-based retraction on manifolds. These two algorithms are
computationally efficient and have higher accuracy, demonstrated by theoretical analysis of
computational costs and numerical experiments with synthetic data and a real-world dataset
PeMS Traffic. To improve efficacy, one could adjust the values of other parameters such as
using smaller θ for orthogonality, a larger OSF, and a more suitable δ value for the metric. On
the other hand, different conjugate methods [38], as well as the rank adaptive method [39],
can be considered.

Author Contributions: Conceptualization, S.Y. and X.J.X.; Methodology, S.Y. and X.J.X.; Validation,
X.J.X.; Formal analysis, K.W. and Z.C.; Investigation, K.W. and Z.C.; Writing—original draft, K.W. and
Z.C.; Writing—review & editing, S.Y. and X.J.X.; Project administration, X.J.X.; Funding acquisition,
S.Y. and X.J.X. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of China under Grant Nos.
11971296 and 12071281.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs Publicly available datasets were analyzed in this study. This data can be found here: https:
//file.cz123.top/DatainManQR/.

Acknowledgments: The authors thank anonymous referees for their valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Candes, E.J.; Plan, Y. Matrix Completion With Noise. Proc. IEEE 2010, 98, 925–936. [CrossRef]
2. Xu, Y.; Yin, W.; Wen, Z.; Zhang, Y. An alternating direction algorithm for matrix completion with nonnegative factors. Front.

Math. China 2012, 7, 365–384. [CrossRef]
3. Markovsky, I.; Usevich, K. Structured Low-Rank Approximation with Missing Data. SIAM J. Matrix Anal. Appl. 2013, 34, 814–830.

[CrossRef]
4. Markovsky, I. Recent progress on variable projection methods for structured low-rank approximation. Signal Process. 2014, 96, 406–419.

[CrossRef]
5. Usevich, K.; Comon, P. Hankel Low-Rank Matrix Completion: Performance of the Nuclear Norm Relaxation. IEEE J. Sel. Top.

Signal Process. 2016, 10, 637–646. [CrossRef]
6. Davenport, M. An overview of low-rank matrix recovery from incomplete observations. IEEE J. Sel. Top. Signal Process. 2016, 10, 608–622.

[CrossRef]
7. Chi, Y. Low-rank matrix completion [lecture notes]. IEEE Signal Process. Mag. 2018, 35, 178–181. [CrossRef]

https://file.cz123.top/DatainManQR/
https://file.cz123.top/DatainManQR/
http://doi.org/10.1109/JPROC.2009.2035722
http://dx.doi.org/10.1007/s11464-012-0194-5
http://dx.doi.org/10.1137/120883050
http://dx.doi.org/10.1016/j.sigpro.2013.09.021
http://dx.doi.org/10.1109/JSTSP.2016.2535182
http://dx.doi.org/10.1109/JSTSP.2016.2539100
http://dx.doi.org/10.1109/MSP.2018.2832197

Mathematics 2023, 11, 1155 17 of 17

8. Ding, Y.; Krislock, N.; Qian, J.; Wolkowicz, H. Sensor Network Localization, Euclidean Distance Matrix completions, and graph
realization. Optim. Eng. 2010, 11, 45–66. [CrossRef]

9. Liu, Z.; Vandenberghe, L. Interior-Point Method for Nuclear Norm Approximation with Application to System Identification.
SIAM J. Matrix Anal. Appl. 2010, 31, 1235–1256. [CrossRef]

10. Jacob, M.; Mani, M.P.; Ye, J.C. Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine
Learning. IEEE Signal Process. Mag. 2020, 37, 54–68. [CrossRef]

11. Jawanpuria, P.; Mishra, B. Structured low-rank matrix learning: Algorithms and applications. arXiv 2017, arXiv:1704.07352.
12. Lu, S.; Ren, X.; Liu, F. Depth Enhancement via Low-rank Matrix Completion. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014; pp. 3390–3397.
13. Nguyen, L.T.; Kim, J.; Shim, B. Low-rank matrix completion: A contemporary survey. IEEE Access 2019, 7, 94215–94237.

[CrossRef]
14. Vandereycken, B. Low-rank matrix completion by Riemannian optimization. SIAM J. Optim. 2013, 23, 1214–1236. [CrossRef]
15. Wang, H.; Zhao, R.; Cen, Y.; Liang, L.; He, Q.; Zhang, F.; Zeng, M. Low-rank matrix recovery via smooth rank function and its

application in image restoration. Int. J. Mach. Learn. Cybern. 2018, 9, 1565–1576. [CrossRef]
16. Candès, E.J.; Recht, B. Exact matrix completion via convex optimization. Found. Comput. Math. 2009, 9, 717–772. [CrossRef]
17. Cai, J.F.; Candès, E.J.; Shen, Z. A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 2010, 20, 1956–1982.

[CrossRef]
18. Lee, K.; Bresler, Y. Admira: Atomic decomposition for minimum rank approximation. IEEE Trans. Inf. Theory 2010, 56, 4402–4416.

[CrossRef]
19. Jain, P.; Netrapalli, P.; Sanghavi, S. Low-rank matrix completion using alternating minimization. In Proceedings of the 45th

Annual ACM Symposium on Theory of Computing, Palo Alto, CA, USA, 1–4 June 2013; pp. 665–674.
20. Tanner, J.; Wei, K. Low rank matrix completion by alternating steepest descent methods. Appl. Comput. Harmon. Anal. 2016,

40, 417–429. [CrossRef]
21. Absil, P.A.; Mahony, R.; Sepulchre, R. Optimization Algorithms on Matrix Manifolds; Princeton University Press: Princeton, NJ,

USA, 2009.
22. Boumal, N. An Introduction to Optimization on Smooth Manifolds; Cambridge University Press: Cambridge, UK, 2023.
23. Guglielmi, N.; Scalone, C. An efficient method for non-negative low-rank completion. Adv. Comput. Math. 2020, 46, 31. [CrossRef]
24. Mishra, B.; Meyer, G.; Bonnabel, S.; Sepulchre, R. Fixed-rank matrix factorizations and Riemannian low-rank optimization.

Comput. Stat. 2014, 29, 591–621. [CrossRef]
25. Cambier, L.; Absil, P.A. Robust low-rank matrix completion by Riemannian optimization. SIAM J. Sci. Comput. 2016, 38, S440–S460.

[CrossRef]
26. Dong, S.; Absil, P.A.; Gallivan, K. Riemannian gradient descent methods for graph-regularized matrix completion. Linear Algebra

Its Appl. 2021, 623, 193–235. [CrossRef]
27. Zhu, X. A Riemannian conjugate gradient method for optimization on the Stiefel manifold. Comput. Optim. Appl. 2017, 67, 73–110.

[CrossRef]
28. Sato, H.; Aihara, K. Cholesky QR-based retraction on the generalized Stiefel manifold. Comput. Optim. Appl. 2019, 72, 293–308.

[CrossRef]
29. Golub, G.H.; Van Loan, C.F. Matrix Computations; JHU Press: Baltimore, MD, USA, 2013.
30. Keshavan, R.H.; Montanari, A.; Oh, S. Matrix completion from noisy entries. J. Mach. Learn. Res. 2010, 11, 2057–2078.
31. Dai, Y.H.; Yuan, Y. A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim. 1999,

10, 177–182. [CrossRef]
32. Armijo, L. Minimization of functions having Lipschitz continuous first partial derivatives. Pac. J. Math. 1966, 16, 1–3. [CrossRef]
33. Björck, Å.; Paige, C.C. Loss and recapture of orthogonality in the modified Gram–Schmidt algorithm. SIAM J. Matrix Anal. Appl.

1992, 13, 176–190. [CrossRef]
34. O’Searcoid, M. Metric Spaces; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006.
35. Boyd, S.; Boyd, S.P.; Vandenberghe, L. Convex optimization; Cambridge University Press: Cambridge, UK, 2004.
36. Nesterov, Y. Introductory Lectures on Convex Optimization: A Basic Course; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2003.
37. Dua, D.; Graff, C. UCI Machine Learning Repository, 2017. Available online: http://archive.ics.uci.edu/ml (accessed on 10

February 2019).
38. Liu, J.; Feng, Y.; Zou, L. Some three-term conjugate gradient methods with the inexact line search condition. Calcolo 2018, 55, 1–16.

[CrossRef]
39. Zhou, G.; Huang, W.; Gallivan, K.A.; Van Dooren, P.; Absil, P.A. A Riemannian rank-adaptive method for low-rank optimization.

Neurocomputing 2016, 192, 72–80. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11081-008-9072-0
http://dx.doi.org/10.1137/090755436
http://dx.doi.org/10.1109/MSP.2019.2950432
http://dx.doi.org/10.1109/ACCESS.2019.2928130
http://dx.doi.org/10.1137/110845768
http://dx.doi.org/10.1007/s13042-017-0665-9
http://dx.doi.org/10.1007/s10208-009-9045-5
http://dx.doi.org/10.1137/080738970
http://dx.doi.org/10.1109/TIT.2010.2054251
http://dx.doi.org/10.1016/j.acha.2015.08.003
http://dx.doi.org/10.1007/s10444-020-09779-x
http://dx.doi.org/10.1007/s00180-013-0464-z
http://dx.doi.org/10.1137/15M1025153
http://dx.doi.org/10.1016/j.laa.2020.06.010
http://dx.doi.org/10.1007/s10589-016-9883-4
http://dx.doi.org/10.1007/s10589-018-0046-7
http://dx.doi.org/10.1137/S1052623497318992
http://dx.doi.org/10.2140/pjm.1966.16.1
http://dx.doi.org/10.1137/0613015
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1007/s10092-018-0258-3
http://dx.doi.org/10.1016/j.neucom.2016.02.030

	Introduction
	Preliminary
	Algorithms
	Analysis
	Convergence
	Computational Cost

	Numerical Experiments
	Synthetic Data
	Empirical Data

	Conclusions
	References

