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Abstract: Thermal reduction by enhancing heat-generation phonon scattering can improve thermo-
electric performance. In this paper, the phonon transport subjected to internal heat generation in
two-dimensional nanoscale thermoelectric phononic crystals is investigated by a novel Monte Carlo
method based on the universal effective medium theory, called the MCBU method. The present
approach is validated. Compared with the universal effective medium theory method, the MCBU
method is easier to implement. More importantly, the deviation of the computation time between
the two methods can be ignored. With almost the same time cost, the present method can accurately
calculate the effective thermal conductivity of complex geometric structures that cannot be calculated
by the effective medium theory. The influences of porosity, temperature, pore shape and material
parameters on thermal conductivity are discussed in detail. This study offers useful methods and
suggestions for fabricating these materials with heat isolation and reduction.
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1. Introduction

In the past decades, nanotechnology has been used more and more widely in thermo-
electric devices, which makes the study of heat conduction theory extremely important.
Generally, the phonon Boltzmann transport equation (BTE) can characterize thermal trans-
port well in nanostructures. In order to solve the BTE, researchers have made a lot of
progress [1–8]. The Gray model is commonly used [2]; however, solving the BTE in this way
sometimes leads to inaccurate solutions that cannot be ignored. The different lattice Boltz-
mann methods have also been developed by the methods mentioned in references [3–6].
However, the lattice Boltzmann methods still have some shortcomings. For example, they
are used for non-physical prediction in the ballistic state [5,6]. There is another method
that can directly solve the BTE by using the finite difference method, namely the discrete
ordinate method [7]. However, in addition to requiring a large amount of memory to
solve the equation, this method also shows a slow convergence near the diffusion limit.
Moreover, the discrete unified gas dynamics scheme [8] has been proven to be effective and
deliver high-precision for low-dimensional thermal phonon transport, but it has not been
used to solve the BTE in three-dimensional geometry. The state-space strategies are the
basis of the novel theory of control and its advantage is the characterization of approaches
of importance through the BTE in favoring transport functions. However, for this method,
in the previous duration the processes were sufficient for them with only one differential
equation for a reasonably low order [9]. The main step of the finite element method for
solving the BTE is obtaining the equations of motion for the finite elements [10]. However,
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this method is very time consuming and it cannot handle the infinite domain problems
well. So far, the Monte Carlo (MC) simulation has been proved to be an efficient method for
solving the BTE. Two typical MC methods are used, of which the ensemble MC method is
employed to calculate the effective thermal conductivity in many kinds of nanostructures,
for example, silicon structures [11,12] and even composites [13,14]. The other method, the
phonon tracing MC method, simulates the trajectories of phonons independently which
reduces the computation time greatly [15,16]. Therefore, both the ensemble MC and the
phonon tracing MC are suitable methods used for phonon transport in many kinds of
nanostructures with a larger size, and they can also solve the BTE with high accuracy and
minimum calculation time [1].

Recently, Yu-Chao Hua and Bing-Yang Cao proposed an efficient two-step Monte Carlo
method for heat conduction in nanostructures [1]. However, it is difficult to calculate the
effective thermal conductivity of complex structures with different pore shapes. Effective
medium theory (EMT) is a widely used analytical method to study the optical responses
of subwavelength periodic structures [17–19] and it can achieve similar functions of the
whole system by defining the average value of materials with effective parameters [20]. The
Maxwell-Garnett theory and the Bruggeman EMT are based on the material characteristics
of each component in the mixture, which play an important role in effective medium meth-
ods. The composition of dielectric materials usually shows different structural properties.
To calculate the thermal conductivity of these materials, EMT should be a favored method;
for a given material and geometric structure, the EMT method can calculate the thermal con-
ductivity by achieving the functions of the given system [21]. Due to these characteristics
of EMT, it has many applications in electrical conductivity and related issues [22–26].

At nanoscale, the size characteristics of phononic crystals are very close to or even
smaller than the mean free path (MFP) of phonons, and the heat conduction no longer
obeys the Fourier law. Therefore, in order to deeply understand phonon transport in
thermoelectric phononic crystals, the correct models and methods are required to simulate
the phonon transport. The EMT method can effectively calculate the effective thermal
conductivity, and the value of the effective thermal conductivity only depends on the
porosity. However, the EMT method is not the best method to calculate the effective
thermal conductivity of complex geometry. The MC method mainly calculates the effective
thermal conductivity through the MC model, which can reduce the calculation time without
damaging the accuracy. However, this method still has problems in calculating the effective
thermal conductivity of complex pore shapes. The general effective medium theory can
calculate the effective thermal conductivity of different pore shapes by implementing the
suppression function. Therefore, we combine the MC method with the general effective
medium theory method to develop a novel method for calculating the effective thermal
conductivity of complex pore shapes as effectively as these two methods. In this paper, a
novel Monte Carlo method based on the universal effective medium theory is developed
to calculate the thermal conductivity in nanoscale thermoelectric phononic crystals with
complex geometries, which is the creativity point in this paper. The outline of this paper is
as follows. In Section 2, the method description is introduced. In addition, the numerical
experiments are conducted to numerically illustrate some properties of the present method
in Section 3, followed by a summary in Section 4. In this paper, the MCBU method is
compared with the EMT method and it is found that the MCBU method can effectively and
accurately calculate the effective thermal conductivity of different geometric shapes, while
the EMT method cannot deal with it well, which is the main focus of this paper.

2. Method Description
2.1. Geometric Model

In this paper, a nanoporous phononic crystal is considered. First, a schematic diagram
of phononic crystals is shown in Figure 1. In order to reduce calculation resources, the
whole phononic crystal is divided into several unit cells, in which the pore shape of each
unit cell is rectangular. The heat flux is parallel to the plane of the crystal for transmission.
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The two-dimensional (2D) view of the geometry is also shown in Figure 1b. The model
illustrates phonon activities during the transport process where a temperature difference
is applied between two boundaries along the x-direction. Phonons are emitted from the
hot temperature boundaries, diffusive reflection occurs when the phonon meets the inner
surface of the unit cell hole, and specular reflection occurs when it encounters the boundary
of the unit cell, as shown in Figure 1b. In the present work, when calculating the effective
thermal conductivity of a nanostructure with different pore shapes, such as circle pores,
rhombus pores and triangle pores, we can replace the rectangle pores of the schematic
diagram of phononic crystals shown in Figure 1 can be replaced with the above shapes.
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2.2. Boltzmann Transport Equation

The BTE can be used to model phonon behavior in phononic crystals. In a lattice,
without external force, the BTE equation is expressed as

∂ f (t, r, k)
∂t

+ v · ∇ f (t, r, k) = (
∂ f (t, r, k)

∂t
)

scatter
(1)

Equation (1) in ref. [25] is related to the variation of distribution function f (t, r, k), and
f (t, r, k) is a function which is dependent on time t, phonon position r and phonon wave
k. The phonon group velocity v is v = ∇kω. The left side of Equation (1) represents the
drift term of phonons in the phononic crystals. The right side of the equation describes the
scattering term of phonons and phonons, impurities and boundaries.

2.3. Thermal Conductivity in Phononic Crystals Based on Universal Effective Medium Theory

In this section, in order to calculate the effective thermal conductivity in phononic
crystals with complex geometric parameters, the effective thermal conductivity in nanoscale
thermoelectric phononic crystals will be calculated by using the MCBU method.

First, we can develop the phonon BTE into anisotropic-MFP-BTE [27–35]:

Fml · ∇∆T(n)
ml + ∆T(n)

ml = ∑m′l′ αm′l′∆T(n−1)
m′l′ (2)

where Fml = ΛmŜl and Ŝl= sin(φl) x̂ + cos(φl)ŷ.
Then the effective thermal conductivity is given as follows:

ke f f = −
L

∆TA

∫
J · n̂dS (3)

where A is the surface area, L is the periodicity, n̂ = x̂, ∆T is the pseudo-temperature, J is
the heat flux and it can be described by
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J =
CvΛvj

4π
dT
dx A

∫ 2π
0

∫ 1
−1(exp(− Lrp

Λ
√

1−µ2
)− 1)µ2dµdϕ

=
CvΛvj

3
dT
dx A2 3

4πA
∫ 2π

0

∫ 1
−1(exp(− Lrp

Λ
√

1−µ2
)− 1)µ2dµdϕ

= −CvΛvj
3

dT
dx A2S(Λbulk,j).

(4)

where Cv is the heat capacity, vj is the velocity, Lrp is the length from the point r to the point
p at pore boundaries, Λ is the intrinsic MFP, S(Λbulk,j) is the suppression function. Then we
can obtain the effective thermal conductivity by substituting Equation (4) into Equation (3)
as follows:

ke f f = − L
∆TA

∫
−CvΛvj

3
dT
dx A2S(Λbulk,j) · n̂dS

=
∫

L
CvΛvj

3 AS(Λbulk,j) · n̂dS
=
∫

kbulk(Λ)S(Λbulk,j, L)dΛ

(5)

where S(Λbulk,j, L) is the suppression function which can describe the degree of reduction
of heat transport with respect to the bulk for a given intrinsic MFP.

Integrating
∫

kbulk(Λ)S(Λbulk,j, L)dΛ by parts and substituting it into Equation (5), we
can obtain the following formula:

ke f f = kbulk[S(∞)−
∫ ∞

0

1

1 + Λ0
Λ

∂S(Λ)

∂Λ
dΛ] (6)

To obtain the final equation, we take S(∞) = S(0) +
∫ ∞

0
∂S(Λ)

∂Λ dΛ and S(Λ) = S(Λ→0)
1+ Λ

Lc
into Equation (6):

ke f f
kbulk

= S(0) +
∫ ∞

0 (1− 1
1+ Λ0

Λ

) ∂S(Λ)
∂Λ dΛ

= S(0)− S(0)
∫ ∞

0
Λ0

Λ+Λ0

Lc
(Lc+Λ)2 dΛ

= S(0)[1−
∫ ∞

0
Λ0

Λ+Λ0

Lc
(Lc+Λ)2 dΛ]

= S(0)
[
1−Λ0Lc

1
Lc2+Λ0(Λ0−2Lc)

(
− ln

(
Λ0
Lc

)
+ (Λ0 − 2Lc)/Lc + 1

)] (7)

Then Equation (7) is the final equation of the effective thermal conductivity.
Where Λ0 is the medium MFP of the thermal conductivity distribution, Lc is the mean

light-of-sight between phonon scattering events with the nanostructure. Then we obtain
the effective thermal conductivity in terms of the Monte Carlo method combined with the
universal effective medium theory.

The graphic below describes the sequence of processing steps and the parameters
used:
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_ lim 0

0

k 3

4 1

eff it

bulk i

pL

k l p


=

−
, where L  is the length of simulation unit, 0l  is the average 

MFP and 0p  is the initial phonon transmittance, ip  is the internal phonon transmit-

tance. The MC model calculates the thermal conductivity through the formula 

, 2 1 2

0 02 1 2

0

3
1 exp( )

( 1) 1

p

p

R

eff po rp

R

bulk p

k L
rdr d d

k R l

   
  

−
= −    −

− −
, where 

pR  is 

the pore radius and   is the porosity. 

The deviation between 0p  and ip  can be ignored. Therefore, when calculating 

the effective thermal conductivity by the two-step MC method, ip  can be replaced by 
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3. Results and Discussions

In this section, the accuracy of the MCBU method is checked and the results are com-
pared with those of the two-step MC method and the MC model in Reference [1]. The two-
step MC method calculates the thermal conductivity through the formula
ke f f _limit

kbulk
= 3∆L

4l0
p0

1−pi
, where ∆L is the length of simulation unit, l0 is the average MFP and p0 is

the initial phonon transmittance, pi is the internal phonon transmittance. The MC model cal-
culates the thermal conductivity through the formula
ke f f ,po
kbulk

= 1 − 3
πRp2(ε−1−1)

∫ Rp√
ε

Rp
rdr
∫ 2π

0

∫ 1
0 exp(− Lrp

l0
√

1−µ2
)µ2dµdϕ, where Rp is the pore ra-

dius and ε is the porosity.
The deviation between p0 and pi can be ignored. Therefore, when calculating the

effective thermal conductivity by the two-step MC method, pi can be replaced by p0.
Figure 2 illustrates the effective thermal conductivity varying with Lc. It is found that the
effective thermal conductivity increases with increasing Lc, and the results obtained by the
MCBU method agree well with those predicted by the two-step MC method; the deviation
between them decreases with increasing Lc. In addition, the results obtained by the two
methods are both slightly less than those obtained by the MC model, and approach the
value predicted by the MC model.
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Figure 2. The effective thermal conductivity computed using the MCBU method, the two-step MC
method and the MC model.

In the following, numerical experiments are conducted to show the effectiveness of
the MCBU method, and the comparison between the MCBU method and effective medium
theory (EMT) method is discussed in detail. First, the results are illustrated in Table 1 and
Figure 3. In Table 1, ks is denoted as the thermal conductivity of rectangle pores in the
MCBU method, km as the thermal conductivity of the EMT method; and ts is denoted as
the computation time of the MCBU method, and tm as the computation time of the EMT
method. From Table 1, we can see that the MCBU method is consistent with the EMT
method with a deviation of less than 12%. In the AlN with rectangular pore shape, when
the porosity is 0.35 and 0.4, the MCBU method is consistent with the EMT method, with a
deviation of about 3%. In addition, the deviation of the computation time between the two
methods can be ignored. Figure 3 shows that the effective thermal conductivity decreases
with the increase of porosity, and the deviation between the MCBU method and EMT
method in rectangular and circular holes decreases sharply with the increase of porosity.
For triangular and rhombic pores, the deviation between the two methods decreases with
the decrease of porosity. With the change of pore shapes, the same value is obtained by
using the EMT method, which indicates that the EMT method may have some problems in
calculating the effective thermal conductivity of complex geometric pore shapes. Therefore,
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when calculating the effective thermal conductivity of pores with complex geometry, the
MCBU method is a more suitable and quicker method.

Table 1. The effective thermal conductivity in material made of AlN, at 300 k, with the comparison of
the EMT method and the MCBU method.

Φ ks km
∣∣∣ km−ks

km

∣∣∣ (%) |ts− tm| (s)

0.05 0.8170 0.9048 9.7% 3.35 × 10−3

0.10 0.7241 0.8182 11.5% 3.19 × 10−3

0.15 0.6707 0.7391 9.3% 3.30 × 10−3

0.20 0.5962 0.6667 10.6% 3.31 × 10−3

0.25 0.5486 0.6000 8.6% 3.21 × 10−3

0.30 0.5093 0.5385 5.4% 3.19 × 10−3

0.35 0.4675 0.4815 2.9% 3.29 × 10−3

0.40 0.4403 0.4286 2.7% 3.33 × 10−3
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Figure 3. The effective thermal conductivity with two methods in AlN, at 300 k.

Next, based on other influencing factors, we compare the results between the MCBU
method and the EMT method in detail. From Table 2, we can conclude that when the
characteristic MFP Λ0 is equal to 0.1 till 0.35, the effective thermal conductivity of rect-
angular pores is consistent with the EMT method, with a deviation of less than 20%, or
even less than 5%. In addition, we find that the calculation time deviation between the two
methods can be ignored, which shows the superiority of our method. In other words, it can
accurately calculate more complex geometry than the effective medium theory in almost
the same time. Figure 4 illustrates that the effective thermal conductivity calculated by the
EMT method does not change with the changing of pore shapes and Λ0. Moreover, from
Figure 4, we can conclude that at the porosity of 0.25, the effective thermal conductivity in
four kinds of shapes decreases with the increase of the characteristic MFP, and the deviation
between the MCBU method and the EMT method decreases when the characteristic MFP
decreases. In this figure, the effective thermal conductivity of rectangle pores is the closest
to the EMT method.
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Table 2. The effective thermal conductivity of rectangle pores compared with the EMT method.

Λ0 (µm) ks km
km−ks

km
(%)

Deviation of the
Computation Time (s)

0.1 0.5782 0.6000 3.6% 3.31 × 10−3

0.15 0.5531 0.6000 7.8% 3.21 × 10−3

0.20 0.5324 0.6000 11.3% 3.29 × 10−3

0.25 0.5148 0.6000 14.2% 3.31 × 10−3

0.30 0.4994 0.6000 16.8% 3.30 × 10−3

0.35 0.4856 0.6000 19.1% 3.32 × 10−3
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Figure 4. The effective thermal conductivity with the EMT method and the MCBU method with the
changes of Λ0.

Then, we analyze the influence of S(0) on the effective thermal conductivity in AlN, at
300k, and compare the results between MCBU method and the EMT method. From Table 3,
we can conclude that the MCBU method is consistent with the effective medium theory
method. With the increase of S(0), the deviation will be less than 15%. In addition, we
can see that the difference in calculation time between the two methods can be ignored,
which again shows the superiority of our method. Figure 5 illustrates that the effective
thermal conductivity in four kinds of pore shapes calculated by the MCBU method, and the
effective thermal conductivity calculated by the EMT method increases with the increase of
S(0) and the deviation between the MCBU method and the EMT method decreases with
the increase of S(0).

Table 3. The effective thermal conductivity in circle pores compared with the effective medium theory
method.

S(0) kc km
km−kc

km
(%)

Deviation of the
Computation Time (s)

0.3 0.2321 0.2987 22.3% 3.21 × 10−3

0.4 0.3227 0.3986 19.0% 3.22 × 10−3

0.5 0.4150 0.5038 17.6% 3.19 × 10−3

0.6 0.5084 0.6000 15.3% 3.30 × 10−3

0.7 0.6027 0.7007 13.9% 3.33 × 10−3

0.8 0.6976 0.8018 12.8% 3.31 × 10−3

0.9 0.7930 0.9000 11.9% 3.30 × 10−3
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Figure 5. The effective thermal conductivity with the EMT method and the MCBU method with the
changes of S(0).

In the following, we analyze the influence of Lc/L on the effective thermal conductivity
in AlN, at 300 k, with four kinds of pore shapes and compare the results of the MCBU
method and the EMT method. As shown in Table 4, the MCBU method agrees with the
EMT method with a deviation between them of less than 20%. Except for the cases where
Lc/L equals to 1.8 and 2.0, the deviation between the two methods decreases with the
increase of Lc/L, and when Lc/L ≥ 1.7, the deviation between the two methods is less than
16.2%. From Figure 6, we can see that the two curves increase with the increase of Lc/L.

Table 4. The effective thermal conductivity in circle pores compared with the EMT method.

Lc/L kc km
km−kc

km
(%)

Deviation of the
Computation Time (s)

1.5 0.3691 0.4493 17.8% 3.21 × 10−3

1.6 0.3969 0.4815 17.6% 3.22 × 10−3

1.7 0.4331 0.5152 15.9% 3.17 × 10−3

1.8 0.4611 0.5504 16.2% 3.39 × 10−3

1.9 0.4892 0.5748 15.0% 3.22 × 10−3

2.0 0.5174 0.6129 15.6% 3.10 × 10−3
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Then we calculate the effective thermal conductivity in rectangle pores and compare
it with the EMT method. From Table 5, we can conclude that the MCBU method agrees
with the EMT method with the deviation between them being less than 18%, and except
for the cases where Lc/L equals to 1.6 and 1.7, the deviation between the two methods
decreases with the increase of Lc/L and when 1.9 ≤ Lc/L ≤ 2.0, the deviation between the
two methods is less than 16%. Compared with Table 4, we can conclude that ks is larger
than kc for all the values of Lc/L. From Figure 7, we can conclude that the two curves
increase with the increase of Lc/L.

Table 5. The effective thermal conductivity in rectangle pores compared with the EMT method.

Lc/L ks km
km−ks

km
(%)

Deviation of the
Computation Time (s)

1.5 0.5496 0.6667 17.6% 3.21 × 10−3

1.6 0.5953 0.7241 17.8% 3.26 × 10−3

1.7 0.6330 0.7544 16.1% 3.37 × 10−3

1.8 0.6791 0.8182 17.0% 3.19 × 10−3

1.9 0.7170 0.8519 15.8% 3.14 × 10−3

2.0 0.7549 0.8868 14.9% 3.19 × 10−3
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changes of Lc/L in rectangle pores.

Next, we calculate the effective thermal conductivity in triangle pores and compare it
with the EMT and we denote kt as the thermal conductivity of the MCBU method and km as
the thermal conductivity of the EMT method. From Table 6 and Figure 8, we can conclude
that the effective thermal conductivity increases with the increase of Lc/L. From Table 6,
we can conclude that MCBU method agrees with the EMT method with the deviation
between them less than 18% and except for the cases where Lc/L equals to 1.6, the deviation
between the two methods decreases with the increase of Lc/L and when 1.9 ≤ Lc/L ≤ 2.0,
the deviation between the two method is less than 15%. Compared with Tables 4–6, we
have kc < kt < ks for all the values of Lc/L.

Table 6. The effective thermal conductivity in triangle pores compared with the EMT method.

Lc/L kt km
km−kt

km
(%)

Deviation of the
Computation Time (s)

1.5 0.4511 0.5504 18.0% 3.22 × 10−3

1.6 0.4878 0.5873 16.9% 3.16 × 10−3

1.7 0.5164 0.6260 17.6% 3.30 × 10−3

1.8 0.5533 0.6667 17.0% 3.11 × 10−3

1.9 0.5904 0.6949 15.0% 3.09 × 10−3

2.0 0.6192 0.7241 14.5% 3.19 × 10−3
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Figure 8. The effective thermal conductivity with the EMT method and the MCBU method with the
changes of Lc/L in triangle pores.

Last, we calculate the effective thermal conductivity in rhombus pores and compare
it with the EMT and we denote kr as the thermal conductivity of the MCBU method and
km as the thermal conductivity of the EMT method. From Table 7 and Figure 9, we can
see that the effective thermal conductivity increases with the increase of Lc/L, and from
Table 7, we can conclude that the MCBU method agrees with the EMT method with the
deviation between them less than 19% and except for this, cases where Lc/L equals to 1.7,
the deviation between the two methods decreases with the increase of Lc/L and when
1.7 ≤ Lc/L ≤ 2.0, the deviation between the two method is less than 16.6%. Compared with
Tables 4–6, we can conclude that kc < kr < kt < ks for all the values of Lc/L.

Table 7. The effective thermal conductivity in rhombus pores compared with the EMT method.

Lc/L kr km
km−kr

km
(%)

Deviation of the
Computation Time (s)

1.5 0.4183 0.5152 18.8% 3.32 × 10−3

1.6 0.4548 0.5504 17.4% 3.26 × 10−3

1.7 0.4831 0.5748 16.0% 3.27 × 10−3

1.8 0.5114 0.6129 16.6% 3.31 × 10−3

1.9 0.5483 0.6529 16.0% 3.39 × 10−3

2.0 0.5768 0.6807 15.3% 3.30 × 10−3
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Finally, a detailed analysis of influences of geometric parameters is conducted and
discussed. In previous studies, the influences of porosity on thermal conductivity have been
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studied. However, little work has been done on the effects of different porosities on periodic
nanoscale structures. In this paper, the effects of porosities on periodic nanostructures
in different pore shapes are studied and shown in Figure 10. The black line denotes the
circle pores, the blue line denotes the rectangle pores, the green line denotes the triangle
pores and the red line denotes the rhombus pores. From Figure 10, it can be observed
that the effective thermal conductivity decreases when the porosity increases and this is
because the greater the porosity, the more loss of the heat flux passthrough to the material.
The effective thermal conductivity of the triangle pore shapes is the most affected and it
decreases most rapidly with the increase of the porosity. The thermal conductivity of the
rectangle pore shapes is the least affected. With the increase of the porosity, the effective
thermal conductivity of the rectangle pores decreases the slowest, followed by the circle
pores and the rhombus pores. Let kc, ks, kt, kr be the effective thermal conductivity of circle
pores, rectangle pores, triangle pores, and rhombus pores, respectively. It is clear that under
the same porosity and the same temperature, we always have ks > kc > kr > kt as shown in
Figure 10.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 10. The effective thermal conductivity for four kinds of pore shapes at 300k, AlN. 

To evaluate the influence of the temperature, we calculate the effective thermal 

conductivity in different temperatures. When the temperature increases, no matter what 

the shape of the pore and the porosity, the effective thermal conductivity increases too. 

Without the loss of generality, we calculated the effective thermal conductivity with 

square shapes in at 200k, 300k, 400k and 500k, respectively, as shown in Figure 11. From 

this figure, we can conclude that at the same temperature, the trend of the effective 

thermal conductivity is dropping while the porosity is increasing and under the same 

porosity, the trend of conductivity is increasing while the temperature increasing. That is 

because when the temperature increases, the heat flux increases too and that causes the 

effective thermal conductivity increase. 

 

Figure 11. The effective thermal conductivity in square pores with different temperatures for AlAs. 

To study the influence of the materials, we calculate the effective thermal conduc-

tivity with different pore shapes in four materials: AlAs, AlN, GaAs and Si. Without the 

loss of generality, we calculate the effective thermal conductivity in rectangle shapes in at 

300k. As shown in Figure 12, we can see that under the same porosity and the same 

temperature, the effective thermal conductivity in material made of AlN is the highest 

while, at the same time, the effective thermal conductivity in material made of Si is the 

lowest; the effective thermal conductivity in material made of GaAs is higher than that 

made of AlAs. Moreover, the thermal conductivity in material made of AlN and GaAs 

differs slightly but the conductivity in materials made of Si is significantly lower than the 

former, and this conclusion will not change with the change of the pore shapes. From this 

result, we can say that in materials made of AlN, there will be less loss of heat flux while 

in materials made of Si, there will be more loss of heat flux. 

Figure 10. The effective thermal conductivity for four kinds of pore shapes at 300 k, AlN.

To evaluate the influence of the temperature, we calculate the effective thermal con-
ductivity in different temperatures. When the temperature increases, no matter what the
shape of the pore and the porosity, the effective thermal conductivity increases too. Without
the loss of generality, we calculated the effective thermal conductivity with square shapes
in at 200 k, 300 k, 400 k and 500 k, respectively, as shown in Figure 11. From this figure, we
can conclude that at the same temperature, the trend of the effective thermal conductivity
is dropping while the porosity is increasing and under the same porosity, the trend of
conductivity is increasing while the temperature increasing. That is because when the
temperature increases, the heat flux increases too and that causes the effective thermal
conductivity increase.

To study the influence of the materials, we calculate the effective thermal conductivity
with different pore shapes in four materials: AlAs, AlN, GaAs and Si. Without the loss of
generality, we calculate the effective thermal conductivity in rectangle shapes in at 300 k.
As shown in Figure 12, we can see that under the same porosity and the same temperature,
the effective thermal conductivity in material made of AlN is the highest while, at the
same time, the effective thermal conductivity in material made of Si is the lowest; the
effective thermal conductivity in material made of GaAs is higher than that made of AlAs.
Moreover, the thermal conductivity in material made of AlN and GaAs differs slightly but
the conductivity in materials made of Si is significantly lower than the former, and this
conclusion will not change with the change of the pore shapes. From this result, we can say
that in materials made of AlN, there will be less loss of heat flux while in materials made of
Si, there will be more loss of heat flux.
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Figure 12. The effective thermal conductivity in rectangle pores with different materials, at 300 k.

In order to evaluate the influence of the location of pore shapes, we calculate the
effective thermal conductivity in material made of AlAs for two kinds of rectangles. For
one kind of rectangle, we set the parameter as Pl = 2Pd which means the aspect ratio of
the rectangle is 2 and for the other kind of the rectangle, we set the parameter as Pd = 2Pl
which means the aspect ratio of the rectangle is 0.5, as shown in Figure 13. From this figure,
it can be clearly seen that the effective thermal conductivity of the rectangle with Pl = 2Pd
structure is always higher than the rectangle with Pd = 2Pl structure and the gap between
the two line widens with the growth of the porosity. From this result, we can see that the
locations of the pores block the heat flux through the materials, changing the direction of
the heat flux and affecting the effective thermal conductivity.
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4. Conclusions

The EMT is a widely used method to predict the thermal conductivity in nanostruc-
tures. However, the thermal conductivity of different pore shapes cannot be described well.
In the present work, a novel MC method is developed to overcome this deficiency. Several
numerical experiments have been conducted to verify the present MCBU method. The
MUBU method estimates the results well. The following conclusions can be obtained:

1. Λ0, S(0), Lc are the main parameters which can influence the effective thermal conduc-
tivity which is calculated by the MCBU method. The effective thermal conductivity
decreases with the increases of Λ0 and the effective thermal conductivity increases
with the increases of the S(0), Lc, respectively.

2. Pore shapes and porosity can influence the effective thermal conductivity. For the
same porosity, the effective thermal conductivity in rectangle pores is always higher
than circle pores, triangle pores and rhombus pores. At the same time, the effective
thermal conductivity in triangle pores is the lowest compared to other pores. For
the same pore shape, the effective thermal conductivity decreases with the increases
of porosity.

3. The MCBU method can agree well with the EMT method with the same time require-
ments and the MCBU can calculate the effective thermal conductivity in complex pore
shapes more accurately.

The MCBU method can efficiently calculate the thermal conductivity of different pore
shapes. Although it can calculate the thermal conductivity of regular pore shapes, such
as circle, rectangle, triangle and rhombus, it still has some limitations. To date, little work
has been done on irregular pore shapes. The future research direction is to develop a
method to calculate the effective thermal conductivity with irregular pore shapes, or try
to cut irregular pore shapes into relatively regular shapes. In this way, a new method can
be obtained to calculate the effective thermal conductivity with irregular and arbitrary
pore shapes.
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Nomenclature

Fml A term which depends on Λm and Ŝl
Λm Phonon mean free path

∆T(n)
ml Pseudo-temperature

αm′l′ A coefficient in Equation (2)
Ŝl Phonon direction function
J Heat flux
A Surface area
L Periodicity
n̂ Direction vector
Cv Heat capacity
vj Velocity
Lrp The length from the point r to the point p at pore boundaries
Λ Intrinsic MFP
S(Λbulk,j) Suppression function
Λ0 Medium MFP
Lc The mean light-of-sight between phonon scattering events with nanostructure
p0 The initial phonon transmittance
pi The internal phonon transmittance
∆L The length of simulation unit
l0 The average MFP
Rp Pore radius
Φ Porosity
ts Computation time of the MCBU method
tm Computation time of the EMT method
km Effective thermal conductivity of the EMT method
ks Effective thermal conductivity of rectangle pore in the MCBU method
kc Effective thermal conductivity of circle pore in the MCBU method
kt Effective thermal conductivity of triangle pore in the MCBU method
kr Effective thermal conductivity of rhombus pore in the MCBU method
Pl The length of the rectangle
Pd The width of the rectangle
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