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Abstract: Precise Air temperature modeling is crucial for a sustainable environment. In this study,
a novel binary optimized machine learning model, the random vector functional link (RVFL) with
the integration of Moth Flame Optimization Algorithm (MFO) and Water Cycle Optimization Al‑
gorithm (WCA) is examined to estimate the monthly and daily temperature time series of Rajshahi
Climatic station in Bangladesh. Various combinations of temperature and precipitation were used
to predict the temperature time series. The prediction ability of the novel binary optimized machine
learning model (RVFL‑WCAMFO) is compared with the single optimized machine learning mod‑
els (RVFL‑WCA and RVFL‑MFO) and the standalone machine learning model (RVFL). Root mean
square errors (RMSE), the mean absolute error (MAE), the Nash–Sutcliffe efficiency (NSE), and the
determination coefficient (R2) statistical indexes were utilized to access the prediction ability of the
selected models. The proposed binary optimized machine learning model (RVFL‑WCAMFO) out‑
performed the other single optimized and standalone machine learning models in prediction of air
temperature time series on both scales, i.e., daily andmonthly scale. Cross‑validation technique was
applied to determine the best testing dataset and it was found that the M3 dataset provided more
accurate results for the monthly scale, whereas the M1 dataset outperformed the other two datasets
on the daily scale. On the monthly scale, periodicity input was also added to see the effect on predic‑
tion accuracy. It was found that periodicity input improved the prediction accuracy of the models. It
was also found that precipitation‑based inputs did not provided very accurate results in comparison
to temperature‑based inputs. The outcomes of the study recommend the use of RVFL‑WCAMFO in
air temperature modeling.

Keywords: machine learning; hybrid modeling; moth flame optimization (MFO); water cycle
algorithm (WCA); random vector functional link (RVFL)

MSC: 68U01

1. Introduction
The global surface temperature (GT) has grown since the preindustrial era in the years

2001 to 2020 by 0.99 ◦C in comparison to the years 1850 to 1900 [1]. In recent years, there
has been a clear trend of increasing frequency of extreme heat events around the world,
with many regions experiencing more frequent and severe heatwaves. This trend is par‑
ticularly evident in eastern Africa, India, and the Amazon basin. These heatwaves have
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led to record‑breaking temperatures, and have had significant impacts on human health,
agriculture, and ecosystems.

One example of this trend is the record‑breaking heatwave that occurred in France
in June 2019, where the highest temperature ever recorded was 46.0 ◦C. However, just a
couple of years later, in August 2021, Sicily, Italy broke that record with a temperature of
48.8 ◦C. This highlights the increasing severity and frequency of heatwaves in recent years,
and the need for action to address the underlying causes of these events and to prepare for
the impacts they are likely to have in the future [2].

Climate change is a main factor in these heatwaves, which are caused by the warming
of the planet due to the increasing concentrations of greenhouse gases in the atmosphere.
These heatwaves are likely to become more frequent and severe in the future unless we
take action to reduce our greenhouse gas emissions and implement other mitigation and
adaptation strategies. As our planet faces the challenges of climate change, it is crucial that
we have access to accurate weather data for urban areas. This information is essential for
both the administration and planning of cities, as well as for the well‑being of the people
who live in them. Having accurate weather data allows city officials to make informed
decisions about infrastructure and resource allocation, such as identifying areas at risk of
flooding and implementing measures to reduce the impacts of extreme weather events. It
also allows them to plan for the future, by taking into account the potential impacts of
climate change on the city and its residents. For city residents, accurate weather data can
help them to stay safe and prepare for extreme weather events. It can also be used to make
decisions about daily activities, such as whether to walk or bike to work or if it is necessary
to use public transportation [3].

Air temperature is a vital meteorological element that plays a crucial role in shaping
the growth and productivity of crops. It is one of themost important factors that determine
the suitability of a region for agriculture, and its fluctuations can have a significant impact
on crop development and yield. Temperature also affects other environmental elements
such as air pressure, relative humidity, wind speed, and rainfall. These factors interact
with each other and can have a cascading effect on the growth and productivity of crops.
For example, high temperatures can increase evaporation rates and reduce the availability
of water for plants, while low temperatures can slow down plant growth and reduce crop
yields. In addition to its direct impact on crop growth, air temperature also plays a role
in the distribution and survival of pests and diseases. High temperatures can increase the
growth rate of some pests and diseases, while low temperatures can slow them down or
even kill them [4]. Extreme temperatures can have a variety of detrimental effects on indi‑
viduals, communities and the environment, leading to a wide range of thermal disasters
such as, health effects (such heatstroke), catastrophic crop failures, wildfires, and power
outages [5].

According to recent studies, air temperature may be related to the development of
thrombus, which is a blood clot that can happen in the veins. The association between
air temperature and venous thromboembolism (VTE), a disorder that develops when a
blood clot forms in a vein and can cause major health issues such deep vein thrombosis
and pulmonary embolism, has specifically been the subject of multiple research studies [6].
According to these studies, theremay be a link between high air temperatures and a higher
incidence of VTE. This is thought to be caused by how temperature affects the biological
processes that regulate blood clot formation [7].

Africa’s socioeconomic development, agriculture, andwater security are also affected
by shifting rainfall patterns and rising air temperatures [8]. Climate change’s altered rain‑
fall patterns can result in droughts and floods that could have a serious impact on agri‑
culture and food security [9]. Crop production can be decreased by droughts, and crops
and infrastructure can be destroyed by floods. Increased evaporation rates and decreased
soil moisture due to rising air temperatures, which are also a result of climate change, can
put additional strain on the agricultural industry and cause crop failures, yield losses, and
the spread of pests and diseases that can destroy crops. A considerable impact on human
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populations as well as water security may result from these shifting rainfall patterns and
rising air temperatures.

There are numerous ways to measure the temperature of the air over time and in dif‑
ferent locations [10]. To accurately monitor air temperature, a ground‑based thermometer
(2m above ground)with sufficient accuracy and temporal resolution is typically employed.
These datasets, however, do not adequately represent the vast variety of surfaces because
they were collected as point samples [11]. To improve the accuracy of air temperature es‑
timation, various techniques can be employed, such as using output‑improving machine
learning algorithms. These algorithms can take into account a variety of data sources, such
as satellite images, remote sensing data, orweather station data. By using these techniques,
it is possible to improve the accuracy of temperature estimations and to create more de‑
tailed and reliable temperature maps [12].

Additionally, using a combination of ground‑based and satellite‑basedmeasurements
can provide a more comprehensive understanding of temperature variations across differ‑
ent surfaces, and can help to identify patterns and trends that are not visible when using
point‑basedmeasurements alone [13–17]. However, acquiringmore input data to precisely
estimate the temperature is a challenging task. Therefore, researchers prefer to use less
complex models with fewer inputs to predict temperature.

Many differentML‑based algorithms have been studied for use in forecasting temper‑
ature with minimum input data. The most often used techniques in the study of air tem‑
perature time series are Artificial Neural Networks (ANN) and Support Vector Machines
(SVM). In particular, Multi‑Layer PerceptronNeural Networks (MLPNN) and Radial Basis
Function Neural Networks (RBFNN) are the most common ANN models used to predict
temperature values [18–24] Themost popular optimization algorithms are Radial Function
Base Kernels which are used in the majority of SVM model‑related publications [25–28].
Robert et al. [29] predict the short time air temperature using the SVMmodel. They found
that SVM provided more accurate results in comparison of the ANN model for one hour
ahead temperature predictions. Salcedo‑Sanz et al. [30] forecasted the air temperature of
Australia andNewZealand on a long time scale. They predicted themeanmonthly air tem‑
perature using SVM andMLPNNmodels and found that SVM outperformed theMLPNN
models.

In the above discussed literature, researchers predict the maximum, minimum, and
average temperature on a short scale (hourly and daily) and a long scale (weekly and
monthly). However, optimal selection of control parameters in machine learning model is
a challenging task and can aid in improving the predicted results. Hybrid machine learn‑
ing algorithms are a combination of two ormoremachine learning algorithms that are used
together to create amore powerful and accurate model. These algorithms are used to solve
complex problems that require a huge amount of input data. Venkadesh et al. [31] utilized
the hybrid machine learning models to predict the air temperatures on a short time scale.
They used the ANN hybrid model based on genetic algorithm (GA) to forecast one hour
ahead air temperature. They found that the hybrid ANN model produced more precise
results than standalone models. Azad et al. [32] applied the adaptive neuro‑fuzzy infer‑
ence system (ANFIS) based hybrid models to forecast the air temperature on a long scale.
They utilized genetic algorithm (GA), particle swarm optimization (PSO), ant colony opti‑
mization for continuous domains (ACOR), and differential evolution (DE) to optimize the
control parameters of the ANFISmodel. They found that hybridmodels outperformed the
standalone ANFIS models.

It was discovered in the aforementioned discussion that hybrid machine learning
models outperformed independent machine learning models in terms of results. How‑
ever, because of their non‑stationary, stochastic character with data noise and modeling
of hydrological variables such as air temperature, there is still room to improve the accu‑
racy and time of computation. Temperature forecasting is a challenging task due to other
atmospheric parameters’ (wind speed, humidity, air vapor pressure) effects on this. How‑
ever, acquiring such a huge amount of data is a difficult and costly task. In hybrid models,
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the optimization algorithm faces strong exploration or exploitation abilities in searching
control parameters. Hybrid models are more effective because they can capitalize on each
algorithm’s advantages and combine them to produce a more potent model. Several mod‑
els need to be combined to improve the results of non‑stationary and stochastic data such
as air temperature. The model presented here ensures excellent accuracy in calculating
the air temperature while requiring less computing time. Therefore, more durable ma‑
chine learning models are required to capture nonlinear trends in hydrological variables.
According to research, a good optimization algorithm should be able to balance its ex‑
ploitation and exploration capabilities. Due to the nonlinear stochastic character of the
variable and the difficulties in predicting it as a result of a variety of external inputs, it is
difficult to achieve this equilibrium for a single optimization in the case of modeling hy‑
drological variable time series. By utilizing the stronger (exploring/exploitation) aspects
of another optimization algorithm, this study closes this gap by bolstering the weaker (ex‑
ploring/exploitation) aspects of one optimization technique. This prompts us to combine
the Water Cycle Method (WCA) with the Moth Flame Optimization (MFO) algorithm to
improve its capacity for exploitation.

In particular, a new model is presented that ensures excellent accuracy in calculating
air temperature while requiring less computing time. The model uses an optimization al‑
gorithm that balances its skills for exploration and exploitation, which is difficult to achieve
for a single optimization in the case of hydrological variable time seriesmodeling due to the
nonlinear and stochastic nature of the variable. To improve the capacity for exploitation,
the Water Cycle Method (WCA) is combined with the Moth Flame Optimization (MFO)
algorithm.

In this study, the authors present a new method for improving the prediction of air
temperature by combining a hybrid random vector functional link network (RVFL) with a
heuristic optimization technique called Water Cycle‑Moth Flame Optimization
(WCAMFO). The method is compared to other RVFL‑based approaches, such as RVFL‑
WCA,RVFL‑MFO,RVFL‑WCAMFO, and single RVFL, in order to evaluate its performance.
In Section 2, the authors discuss the most popular machine‑learning‑based techniques and
their related topics. They also present the RVFL model and its implementation with the
WCAMFO algorithm, which is designed to improve the accuracy of temperature predic‑
tions. In Section 3, the authors present the results and discussion of the comparison of the
different methods. They evaluate the performance of the proposedmethod in terms of pre‑
diction accuracy and computational efficiency. Finally, in Section 4, the authors discuss the
findings of the study and identify research gaps in temperature forecasting. They conclude
that the proposed method, RVFL paired with WCAMFO, is a promising approach for im‑
proving the prediction air temperature. They also suggest that further research is needed
to further improve the performance of the model and to make it more widely applicable.

2. Case Study
The climate of the study area is subhumid, warm, and subtropical (Figure 1). The

western part of Bangladesh encompasses approximately 41%, or 60,165 km2 of the coun‑
try [33]. The subtropical monsoon climate is experienced by three distinct seasons: winter
(Nov–Feb), which is characterized by being cool and dry with almost no rainfall; the pre‑
monsoon (Mar–May), characterized by being hot and dry; and the monsoon (Jun–Oct),
characterized by heavy rainfall. The annual rainfall over the last 30 years was 1600 mm,
less than the national average of 2550 mm in the study area [34]. The annual rainfall and
average temperature in the study area range from 1492 to 2766 mm, with an average of
1925 mm, and 24.18 to 26.17 ◦C, with an average of 25.44 ◦C, respectively [35]. Two dis‑
tinct landforms characterize the study region. One is the Barind Tract, dissected and un‑
dulating, and the other is the floodplains. Geologically, the area consists of the stream
and inter‑stream recent and Pleistocene sediments that overlie the Gondwana sediments.
In this study, daily and monthly average data of temperature variable for the Rajshahi
climatic station is collected from the Bangladesh Meteorological Department (BMD) for
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the duration of 27 years (1992 to 2018). For data modeling, three equally spaced testing
datasets of M1, M2, and M3 using nine years of data.
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3. Methods
3.1. Random Vector Functional Link Network (RVFL)

The Random vector functional link (RVFL) network (Figure 2), a modified version
of the conventional single‑layer feed‑forward neural network, was introduced through a
successful learning process [36,37]. Input and output layers are connected directly in the
RVFL network’s general layout, which also includes a layer of nodes known as enhance‑
ment neurons that serves as the network’s hidden layer. The following is a summary of
the RVFL network’s fundamental principles:
i. Overfitting problems are avoided and RVFL’s performance is improved because of

the layer‑by‑layer interaction between the input and output layers.
ii. With randomly selected input weights that are not subject to modification during

the training phase, the computational cost is reduced.
iii. Ridge regression [38] or theMoore‑Penrose pseudo‑inverse are used to produce the

output weights, which are adjusted by traditional learning techniques [37].
iv. The main advantage of RVFL is that it offers a potential remedy for several crit‑

ical problems with the conventional learning algorithm in the multi‑layer neural
network design (poor convergence speed and large computing weight).

v. In order for the RVFL to function, m training samples of data are fed into the net‑
work, with each sample denoted by (

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

iv. The main advantage of RVFL is that it offers a potential remedy for several critical 
problems with the conventional learning algorithm in the multi-layer neural network 
design (poor convergence speed and large computing weight). 

v. In order for the RVFL to function, m training samples of data are fed into the network, 
with each sample denoted by (𝓍𝓍𝒾𝒾 ,𝓎𝓎𝒾𝒾), where 𝓍𝓍𝒾𝒾 and 𝓎𝓎𝒾𝒾 stand for the input and out-
put, respectively. After that, the input is transmitted to the enhancement nodes, and 
the final result is calculated as follows [39]: 

𝒪𝒪𝒿𝒿�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾 + 𝛽𝛽𝒿𝒿� =
1

1 + 𝑒𝑒−�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾+𝛽𝛽𝒿𝒿�
,𝛽𝛽𝒿𝒿 ∈ [0,𝒮𝒮],𝒶𝒶𝒿𝒿 ∈ [−𝒮𝒮,𝒮𝒮] (1) 

where 𝒶𝒶𝒿𝒿 represent the weights of the input layer and enhancement nodes. The bias is 
denoted by 𝛽𝛽𝒿𝒿, while the scale factor is denoted by 𝒮𝒮. In conclusion, the output of the 
RVFL network can be stated as follows: 

𝒵𝒵 = ℬ𝓌𝓌 (2) 

where ℬ is a matrix containing the data from ℬ1 input data, and ℬ2 result from the en-
hancement node 

ℬ1 = �
𝓍𝓍11 ⋯ 𝓍𝓍1𝓃𝓃
⋮ ⋱ ⋮

𝓍𝓍𝒩𝒩1 ⋯ 𝓍𝓍𝒩𝒩𝓃𝓃

� ,  ℬ2 = �
𝒪𝒪1(𝒶𝒶1𝓍𝓍1 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍1 + 𝛽𝛽𝒫𝒫)

⋮ ⋱ ⋮
𝒪𝒪1(𝒶𝒶1𝓍𝓍𝒩𝒩 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍𝒩𝒩 + 𝛽𝛽𝒫𝒫)

� (3) 

Through the use of the Moore-Penrose pseudo-inverse, the weight 𝓌𝓌 can be calcu-
lated: 

𝓌𝓌 = 𝓑𝓑†𝒵𝒵 (4) 

where † is the Moore-Penrose pseudo-inverse. 

 
Figure 2. Schematic structure of RVFL. 

3.2. Moth-Flame Optimization Algorithm (MFO) 
The new biologically-inspired optimization method known as the MFO algorithm is 

based on the flight pattern of a moth, which spirals toward and then clings to an artificial 
light source to achieve optimization [40]. The essential premise of MFO algorithm (Figure 3) 
is as follows. 

,

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

iv. The main advantage of RVFL is that it offers a potential remedy for several critical 
problems with the conventional learning algorithm in the multi-layer neural network 
design (poor convergence speed and large computing weight). 

v. In order for the RVFL to function, m training samples of data are fed into the network, 
with each sample denoted by (𝓍𝓍𝒾𝒾 ,𝓎𝓎𝒾𝒾), where 𝓍𝓍𝒾𝒾 and 𝓎𝓎𝒾𝒾 stand for the input and out-
put, respectively. After that, the input is transmitted to the enhancement nodes, and 
the final result is calculated as follows [39]: 

𝒪𝒪𝒿𝒿�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾 + 𝛽𝛽𝒿𝒿� =
1

1 + 𝑒𝑒−�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾+𝛽𝛽𝒿𝒿�
,𝛽𝛽𝒿𝒿 ∈ [0,𝒮𝒮],𝒶𝒶𝒿𝒿 ∈ [−𝒮𝒮,𝒮𝒮] (1) 

where 𝒶𝒶𝒿𝒿 represent the weights of the input layer and enhancement nodes. The bias is 
denoted by 𝛽𝛽𝒿𝒿, while the scale factor is denoted by 𝒮𝒮. In conclusion, the output of the 
RVFL network can be stated as follows: 

𝒵𝒵 = ℬ𝓌𝓌 (2) 

where ℬ is a matrix containing the data from ℬ1 input data, and ℬ2 result from the en-
hancement node 

ℬ1 = �
𝓍𝓍11 ⋯ 𝓍𝓍1𝓃𝓃
⋮ ⋱ ⋮

𝓍𝓍𝒩𝒩1 ⋯ 𝓍𝓍𝒩𝒩𝓃𝓃

� ,  ℬ2 = �
𝒪𝒪1(𝒶𝒶1𝓍𝓍1 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍1 + 𝛽𝛽𝒫𝒫)

⋮ ⋱ ⋮
𝒪𝒪1(𝒶𝒶1𝓍𝓍𝒩𝒩 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍𝒩𝒩 + 𝛽𝛽𝒫𝒫)

� (3) 

Through the use of the Moore-Penrose pseudo-inverse, the weight 𝓌𝓌 can be calcu-
lated: 

𝓌𝓌 = 𝓑𝓑†𝒵𝒵 (4) 

where † is the Moore-Penrose pseudo-inverse. 

 
Figure 2. Schematic structure of RVFL. 

3.2. Moth-Flame Optimization Algorithm (MFO) 
The new biologically-inspired optimization method known as the MFO algorithm is 

based on the flight pattern of a moth, which spirals toward and then clings to an artificial 
light source to achieve optimization [40]. The essential premise of MFO algorithm (Figure 3) 
is as follows. 

), where

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

iv. The main advantage of RVFL is that it offers a potential remedy for several critical 
problems with the conventional learning algorithm in the multi-layer neural network 
design (poor convergence speed and large computing weight). 

v. In order for the RVFL to function, m training samples of data are fed into the network, 
with each sample denoted by (𝓍𝓍𝒾𝒾 ,𝓎𝓎𝒾𝒾), where 𝓍𝓍𝒾𝒾 and 𝓎𝓎𝒾𝒾 stand for the input and out-
put, respectively. After that, the input is transmitted to the enhancement nodes, and 
the final result is calculated as follows [39]: 

𝒪𝒪𝒿𝒿�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾 + 𝛽𝛽𝒿𝒿� =
1

1 + 𝑒𝑒−�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾+𝛽𝛽𝒿𝒿�
,𝛽𝛽𝒿𝒿 ∈ [0,𝒮𝒮],𝒶𝒶𝒿𝒿 ∈ [−𝒮𝒮,𝒮𝒮] (1) 

where 𝒶𝒶𝒿𝒿 represent the weights of the input layer and enhancement nodes. The bias is 
denoted by 𝛽𝛽𝒿𝒿, while the scale factor is denoted by 𝒮𝒮. In conclusion, the output of the 
RVFL network can be stated as follows: 

𝒵𝒵 = ℬ𝓌𝓌 (2) 

where ℬ is a matrix containing the data from ℬ1 input data, and ℬ2 result from the en-
hancement node 

ℬ1 = �
𝓍𝓍11 ⋯ 𝓍𝓍1𝓃𝓃
⋮ ⋱ ⋮

𝓍𝓍𝒩𝒩1 ⋯ 𝓍𝓍𝒩𝒩𝓃𝓃

� ,  ℬ2 = �
𝒪𝒪1(𝒶𝒶1𝓍𝓍1 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍1 + 𝛽𝛽𝒫𝒫)

⋮ ⋱ ⋮
𝒪𝒪1(𝒶𝒶1𝓍𝓍𝒩𝒩 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍𝒩𝒩 + 𝛽𝛽𝒫𝒫)

� (3) 

Through the use of the Moore-Penrose pseudo-inverse, the weight 𝓌𝓌 can be calcu-
lated: 

𝓌𝓌 = 𝓑𝓑†𝒵𝒵 (4) 

where † is the Moore-Penrose pseudo-inverse. 

 
Figure 2. Schematic structure of RVFL. 

3.2. Moth-Flame Optimization Algorithm (MFO) 
The new biologically-inspired optimization method known as the MFO algorithm is 

based on the flight pattern of a moth, which spirals toward and then clings to an artificial 
light source to achieve optimization [40]. The essential premise of MFO algorithm (Figure 3) 
is as follows. 

and

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 25 
 

 

iv. The main advantage of RVFL is that it offers a potential remedy for several critical 
problems with the conventional learning algorithm in the multi-layer neural network 
design (poor convergence speed and large computing weight). 

v. In order for the RVFL to function, m training samples of data are fed into the network, 
with each sample denoted by (𝓍𝓍𝒾𝒾 ,𝓎𝓎𝒾𝒾), where 𝓍𝓍𝒾𝒾 and 𝓎𝓎𝒾𝒾 stand for the input and out-
put, respectively. After that, the input is transmitted to the enhancement nodes, and 
the final result is calculated as follows [39]: 

𝒪𝒪𝒿𝒿�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾 + 𝛽𝛽𝒿𝒿� =
1

1 + 𝑒𝑒−�𝒶𝒶𝒿𝒿𝓍𝓍𝒾𝒾+𝛽𝛽𝒿𝒿�
,𝛽𝛽𝒿𝒿 ∈ [0,𝒮𝒮],𝒶𝒶𝒿𝒿 ∈ [−𝒮𝒮,𝒮𝒮] (1) 

where 𝒶𝒶𝒿𝒿 represent the weights of the input layer and enhancement nodes. The bias is 
denoted by 𝛽𝛽𝒿𝒿, while the scale factor is denoted by 𝒮𝒮. In conclusion, the output of the 
RVFL network can be stated as follows: 

𝒵𝒵 = ℬ𝓌𝓌 (2) 

where ℬ is a matrix containing the data from ℬ1 input data, and ℬ2 result from the en-
hancement node 

ℬ1 = �
𝓍𝓍11 ⋯ 𝓍𝓍1𝓃𝓃
⋮ ⋱ ⋮

𝓍𝓍𝒩𝒩1 ⋯ 𝓍𝓍𝒩𝒩𝓃𝓃

� ,  ℬ2 = �
𝒪𝒪1(𝒶𝒶1𝓍𝓍1 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍1 + 𝛽𝛽𝒫𝒫)

⋮ ⋱ ⋮
𝒪𝒪1(𝒶𝒶1𝓍𝓍𝒩𝒩 + 𝒹𝒹1) ⋯ 𝒪𝒪𝒫𝒫(𝒶𝒶𝒫𝒫𝓍𝓍𝒩𝒩 + 𝛽𝛽𝒫𝒫)

� (3) 

Through the use of the Moore-Penrose pseudo-inverse, the weight 𝓌𝓌 can be calcu-
lated: 

𝓌𝓌 = 𝓑𝓑†𝒵𝒵 (4) 

where † is the Moore-Penrose pseudo-inverse. 

 
Figure 2. Schematic structure of RVFL. 

3.2. Moth-Flame Optimization Algorithm (MFO) 
The new biologically-inspired optimization method known as the MFO algorithm is 

based on the flight pattern of a moth, which spirals toward and then clings to an artificial 
light source to achieve optimization [40]. The essential premise of MFO algorithm (Figure 3) 
is as follows. 

stand for the input



Mathematics 2023, 11, 1213 6 of 29

and output, respectively. After that, the input is transmitted to the enhancement
nodes, and the final result is calculated as follows [39]:

Oj
(
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+β j)
, β j ∈ [0,S ], aj ∈ [−S ,S ] (1)

where aj represent the weights of the input layer and enhancement nodes. The bias is
denoted by β j, while the scale factor is denoted by S . In conclusion, the output of the
RVFL network can be stated as follows:
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where b is a matrix containing the data from b1 input data, and b2 result from the enhance‑
ment node
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cial light source to achieve optimization [40]. The essential premise of MFO algorithm
(Figure 3) is as follows.
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Assume that the matricesM = (N , dim) and F = (N , dim) are used to represent the
set of moth and flame, and that flames and moths are potential solutions to issues. In the
formula,N represents the maximum number of flames and dim represents the population
of moths. The flames reflect the best location obtained from the moths, and the moths
represent the real search topics travelling through the scope of the search. According to
the greedy retention principle, which stipulates that the flame structure preserves the best
N solutions to themoth’s flight history, the position of themoth and the flame structure are
updated with the moth’s spiral flight [41]. The spiral flying mechanism has the following
characteristics:
(1) The search area must include the spiral flying space.
(2) The moth serves as the origin of spiral flying.
(3) The flame position is the spiral’s conclusion.
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To update each moth’s location and replicate its flight mode, use Equation (5).

Mi = di ∗ ebt ∗ cos(2πt) +Fj (5)

Mi and Fj in the equation stand for the ith moth and the jth flame, respectively. di is
the distance between them, and its expression is given in Equation (6). The spiral b flight
shape is defined by b (b = 1) is the spiral flight coefficient, and Equation (7) shows its t
expression. Its value range is [−1, 1].

di =
∣∣Fj −Mi

∣∣ (6)

t =
(
− ℓ+ L

L − 1
)
× rand + 1 (7)

where L and ℓ stand for the number of iterations’ maximum and current durations. A
random number with a uniform Lℓ rand distribution is called rand. When t = −1, it indi‑
cates that the distance between the flame and the moth is at its shortest, and when t = 1, it
indicates that it is at its greatest.

Equation (8) is utilized to minimize the number of flames during each iteration in an
adaptive linear way, increasing the moth’s capacity to mine locally in subsequent itera‑
tions. At the start of the iteration, there are N flames. The moths only adjust their position
around the best flame at the end of iteration, greatly enhancing the search capabilities of
the algorithm.

f lameno = round
(
N − ℓ× N − 1

L

)
(8)

Numerous MFO variants have been developed, including Lévy‑flight moth‑flame op‑
timization (LMFO) [42], non‑dominated sorting moth flame optimization (NS‑MFO) [43],
enhanced moth‑flame optimization (EMFO) [44], water cycle‑moth‑flame optimization
(WCMFO) [45], and sine‑cosinemoth‑flame optimization (SMFO) [46]. MFOand its deriva‑
tives still have some flaws, such as poor population diversity [47], premature convergence,
local optima trapping [48], and an imbalance between exploration and exploitation [49],
which prevent them frommeeting the needs of the optimization process for difficult prob‑
lems. The majority of moths are stuck in the local optima in the early iterations, leading to
poor population diversity, which is the main cause of these MFOs’ limitations [49].

3.3. Water Cycle Optimization Algorithm (WCA)
Eskandar et al. [50] created the WCA in accordance with the natural water cycle or

hydrological cycle. The WCA technique begins with the starting population, referred to
as raindrops, like other meta‑heuristic algorithms. The initial assumption is that there is
rain or other precipitation. The best individual (a water drop) is picked to represent the
sea. The remaining raindrops are then regarded as streams that empty into rivers and seas,
whereas some of the nice droplets are regarded as rivers. A single solution is referred to as
a “raindrop” in the WCA method. Such an array is referred to as a “chromosome” in the
GAmethod. A raindrop is an XN var array in a problem of multidimensional optimization,
defined as Equation (9).

Raindrop = ⌈X1,X2, . . . . . .XN var⌉ (9)

whereX1 toXN var represent the decision variables. To beginwith, a sample of the raindrop
matrix with the size of Npop × N var is randomly generated.

Population o f raindrops = [bmatriX Raindrop1Raindrop2; RaindropNpopbmatriX ]

= [bmatrixX1
1X1

2X1
3 . . . . . . . . .X 1

N var; :::::: XN pop
1 XN pop

2 . . . ..XN pop
N var bmatrix

(10)



Mathematics 2023, 11, 1213 9 of 29

whereNpop andNvar are the initial population (number of raindrops) and the variation
population, respectively. The values of the provided cost function (C) are obtained from
Equation (11).

Ci = Costi = f
(
X i

1, X i
2, , , , ,X i

N var

)
, i = 1, 2, 3, , ,N pop (11)

where Ci is each drop’s target value. TheNSR number of the best droplets is chosen as the
sea and river after the Npop number of raindrops (first stage) is formed. The raindrops
that fall in the fewest numbers are referred to as the sea. NSR is the total of the rivers
(a parameter that is applied) and the sea (Equation (12)). The remaining population is
calculated using Equation (13) and includes streams that may directly flow into rivers or
the sea.
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NRaindrop = Npop −NSR (13)

To identify or assign raindrops to rivers and seas using Equation (14), based on the
force of the flow.

NSn = round

{∣∣∣∣∣ Costn

∑NSR
i=1 Costi

∣∣∣∣∣×NRaindrops

}
, n = 1, 2, , , , ,NSR (14)

where NSn is the total number of streams that empty into a given river or body of water.
The randomly selected distance and a stream that flows up to the river are used in Equation
(15) to establish a connection between them.

X ∈ (0, C × d), C > 1 (15)

Using Equations (16) and (17), updated positions of streams and rivers can be found.

X i+1
Stream = X i

Stream + rand × C ×
(
X i

River −X i
Stream

)
(16)

X i+1
River = X i

River + rand × C ×
(
X i

Sea −X i
River

)
(17)

where rand is a consistent random number between 0 and 1. The location of the river and
the stream will change if the stream provides a better solution than the river to which it is
connected. Rivers and seas are likewise susceptible to this transformation in the sameway.
One of the most crucial reasons impeding the algorithm’s speedy convergence and becom‑
ing stuck in the local minimum is evaporation. When seawater enters rivers or streams,
the evaporation process causes it to evaporate once more. Pseudo‑code is used to show
how to determine whether a river drains into the sea (Equation (18)).

i f
∣∣∣X i

Sea −X i
River

∣∣∣ (18)

where dmax is a negligible number (close to zero). As a result, the river has reached the sea
if the distance between it and it is smaller than dmax. The evaporation process is impacted
in this condition, and precipitation will start once there has been enough evaporation. The
search intensity close to the sea is controlled by dmax (optimal solution). Equation (19)
reduces the value of max in each step.

di+1
max = di

max −
di

max
maxiteration

(19)



Mathematics 2023, 11, 1213 10 of 29

After evaporation is accomplished, rainfall is applied. As rain falls, fresh raindrops
form streams in various spots. The updated position of streams can be found using Equa‑
tion (20).

X new
Stream = Lb + rand × (Ub −Lb) (20)

where Lb and Ub stand for the problem’s upper and lower limits, respectively. The best
newly created raindrops are thought of as rivers, and the remaining raindrops are thought
of as fresh streams feeding the rivers. Equation (21) is applied to improve the computa‑
tional efficiency and convergence rate of the approach for constrained problems.

X new
Stream = XSea +

√
µ × randn(1,Nvar) (21)

where the search area near the sea is represented by the factor. Small values cause the algo‑
rithm to search in a narrower area near thewater, while large values increase the likelihood
of leaving the possible area. Its proper value is set to 0.1 [50].

3.4. Hybrid Water Cycle‑Moth‑Flame Optimization Algorithm (WCAMFO)
Theoretically, theWCA andMFO algorithms showed that the water cycle (WCA) per‑

formed admirably throughout the discovery phase but poorly during operator‑performed
exploitation. As an alternative, the MFO exploited the space very well by using its spiral
movement capability, although they frequently remained inherently unable to explore the
solution space and was trapped in local optima [45,51]. As a result, by combining the ben‑
efits of the two methods, a hybrid algorithm can be a good alternative and help to further
improve the optimization problem. Two of the major benefits of merging the WCA and
the MFO, according to Khalil pourazari and Khalil pourazary [45] are that: the initial im‑
provement was that the position in the WCA was updated using the spiral movement of
the moths. The second enhancement is to improve the precipitation process. The so‑called
“Levy flight”, from a mathematical perspective, allows the streams to arrange themselves
better:

Xi+1 = Xi + Levy(dim)⊗Xi (22)

3.5. Performance Evaluation
Four statistical indicators of root mean squared error (RMSE), mean absolute error

(MAE), determination coefficient (R2) and Nash efficiency (NSE) were utilized for perfor‑
mance examination of RVFL, RVFL‑WCA, RVFL‑MFO, and RVFL‑WCAMFO models for
modeling air temperature. RMSE,MAE, NSE and R2 can be expressed, respectively, by:

RMSE =

√√√√ 1
N

N
∑
i=1

[
(Tc)i −

(
Tp

)
i

]2 (23)

MAE =
1
N

N
∑
i=1

∣∣(Tc)i −
(
Tp

)
i

∣∣ (24)

NSE = 1 −
∑N

i=1
[
(Tc)i −

(
Tp

)
i

]2

∑N
i=1

[
(Tc)i − (Tc)

]2 (25)

R2 =
∑N

i=1[((Tc)i − (Tc))(
(
Tp

)
i −

(
Tp

)
]

∑N
i=1

[(
Tp

)
i −

(
Tp

)]2
∑N

i=1
[
(Tc)i −

(
Tc
)]2 (26)

where Tc, Tp, Tc and Tp indicate calculated, predicted, mean calculated, and mean pre‑
dicted air temperature, respectively, and N is the quantity of data.
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4. Results and Discussion
In this section, the single optimization techniques (RVFL,WCA,MFO,WCAMFO, and

all combinations) for modeling air temperature were technically discussed and compara‑
tively analyzed. Prior to the computational schema, eight different input combinations
were proposed for the development of each algorithm (M1, M2, and M3) (Table 1). M1,
M2, and M3 testing datasets were formed on the basis of cross‑validation technique. Ac‑
cording to this technique, the whole dataset is divided into three equal parts and all three
testing datasets are formed using equally 1/3 ratio of the whole dataset, whereas during
analyzing one testing dataset, the remaining 2/3 of the whole dataset is used as a training
dataset. It is worth noting that selecting input combinations for building machine learning
is paramount and has been recommended in several works of literature [52–54]. Subse‑
quently, the predictive models were assessed by four statistical matrices, including NSE,
MAE, RMSE, and R2. Formodeling nonlinear environmental variables such as air tempera‑
ture, it is always recommended to employ several performance indicators to comprehend
the stochastic influence of air temperature estimation based on the global and regional
scale of climate change impact. According to Benaafi et al., [55] evaluation criteria should
involve at least one error‑of‑fit (e.g., MAE) and one goodness‑of‑fit (e.g., NSE) for any reli‑
able analysis.

Table 1. The input combinations used for model development.

Input Combinations Variables

(i) Pt
(ii) Pt, Pt‑1
(iii) Pt, Pt‑1, Pt‑2
(iv) Pt, Pt‑1, Pt‑2, Pt‑3
(v) Tt‑1
(vi) Tt‑1, Tt‑2
(vii) Tt‑1, Tt‑2, Tt‑3
(viii) best p, best T

Furthermore, another essential part in AI‑based models that receives less attention
is controlling the hyper‑tuning parameters in the modeling process. The parameters’ op‑
timization setting of each algorithm as tabulated in Table 2 were used for attaining the
training and validation phase of each model’s combination. The external configuration
and the un‑estimated parameters from each model are referred to as hyper parameter.

Table 2. Parameters setting of each optimization algorithm.

RVFL

Number of hidden neurons 200

Activation function radial basis

Bias 1

link between the input and output 1

Updating method Ridge regression

WCA
dmax 0.0001

Nsr 8

MFO
constant to define the shape of the logarithmic spiral (b) 1

l [−1, 1]
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Table 2. Cont.

WCAMFO As in both WCA and MFO

All Algorithms

Population 50

Number of iterations 100

Number of runs for each Algorithm 15

These parameterswere tuned to determine the best values to solve a certain predictive
model. It should be noted that different approaches were used for the determination of the
best tuning parameters to find the most skillful predictions, for example, trial and error,
rules of thumb, etc. Despite less attention than was previously observed in modeling the
monthly and daily air temperature using machine learning, this study was the first work
to employ the above‑mentioned techniques to model air temperature to the best of the
authors’ knowledge.

4.1. Results for Monthly Air Temperature Modeling
The predictive outcomes in terms of several performance indicators for the RVFL

monthly scale approach are presented in Table 3. The results indicated that M1 (viii) with
the input combination of (best p, best T) attained the maximum values of goodness‑of‑fit
of R2 = 0.921, NSE = 0.92, and minimum values of RMSE = 1.450, MAE = 1.203 in compar‑
ison with M2 and M3 combinations. Furthermore, the best predictive combination of M2
andM3 were found to be M2 (viii), andM3 (viii), respectively. The outcomes of the model
RVFL for the monthly time scale depicted that model combination (viii) with (best p, best
T) emerging as the most reliable input with the highest accuracy in the testing phase. The
fitting comparison of models shows that the best models M1 (viii) increased the predictive
skills with giving range between 3% to 37% of the rest combination (i, ii, iii, iv, and vii),
M2 (viii) within 4% to 42%, and lastly M3 (vii) within the range of 1% to 42%. The over‑
all comparison of all the three models indicated that M1 (viii) with the smallest absolute
error proved merit than the other models. This can be justified by considering the mean
values in Table 3. In addition, Figure 4 shows the scatterplots of the observed and pre‑
dicted temperature by different RVFL‑based models in the test period using the best input
combination for a monthly time scale.

Table 3. The results of the model RVFL for monthly time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 3.202 2.410 0.517 0.520 3.322 2.290 0.541 0.553

ii 3.103 2.342 0.546 0.557 3.230 2.301 0.565 0.570

iii 3.042 2.291 0.563 0.570 3.321 2.403 0.539 0.547

iv 2.911 2.223 0.601 0.604 3.213 2.502 0.569 0.595

v 2.844 2.252 0.617 0.619 2.852 2.230 0.632 0.632

vi 1.922 1.632 0.824 0.826 1.794 1.481 0.866 0.867

vii 1.740 1.467 0.857 0.859 1.591 1.294 0.885 0.886

viii 1.401 1.124 0.911 0.912 1.450 1.203 0.912 0.921

Mean 2.521 1.968 0.680 0.683 2.597 1.963 0.689 0.696
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Table 3. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M2

i 3.291 2.532 0.523 0.525 3.591 2.362 0.385 0.432

ii 3.153 2.323 0.563 0.564 3.172 2.433 0.521 0.539

iii 3.160 2.361 0.562 0.572 3.533 2.302 0.405 0.463

iv 2.804 2.144 0.655 0.656 3.301 2.583 0.479 0.567

v 2.892 2.280 0.634 0.634 2.833 2.271 0.617 0.617

vi 1.833 1.537 0.853 0.853 1.962 1.660 0.814 0.816

vii 1.831 1.532 0.856 0.857 1.951 1.653 0.817 0.819

viii 1.420 1.150 0.913 0.913 1.750 1.372 0.853 0.861

Mean 2.548 1.982 0.695 0.697 2.762 2.080 0.611 0.639

M3

i 3.201 2.380 0.545 0.549 3.431 2.390 0.452 0.471

ii 2.973 2.162 0.607 0.608 3.320 2.232 0.487 0.502

iii 2.990 2.183 0.601 0.609 3.373 2.492 0.471 0.481

iv 2.372 1.701 0.749 0.749 3.241 2.643 0.510 0.513

v 2.751 2.162 0.663 0.665 2.972 2.401 0.621 0.621

vi 1.872 1.560 0.844 0.844 1.880 1.603 0.836 0.836

vii 1.473 1.173 0.904 0.910 1.661 1.350 0.882 0.888

viii 1.440 1.140 0.902 0.905 1.494 1.227 0.896 0.897

Mean 2.384 1.808 0.727 0.730 2.672 2.042 0.644 0.651

Best DS Best IC, MN 1.370 1.082 0.917 0.918 1.414 1.161 0.918 0.923

In addition to the application of RVFL models, the hybrid optimization models us‑
ing RVFL‑WCA, RVFL‑MFO, and RVFL‑WCAMFO for monthly air temperature modeling
were employed in this study and the estimated outcomes were generated in Tables 4–6.

Table 4. The results of the model RVFL‑WCA for monthly time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 3.122 2.280 0.541 0.542 3.221 2.370 0.567 0.574

ii 2.961 2.142 0.585 0.588 3.263 2.503 0.556 0.580

iii 2.970 2.133 0.581 0.583 3.172 2.492 0.580 0.595

iv 2.522 1.821 0.700 0.701 2.920 2.191 0.646 0.653

v 2.803 2.190 0.630 0.632 2.933 2.290 0.642 0.646

vi 1.810 1.521 0.846 0.853 1.702 1.401 0.880 0.895

vii 1.492 1.242 0.895 0.897 1.460 1.170 0.911 0.914

viii 1.153 0.960 0.931 0.932 1.352 1.021 0.919 0.930

Mean 2.354 1.786 0.714 0.716 2.503 1.930 0.713 0.723
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Table 4. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M2

i 3.212 2.351 0.548 0.549 3.341 2.581 0.468 0.469

ii 3.051 2.150 0.590 0.590 3.170 2.222 0.521 0.541

iii 2.960 2.032 0.614 0.614 3.352 2.661 0.464 0.492

iv 2.672 1.983 0.687 0.687 3.103 1.940 0.540 0.576

v 2.823 2.191 0.651 0.652 2.741 2.153 0.641 0.641

vi 1.661 1.350 0.878 0.885 1.770 1.502 0.851 0.855

vii 1.303 1.042 0.926 0.931 1.522 1.181 0.890 0.901

viii 1.280 0.853 0.949 0.949 1.491 1.010 0.894 0.903

Mean 2.370 1.744 0.730 0.732 2.561 1.906 0.659 0.672

M3

i 3.042 2.181 0.589 0.590 3.311 2.272 0.490 0.503

ii 2.801 1.953 0.651 0.651 3.203 2.240 0.522 0.527

iii 2.750 2.021 0.662 0.663 3.241 2.252 0.512 0.522

iv 2.182 1.602 0.788 0.788 3.002 2.133 0.581 0.593

v 2.521 1.941 0.718 0.718 2.810 2.202 0.631 0.631

vi 1.603 1.313 0.886 0.886 1.611 1.341 0.879 0.879

vii 1.242 0.981 0.932 0.932 1.422 1.080 0.917 0.920

viii 1.210 0.890 0.941 0.941 1.403 1.152 0.909 0.909

Mean 2.169 1.610 0.771 0.771 2.500 1.834 0.680 0.686

Best DS Best IC, MN 1.092 0.944 0.933 0.937 1.162 0.871 0.944 0.946

Table 5. The results of the model RVFL‑MFO for monthly time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 3.063 2.202 0.554 0.558 3.192 2.391 0.576 0.584

ii 2.914 2.003 0.600 0.602 3.111 2.322 0.597 0.608

iii 2.910 2.140 0.601 0.602 3.203 2.482 0.574 0.599

iv 2.403 1.671 0.725 0.729 2.710 2.103 0.693 0.704

v 2.561 1.952 0.687 0.690 2.702 2.060 0.697 0.697

vi 1.362 1.033 0.911 0.913 1.253 1.002 0.935 0.936

vii 1.140 0.891 0.938 0.939 1.220 0.991 0.938 0.939

viii 0.972 0.853 0.977 0.977 1.051 0.790 0.954 0.956

Mean 2.166 1.593 0.749 0.751 2.305 1.768 0.746 0.753
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Table 5. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M2

i 3.171 2.313 0.559 0.559 3.191 2.360 0.515 0.534

ii 3.040 2.122 0.590 0.594 3.020 2.202 0.565 0.569

iii 2.873 2.030 0.635 0.637 3.261 2.353 0.492 0.545

iv 2.492 1.771 0.725 0.727 2.810 1.902 0.624 0.636

v 2.331 1.662 0.760 0.762 2.452 1.711 0.713 0.715

vi 1.241 0.960 0.933 0.934 1.403 1.040 0.907 0.910

vii 1.152 0.902 0.941 0.942 1.291 1.002 0.921 0.923

viii 0.910 0.863 0.968 0.971 1.191 0.912 0.932 0.938

Mean 2.151 1.578 0.764 0.766 2.327 1.685 0.709 0.721

M3

i 3.012 2.091 0.597 0.597 3.261 2.281 0.505 0.517

ii 2.863 1.942 0.636 0.636 3.212 2.512 0.521 0.540

iii 2.841 1.991 0.642 0.642 3.280 2.211 0.499 0.512

iv 2.050 1.480 0.813 0.813 2.951 1.933 0.596 0.626

v 2.452 1.903 0.733 0.733 2.733 1.991 0.653 0.654

vi 1.193 0.911 0.937 0.938 1.422 1.170 0.907 0.907

vii 1.021 0.812 0.954 0.954 1.250 0.962 0.928 0.928

viii 0.965 0.784 0.971 0.973 1.331 1.110 0.917 0.921

Mean 2.050 1.489 0.785 0.786 2.430 1.771 0.691 0.701

Best DS Best IC, MN 0.633 0.474 0.980 0.981 1.072 0.833 0.952 0.954

Table 6. The results of the model RVFL‑WCAMFO for monthly time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 2.930 2.062 0.592 0.594 3.132 2.290 0.593 0.603

ii 2.771 1.880 0.636 0.639 3.091 2.213 0.602 0.614

iii 2.674 1.892 0.661 0.663 3.110 2.272 0.596 0.608

iv 2.240 1.561 0.760 0.763 2.684 2.050 0.702 0.718

v 2.282 1.600 0.751 0.754 2.261 1.583 0.787 0.790

vi 0.983 0.724 0.954 0.955 1.172 0.990 0.950 0.953

vii 0.910 0.691 0.960 0.961 1.160 0.933 0.944 0.946

viii 0.862 0.643 0.982 0.984 0.962 0.812 0.962 0.963

Mean 1.957 1.382 0.787 0.789 2.197 1.643 0.767 0.774
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Table 6. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M2

i 3.091 2.152 0.580 0.580 2.952 2.070 0.585 0.586

ii 2.960 2.023 0.612 0.614 2.811 2.012 0.624 0.624

iii 2.792 1.960 0.654 0.658 3.003 2.090 0.570 0.579

iv 2.310 1.613 0.765 0.765 2.642 1.941 0.667 0.686

v 2.242 1.551 0.777 0.780 2.383 1.591 0.729 0.732

vi 0.911 0.703 0.962 0.964 1.112 0.872 0.941 0.944

vii 0.884 0.685 0.963 0.966 1.070 0.865 0.946 0.949

viii 0.860 0.623 0.984 0.986 1.037 0.860 0.939 0.940

Mean 2.006 1.414 0.787 0.789 2.126 1.538 0.750 0.755

M3

i 2.890 2.021 0.628 0.628 3.192 2.410 0.525 0.533

ii 2.692 1.862 0.677 0.677 3.150 2.101 0.539 0.550

iii 2.653 1.870 0.687 0.687 3.173 2.194 0.531 0.540

iv 1.841 1.323 0.849 0.849 2.912 1.942 0.605 0.621

v 2.110 1.461 0.802 0.802 2.591 1.703 0.688 0.695

vi 0.992 0.774 0.956 0.956 1.214 0.872 0.932 0.932

vii 0.903 0.711 0.964 0.964 1.122 0.880 0.941 0.942

viii 0.880 0.635 0.985 0.985 1.223 0.921 0.930 0.931

Mean 1.870 1.332 0.819 0.819 2.322 1.628 0.711 0.718

Best DS Best IC, MN 0.531 0.383 0.983 0.986 0.824 0.661 0.972 0.973

The concept of coupling RVFL with three different optimization algorithms was at‑
tributed to its universal approximation ability and fast training speed as reported by sev‑
eral literatures. Hence, during the monthly air temperature modeling using RVFL‑WCA,
the M1 (viii) with parameters combination (Tt‑1, Tt‑2, Tt‑3) in Table 4 supported the best
against all the combination (M1, and M2). The quantitative comparison of the best out‑
comes with regards to absolute error of the M1, M2, and M3 demonstrated that M1 (viii)
reduced the prediction error by approximately 12% and 6% for M2, and M3, respectively.
This outcomes was in line with the work conducted by Smith et al., [56] that improved the
estimation accuracy of air temperature using ANN models and obtained the hourly pre‑
diction accuracy more than 90% in terms of fitting of the models (see Figure 5). The major
difference between our work and that of Smith et al. [56] is the employment of recently
developed state‑of‑the‑art models supported by optimization algorithms that provide de‑
sirable results with fewer input combinations. The overall results can also be depicted
using violin plots as presented in Figure 6.
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Figure 4. Scatterplots of the observed and predicted Temperature by different RVFL‑based models
in the test period using best input combination for monthly time scale.

Based on the present outcomes, it isworthmentioning that computational approaches
play an essential role in handling any type of chaotic pattern. The inputs and response
variables justified merit with reasonable accuracy using our established models. To give
credit and compare our established outcomes, this study was compared with the selected
state‑of‑the‑art models for examples [57–63] in terms of the popularity of the ML model
and proved satisfactory. Other MLS models could be simulated similarly using the same
problems.
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4.2. Results for Daily Air Temperature Modeling
In this section, the daily air temperature was also simulated at study locations. Note

that the combination of modeling the short and long extreme weather changes for air tem‑
perature, for example, daily and monthly modeling received less, or no attention based
on the authors’ knowledge, despite other hydrological time series processes such as rain‑
fall and run‑off already reporting similar scenarios [57,58]. Air temperature modeling
and prediction of air pollution serves as major environmental monitoring in different re‑
gions. This study is devoted to demonstrating daily and monthly information to come up
with satisfactory estimationmethodologies for the decision‑maker and concern authorities
with regards to short‑ and long‑term environmental sustainability. The simulated results
for a daily time scale of air temperature for RVFL, RVFL‑WCA, RVFL‑MFO, and RVFL‑
WCAMFO are presented in Table 7, Table 8, Table 9, and Table 10, respectively. The results
of the daily time scale of air temperature in Figure 7 demonstrated that the first four com‑
binations produce poor to marginal accuracy by comparing the evaluation matrices (MAE,
NSE, R2, and RMSE). However, during the daily scale, the models with the combination
M1‑M3 (vii) displayed high accuracy against all the combinations. For example the assess‑
ment matrices, the best model, demonstrated that M1 (vii) = MAE (0.947), NSE (0.920), M2
(vii) =MAE (0.988), NSE (0.918), andM3 (vii) =MAE (0.960), NSE (0.92) for air temperature
modeling. The detailed results for all the combinations are presented in terms of perfor‑
mance evaluation criteria in Table 7. It can be observed that single standalone models, i.e.,
RVFL, could produce reasonable accuracy for modeling air temperature. The feasibility of
the hybrid state‑of‑the‑art models for modeling air temperature were also presented using
the hybrid optimization approach. Furthermore, other different AI models could also be
used in the same manner for proper tuning of air temperature prediction. Table 8 demon‑
strates the results of the model RVFL‑WCA for a daily time scale.

Table 7. The results of the model RVFL for daily time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 5.385 4.471 0.026 0.031 5.614 4.325 0.028 0.033

ii 5.374 4.445 0.028 0.033 5.528 4.536 0.031 0.036

iii 5.262 4.389 0.034 0.038 5.416 4.427 0.042 0.047

iv 5.113 4.301 0.039 0.043 5.289 4.276 0.048 0.055

v 1.263 0.962 0.911 0.916 1.253 0.958 0.914 0.918

vi 1.259 0.957 0.914 0.918 1.248 0.952 0.919 0.922

vii 1.248 0.949 0.921 0.924 1.239 0.947 0.920 0.922

viii 1.271 0.973 0.902 0.905 1.262 0.965 0.904 0.907

Mean 3.272 2.681 0.472 0.476 3.356 2.673 0.476 0.481

M2

i 5.275 4.449 0.042 0.045 5.156 4.387 0.045 0.048

ii 5.229 4.331 0.054 0.057 5.127 4.218 0.059 0.060

iii 5.144 4.274 0.058 0.060 5.056 4.149 0.062 0.065

iv 5.082 4.104 0.064 0.068 5.021 4.076 0.068 0.070

v 1.271 0.982 0.904 0.909 1.316 1.016 0.903 0.905

vi 1.266 0.974 0.911 0.915 1.302 1.003 0.908 0.910

vii 1.255 0.958 0.924 0.926 1.296 0.988 0.915 0.918

viii 1.280 0.987 0.897 0.900 1.324 1.022 0.895 0.898

Mean 3.225 2.632 0.482 0.485 3.200 2.607 0.482 0.484
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Table 7. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M3

i 5.278 4.440 0.043 0.045 5.126 4.327 0.038 0.040

ii 5.258 4.426 0.046 0.049 5.107 4.308 0.041 0.042

iii 5.167 4.381 0.050 0.052 5.087 4.268 0.045 0.048

iv 5.105 4.265 0.055 0.058 5.014 4.192 0.051 0.053

v 1.251 0.959 0.908 0.910 1.281 0.975 0.905 0.906

vi 1.246 0.948 0.916 0.918 1.276 0.967 0.909 0.912

vii 1.238 0.940 0.927 0.930 1.266 0.960 0.915 0.920

viii 1.262 0.964 0.901 0.903 1.292 0.986 0.898 0.900

Mean 3.226 2.665 0.481 0.483 3.181 2.623 0.475 0.478

Table 8. The results of the model RVFL‑WCA for daily time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 4.835 4.070 0.038 0.042 5.131 4.337 0.037 0.039

ii 4.721 3.918 0.083 0.085 4.997 4.154 0.086 0.090

iii 4.642 3.828 0.113 0.113 4.904 4.049 0.120 0.125

iv 4.587 3.772 0.134 0.134 4.844 3.991 0.142 0.147

v 1.248 0.946 0.926 0.929 1.237 0.944 0.925 0.928

vi 1.243 0.942 0.931 0.933 1.227 0.942 0.929 0.932

vii 1.237 0.937 0.935 0.938 1.218 0.940 0.935 0.936

viii 1.257 0.958 0.912 0.915 1.246 0.953 0.915 0.918

Mean 2.971 2.421 0.509 0.511 3.101 2.539 0.514 0.518

M2

i 4.989 4.188 0.066 0.069 4.799 4.028 0.063 0.065

ii 4.905 4.089 0.070 0.073 4.718 3.944 0.072 0.075

iii 4.746 3.882 0.131 0.132 4.577 3.763 0.128 0.130

iv 4.623 3.742 0.173 0.176 4.452 3.610 0.172 0.174

v 1.253 0.951 0.928 0.931 1.294 1.005 0.917 0.920

vi 1.247 0.944 0.932 0.934 1.276 0.969 0.932 0.932

vii 1.233 0.938 0.935 0.937 1.227 0.931 0.937 0.937

viii 1.258 0.958 0.918 0.920 1.301 1.011 0.912 0.914

Mean 3.032 2.462 0.519 0.522 2.956 2.408 0.517 0.518
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Table 8. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M3

i 4.982 4.187 0.063 0.066 4.840 4.056 0.061 0.065

ii 4.826 3.967 0.096 0.098 4.714 3.863 0.088 0.085

iii 4.786 3.950 0.110 0.113 4.674 3.852 0.104 0.100

iv 4.708 3.868 0.140 0.141 4.607 3.779 0.130 0.126

v 1.239 0.942 0.930 0.932 1.274 0.968 0.918 0.920

vi 1.230 0.934 0.935 0.936 1.268 0.959 0.923 0.925

vii 1.217 0.931 0.937 0.939 1.261 0.952 0.926 0.927

viii 1.248 0.995 0.923 0.925 1.281 0.975 0.905 0.908

Mean 3.030 2.472 0.517 0.519 2.990 2.426 0.507 0.507

Table 9. The results of the model RVFL‑MFO for daily time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 4.782 3.921 0.070 0.070 5.048 4.138 0.072 0.072

ii 4.601 3.671 0.131 0.131 4.825 3.875 0.143 0.148

iii 4.485 3.519 0.174 0.174 4.680 3.699 0.197 0.194

iv 4.383 3.386 0.211 0.211 4.544 3.536 0.244 0.240

v 1.243 0.938 0.934 0.934 1.231 0.937 0.929 0.933

vi 1.238 0.934 0.937 0.939 1.228 0.934 0.932 0.936

vii 1.234 0.932 0.940 0.943 1.225 0.930 0.937 0.945

viii 1.249 0.944 0.928 0.931 1.238 0.944 0.928 0.932

Mean 2.902 2.281 0.541 0.542 3.002 2.374 0.551 0.553

M2

i 4.914 4.048 0.068 0.071 4.724 3.858 0.073 0.075

ii 4.737 3.759 0.132 0.135 4.554 3.641 0.141 0.141

iii 4.604 3.581 0.180 0.183 4.414 3.449 0.190 0.190

iv 4.505 3.463 0.215 0.218 4.326 3.348 0.223 0.222

v 1.240 0.941 0.931 0.933 1.220 0.930 0.928 0.930

vi 1.236 0.939 0.934 0.936 1.218 0.926 0.935 0.938

vii 1.230 0.935 0.937 0.941 1.214 0.923 0.939 0.940

viii 1.247 0.935 0.925 0.928 1.228 0.936 0.922 0.925

Mean 2.964 2.325 0.540 0.543 2.862 2.251 0.544 0.545
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Table 9. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M3

i 4.926 4.076 0.071 0.073 4.760 3.857 0.067 0.069

ii 4.696 3.720 0.142 0.146 4.632 3.647 0.117 0.121

iii 4.546 3.522 0.199 0.202 4.540 3.492 0.151 0.157

iv 4.413 3.348 0.244 0.246 4.476 3.401 0.175 0.184

v 1.222 0.932 0.935 0.937 1.259 0.946 0.925 0.928

vi 1.220 0.930 0.938 0.940 1.257 0.944 0.930 0.931

vii 1.212 0.927 0.941 0.943 1.249 0.940 0.932 0.935

viii 1.231 0.942 0.928 0.930 1.272 0.958 0.918 0.921

Mean 2.933 2.300 0.550 0.552 2.931 2.273 0.527 0.531

Table 10. The results of the model RVFL‑WCAMFO for daily time scale.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M1

i 4.751 3.887 0.074 0.074 5.012 4.132 0.076 0.076

ii 4.596 3.657 0.133 0.133 4.819 3.865 0.149 0.146

iii 4.451 3.462 0.187 0.187 4.672 3.690 0.203 0.197

iv 4.330 3.303 0.230 0.230 4.537 3.532 0.249 0.243

v 1.236 0.934 0.937 0.939 1.228 0.934 0.940 0.941

vi 1.219 0.926 0.944 0.947 1.222 0.928 0.942 0.945

vii 1.214 0.923 0.951 0.953 1.218 0.921 0.947 0.948

viii 1.242 0.943 0.932 0.935 1.235 0.938 0.933 0.938

Mean 2.880 2.254 0.549 0.550 2.993 2.368 0.557 0.556

M2

i 4.876 3.997 0.072 0.074 4.712 3.850 0.077 0.077

ii 4.730 3.747 0.134 0.137 4.547 3.620 0.138 0.140

iii 4.585 3.548 0.187 0.190 4.408 3.441 0.190 0.192

iv 4.441 3.374 0.238 0.240 4.304 3.340 0.225 0.230

v 1.237 0.938 0.935 0.940 1.222 0.927 0.935 0.937

vi 1.169 0.922 0.944 0.947 1.212 0.919 0.938 0.941

vii 1.094 0.917 0.951 0.953 1.204 0.911 0.940 0.945

viii 1.248 0.946 0.930 0.932 1.229 0.935 0.928 0.930

Mean 2.923 2.299 0.549 0.552 2.855 2.243 0.546 0.549
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Table 10. Cont.

Dataset Input Combination
Training Testing

RMSE MAE NSE R2 RMSE MAE NSE R2

M3

i 4.878 3.978 0.075 0.078 4.749 3.848 0.069 0.073

ii 4.693 3.708 0.145 0.147 4.629 3.643 0.119 0.123

iii 4.527 3.481 0.203 0.206 4.536 3.507 0.155 0.159

iv 4.382 3.306 0.254 0.256 4.471 3.406 0.181 0.187

v 1.216 0.926 0.941 0.942 1.258 0.945 0.930 0.934

vi 1.205 0.912 0.947 0.949 1.245 0.933 0.935 0.936

vii 1.191 0.903 0.954 0.957 1.244 0.931 0.937 0.939

viii 1.228 0.935 0.933 0.936 1.265 0.953 0.924 0.925

Mean 2.915 2.269 0.557 0.559 2.925 2.271 0.531 0.535
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It is worth mentioning that optimization algorithms were reported generally to op‑
timize the tuning parameters and enhance the predictability of the models [59,60]. This
was justified in the presented study where the combination (vii) became the most reliable
among the other seven combinations. The numerical outcomes of RVFL‑WCA for a daily
time scale show that M1(vii) = RMSE (1.218), R2 (0.936), M2(vii) = RMSE (1.227), R2 (0.937),
and M3 (vii) = RMSE (1.261), R2 (0.927). The capability of daily air temperature modeling
is presented graphically in the scatter plot (Figure 7). The scatter plots of the observed and
predicted air temperature by different RVFL‑basedmodels in the test period using the best
input combination for a monthly time scale indicated that RVFL‑WCAMFO attained the
highest accuracy of more than 94.8% against the other, which have the accuracy ranging
from 92–94%.

Similarly, the output of Table 9 for the results of the model RVFL‑MFO for daily time
scale indicated thatM1 (vii) =MAE (0.930), NSE (0.937),M2 (vii) =MAE (0.926), NSE (0.939),
M3(vii) = MAE (0.940), NSE (0.932).

For computational modeling of air temperature, it is obvious that step‑ahead combi‑
nation of temperature produces the best outcomes; this is in line with the presented study
where the combination M1‑M3 (vii) Tt‑1, Tt‑2, Tt‑3 produced the best predictive skills. The
obtained modeling architecture justified that minimum input parameters based on the ac‑
curate feature selection could lead to more improved prediction results than large combi‑
nation. Similarly, the results show that all combinations with precipitation as inputs were
less accurate, whereas temperature combination as previous inputs provided more accu‑
rate results. The predicted results of daily air temperature can also be visualized in the
Taylor diagram using different matrices, as shown in Figure 8. The major advantage of the
Taylor diagram is centered towards understanding the concept of correlation, standard
deviation, and RMSE.
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It can also be proved in this study demonstration that precipitation inputs have less
effect on temperature, whereas what we see in literature, temperature inputs have good af‑
fect in modeling runoff and rainfall, for example, [61–64]. These results also demonstrated
the necessity and importance of accurate temperature modeling as extreme rainfall events
such as typhoon, cloud bursting, heat wave, and extreme runoff events such as drought
and flood can be avoided if we can model air temperature precisely because this input
has a very good affecting relationship with precipitation and runoff. It is a well‑known
fact that remarkable progress has been recorded in temperature modeling, but still some
limitations exist, especially with a traditional theoretical approach. Table 10 presents the
results of the model RVFL‑WCAMFO for a daily time scale.

From the results it can be observed that the best models are still a temperature‑related
combination (vii). The summary of the numerical results for the best models demostrated
that M1(vii) = RMSE (1.218), MAE(0.921), NSE(0.947), R2(0.948), M2 (vii) = RMSE (1.204),
MAE (0.911), NSE (0.940), R2 (0.945), andM3 (vii) = RMSE (1.244),MAE (0.931), NSE (0.937),
R2 (0.939). Addition visualization based on the predicted results is presented in Figure 9.
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5. Conclusions
The prediction accuracy of RVFL with three hybrid metaheuristic models, namely

RVFL‑WCA, RVFL‑MFO, and RVFL‑WCAMFO, for predicting the air temperature of the
Rajshahi station of western Bangladesh was assessed in this paper. The standalone RVFL
and three metaheuristic models were examined using three algorithms, includingM1, M2,
and M3, with eight different input combinations with the help of RMSE, MAE, and R2
performance evaluation indexes, including scatter plots, and Taylor and violin charts. The
metaheuristic algorithms made the single RFVL more accurate when it was used to simu‑
late (in the training stage) and predict (in the testing stage) the monthly air temperature
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based on M1, M2, and M3. The monthly air temperature modeling using a standalone
RVFL model showed that the best model, M1 (viii), increased the predictive skills by giv‑
ing variations from 3% to 37% of the remaining combinations (i, ii, iii, iv, and vii), M2 (viii)
within 4% to 42%, and lastly, M3 (vii) within the range of 1% to 42%. The monthly air
temperature modeling using hybrid optimization RVFL‑WCA revealed that the M1 (viii)
with parameter combinations (Tt‑1, Tt‑2, Tt‑3) indicated the best against all the combina‑
tions (M1 andM2). The RMSE of theM1, M2, andM3 demonstrated that M1 (viii) reduced
the prediction error by approximately 12% and 6% for M2 and M3, respectively, for the
monthly time scale. During the daily scale, the RVFL‑WCAMFO models with the combi‑
nation (vii) displayed high accuracy against all the combinations for air temperature mod‑
eling. They have attained more than 94.8% accuracy against the other three models, with
an accuracy range of 92–94%, though single standalone models, i.e., RVFL, could produce
reasonable accuracy for modeling air temperature. The precision comparison of the algo‑
rithms exposed that the precision positions were in descending order: RVFL‑WCAMFO
> RVFL‑WCA > RVFL‑MFO in forecasting air temperature. According to the outcomes
of this research, the use of hybrid metaheuristic i.e., RFVL‑WCAMFO is suggested for air
temperature prediction. Thus, the suggestedmodel can be helpful for policymakers in alle‑
viating the effects of temperature and recommending effective plans for agricultural crop
production. The key limitation of this research was the use of input data from just one sta‑
tion in western Bangladesh to examine the accuracy of the models. In future studies, these
models can be evaluated using more datasets from different regions. These suggested ad‑
vanced hybrid models also can be evaluated with other different hybrid machine learning
models in the future studies.
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