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Abstract: In this investigation, the q-difference operator and the Sălăgean q-differential operator
are utilized to establish novel subclasses of analytical bi-close-to-convex functions. We determine
the general Taylor–Maclaurin coefficient of the functions in this class using the Faber polynomial
method. We demonstrate the unpredictable behaviour of initial coefficients |a2|, |a3| and investigate
the Fekete–Szegő problem

∣∣a3 − a2
2
∣∣ for the subclasses of bi-close-to-convex functions. To highlight the

connections between existing knowledge and new research, certain known and unknown corollaries
are also highlighted.

Keywords: analytic functions; quantum (or q-) calculus; q-derivative operator; close-to-convex
functions; bi-univalent functions; Faber polynomial expansion
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1. Introduction and Definitions

Assume that A denotes the set of all analytical functions f (z) in the open unit disk

U = {z : |z| < 1},

which are normalized by
f (0) = 0 and f ′(0) = 1.

Thus, every function f ∈ A can be expressed in the form given in Equation (1):

f (z) = z +
∞

∑
j=2

ajzj. (1)

An analytical function f is considered univalent if

f (z1) 6= f (z2)⇒ z1 6= z2, ∀ z1, z2 ∈ U .

We let S denote the set of all analytical functions in A that are univalent in U .
For f1, f2 ∈ A, and f1 are subordinate to f2 in U , denoted by

f1(z) ≺ f2(z), z ∈ U ,

if we have a function u, such that

u ∈ B ={u : u ∈ A, |u(z)| < 1 and u(0) = 0, z ∈ U}

Mathematics 2023, 11, 1217. https://doi.org/10.3390/math11051217 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11051217
https://doi.org/10.3390/math11051217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7865-6208
https://orcid.org/0000-0001-5053-5028
https://orcid.org/0000-0002-9783-2924
https://doi.org/10.3390/math11051217
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11051217?type=check_update&version=3


Mathematics 2023, 11, 1217 2 of 15

and
f (z) = y(u(z)), z ∈ U .

For 0 ≤ α < 1, let S∗(α) stand for the class of functions g ∈ S , which are star-like of
the order α in U , such that

Re

(
zg
′
(z)

g(z)

)
> α, z ∈ U .

The family of close-to-convex functions f ∈ S of the order α in U are denoted by C(α),
and defined as (see [1]):

Re

(
z f
′
(z)

g(z)

)
> α, z ∈ U ,

where
g ∈ S∗(0) = S∗.

We note that
S∗(α) ⊂ C(α) ⊂ S

and ∣∣aj
∣∣ < j, ( for all f ∈ S , j ∈ N\{1})

by the De Branges Theorem, also known as the Bieberbach Conjecture (see [2,3]). The Koebe
one-quarter theorem (see [3]) states that the disk of radius 1

4 is contained in the image
of under every univalent function f ∈ S . Each f ∈ S therefore has an inverse f−1 = F,
defined as:

F( f (z)) = z, z ∈ U

and
f (F(w)) = w, |w| < r0( f ), r0( f ) ≥ 1

4
.

The series of inverse function F is given by

F(w) = w− a2w2 + (2a2
2 − a3)w3 −Q(a)w4 + ..., (2)

where
Q(a) = (5a3

2 − 5a2a3 + a4).

An analytical function f is called bi-univalent in U if f and f−1are univalent in U . Σ
stand for the class of all normalized analytical bi-univalent functions. In 1967, Levin [4]
introduced the class of analytical and bi-univalent functions in U and showed that

|a2| < 1.51.

After this, Branan and Clunie [5] enhanced the Levin result of the following form

|a2| ≤
√

2.

Furthermore, for the bi-univalent functions, Netanyahu [6] proved that

max|a2| =
4
3

.

It is indeed essential to mention that the following functions are bi-univalent:

f1(z) =
z

1− z
, f2(z) = log

(√
1 + z
1− z

)
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and

f3(z) = log
(

1
1− z

)
.

The inverse functions that correspond to these:

f−1
1 (w) =

w
1 + z

, f−1
2 (w) =

e2w − 1
e2w + 1

and
f−1
3 (w) =

ew − 1
ew

are also univalent functions. Thus, the functions f1, f2 and f3 are bi-univalent.
The interesting subclass of analytical and bi-univalent functions was proposed and

investigated by Branan and Taha [7], who also obtained estimates for the coefficient of the
functions in this class. Similarly to the well-known S∗(α) and C(α) subclasses of star-like
and convex functions of the order α (0 ≤ α < 1) introduced by Brannan et al. in [8].
The S∗Σ(α) of bi-star-like functions and the C∗Σ(α) of bi-convex functions of the order α
were in fact introduced by Brannan and Taha [9]. Recently, the exploration of numerous
subclasses of the analytical and bi-univalent function class Σ was basically revitalized by
the pioneering work of Srivastava et al. [10]. A new subclass of class Σ was created by
Xu et al. [11] in 2012, and they investigated coefficient estimates for the functions contained
in the new subclass of class Σ. Recently, a number of authors introduced and explored a
number of subclasses of class Σ (see for details [12–14]). Only non-sharp estimates of the
initial coefficients were examined in these recent works. Two new subclasses of analytical
bi-univalent functions are introduced using a Sălăgean–Erdély–Kober operator in [15] and
coefficient-related problems are solved regarding this class, including the Fekete–Szegő
problem. Three new classes of bi-univalent functions are introduced as generalizations
of previously introduced classes and estimates on the coefficients and the Fekete–Szegő
problem are obtained in [16]. A new family of holomorphic and bi-univalent functions is
introduced using a new operator joining Poisson distribution with a Ruscheweyh derivative
operator and upper bounds for the second and third coefficients are discussed in [17]. Other
similar very recent studies can be seen in [18–20].

Faber introduced Faber polynomials [21], and first utilized them to establish the gen-
eral coefficient bounds |aj| for j ≥ 3. Gong [22] explained the role of Faber polynomials in
the field of mathematics, notably in the context of geometric function theory (GFT). Hamidi
and Jahangiri [23,24] discovered some new coefficient bounds for analytical bi-close-to-
convex functions by taking the Faber polynomial expansion method into consideration.
Additionally, numerous authors [25–30] who implemented the same methodology discov-
ered some interesting and beneficial characteristics for analytical bi-univalent functions.
Only a few works have been performed so far by utilizing Faber polynomial expansion
methods, and we found very little in the literature that went beyond the bounds of the
Maclaurin’s series coefficient |aj| for j ≥ 4. The general coefficient bounds |aj| for j ≥ 4
were recently found by a small number of authors using the Faber polynomial expansion
technique (see for detail [29,31–35]).

In the area of GFT, the q-calculus and fractional q-calculus have been widely utilized by
scholars who have developed and examined a number of different subclasses of analytical,
univalent, and bi-univalent functions. The q-calculus operator was first proposed by
Jackson [36,37] in 1909, and the q-difference operator (Dq) was first used by Ismail et al. [38]
to establish a class of q-star-like functions in open unit disc U . The most significant
applications of q-calculus were essentially given in GFT, and Srivastava was the first to use
fundamental (or q-) hypergeometric functions in a book chapter (see for details, [39]). Very
recent investigations embedding q-calculus in GFT can be seen in [40–43]. See the following
articles for more work on GFT associated with q-calculus operator theory [44–46].

There are numerous disciplines of mathematics and physics where the q-calculus is used,
also having many applications in other fields of science such as special polynomials, analytical
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number theory, quantum group theory, numerical analysis, fractional calculus, and other
related theories. Recently, Faber polynomials and special functions have become extremely
important in the fields of mathematics, physics, engineering, and other research fields.

We provide some fundamental q-calculus definitions and ideas that will be utilized to
establish some new subclasses in this paper.

Definition 1. The definition of the q-number [t]q for q ∈ (0, 1) is:

[t]q =
1− qt

1− q
, (t ∈ C).

More specifically, t = j ∈ N,

[j]q =
1− qj

1− q
, (3)

=
j−1

∑
k=0

qk,

and the q-factorial [j]q! can be defined as:

[j]q! =
j

∏
k=1

[k]q, (j ∈ N).

In particular, [0]q! = 1.

Definition 2 ([36]). For f ∈ A, the q-difference operator, usually referred to as the q-derivative
operator, is defined by

Dq f (z) =
f (z)− f (qz)
(1− q)z

, z 6= 0, q 6= 1, (4)

= 1 +
∞

∑
j=2

[j]qajzj−1.

Definition 3 ([47]). For m ∈ N0 = N∪ {0}. The definition of a Sălăgean q-differential operator
for f ∈ A is given as:

S0
q f (z) = f (z), S1

q f (z) = zDq f (z) =
f (qz)− f (z)

(q− 1)
, · · · ,

Sm
q f (z) = zDq

(
Sm−1

q f (z)
)
= f (z) ∗

(
z +

∞

∑
j=2

(
[j]q
)mzj

)
,

= z +
∞

∑
j=2

[j]mq ajzj.

Very recent results were published involving a Sălăgean q-differential operator as it
can be seen in [48–50].

Recent papers [23,24,29,30] encouraged us to use this method to build new subclasses
of bi-close-to-convex functions of class Σ associated with q-calculus operator theory.

Definition 4. The function f of the Equation (1) is known as a close-to-convex function class
CΣ(m, α, q) if there is a g ∈ S∗ satisfying
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Re

(
Sm

q f (z)
g(z)

)
> α

and

Re

(
Sm

q F(w)

G(w)

)
> α,

where, m ∈ N0 = N∪ {0}, 0 ≤ α < 1, z, w ∈ U and F = f−1 given by Equation (2).

Remark 1. For m = 1 and q → 1− in Definition (4), we have a known class CΣ(α) proven by
Hamidi and Jahangiri in [23].

Definition 5. The function f of Equation (1) is known as a close-to-convex function class CΣ(α, q)
in U if g ∈ S∗ satisfies

Re
(

zDq f (z)
g(z)

)
> α

and

Re
(

zDqF(w)

G(w)

)
> α,

where, 0 ≤ α < 1, z, w ∈ U and F = f−1 given by Equation (2).

The quantum (q) operator theory is associated with a wide range of problems in
important areas of mathematical physics and engineering and is used in the solutions of
heat transfer and other problems with cylindrical and spherical coordinates. Several new
subclasses of convex and star-like functions have been defined, and many of their interesting
properties have been obtained, using the q-analogous of difference and the Sălăgean
operator. Studying certain subclasses of star-like functions and their generalizations is one
of the classical area of the field of GFT. In this paper, we try to investigate new geometric
properties of close-to-convex functions by using Faber polynomial methods and the well-
known q-operator.

2. The Faber Polynomial Expansion Method and Its Applications

Using the Faber polynomial method, the coefficients of the inverse map f−1 = F of an
analytical function f can be expressed as follows ( see [27,51]):

F(w) = f−1(w) = w +
∞

∑
j=2

1
j
N

j
j−1(a2, a3, ..., aj)wj,

where

R
−j
j−1 =

(−j)!
(−2j + 1)!(j− 1)!

aj−1
2 +

(−j)!
[2(−j + 1)]!(j− 3)!

aj−3
2 a3

+
(−j)!

(−2j + 3)!(j− 4)!
aj−4

2 a4

+
(−j)!

[2(−j + 2)]!(j− 5)!
aj−5

2

[
a5 + (−j + 2)a2

3

]
+

(−j)!
(−2j + 5)!(j− 6)!

aj−6
2 [a6 + (−2j + 5)a3a4]

+ ∑
i≥7

aj−i
2 Qi,
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and the variables a2, a3, .....aj make up the homogeneous polynomial Qi, for 7 ≤ i ≤ j. In

particular, the initial three terms of N−j
j−1 are

1
2
N−2

1 = −a2,
1
3
N−3

2 = 2a2
2 − a3,

1
4
N−4

3 = −(5a3
2 − 5a2a3 + a4).

In general, for v ∈ Z (Z := 0,±1,±2, ... and j ≥ 2, an expansion of Nv
j−1 of the form:

Nv
j−1 = vaj +

v(v− 1)
2

H2
j−1 +

v!
(v− 3)!3!

H3
j−2 + ... +

v!
(v− j + 1)!(j− 1)!

H j−1
j−1 ,

where,
Hv

j−1 = Hv
j−1(a2, a3....aj)

and by [51], we have

Hy
j−1(a2, ..., aj) =

∞

∑
j=2

y!(a2)
µ1 ...(aj)

µj−1

µ1!, ..., µj−1!
, for a1 = 1 and y ≤ j.

The sum is taken over all non-negative integers µ1, ..., µj−1 which satisfy

µ1 + µ2 + ... + µj−1 = y

and
µ1 + 2µ2 + ... + (j− 1)µj = j− 1.

Clearly,
H j−1

j−1(a1, ..., aj) = aj−1
2

and
H j

j = aj
1, and H1

j = aj

are first and last polynomials.
We shall demonstrate our findings using the subsequent lemma.

Lemma 1. The Caratheodory Lemma (see [3]). If p ∈ P and

p(z) = 1 +
∞

∑
j=1

cjzj,

then ∣∣cj
∣∣ ≤ 2,

where P is the family of all analytical functions that have a positive real part and p(0) = 1.

Motivated by the recent studies involving Faber polynomial expansion [52–55], the gen-
eral coefficient |aj| of bi-close-to-convex functions of class CΣ(m, α, q) are determined using
the Faber polynomial expansions in this study under suitable gap series conditions. Af-
ter this, we demonstrate the unpredictable behaviour of initial coefficients |a2|, |a3| and
investigate the Fekete–Szegő problem

∣∣a3 − a2
2

∣∣. We also provide an example of the bi-close-
to-convex function in the class CΣ(m, α, q).

3. Main Results

The general Taylor–Maclaurin coefficients of functions in CΣ(m, α, q) are determined
in this section using the Faber polynomial expansion method.
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Theorem 1. If f ∈ CΣ(m, α, q) be given by Equation (1). If ak = 0, and 2 ≤ k ≤ j− 1, then

∣∣aj
∣∣ ≤ 2(1− α) + j

[j]mq
, for j ≥ 3.

Proof. If f ∈ CΣ(m, α, q), then there exists a function g(z), so that we have the Faber
polynomial expansion

Sm
q f (z)
g(z)

= 1 +
∞

∑
j=2

[(
[j]mq aj − bj

) j−2

∑
l=1

R−1
l (b2, b3, ...bl+1)

((
[j]mq − l

)
aj−l − bj−l

)]
zj−1. (5)

For the inverse map F = f−1 ∈ CΣ(m, α, q), there exists a function

G(w) = w +
∞

∑
j=2

Bjwj ∈ S∗(0),

so that

Re

(
Sm

q F(w)

G(w)

)
> α

in U . Presumed from Equation (5), the Faber polynomial expansion of F = f−1 is

F(w) = w +
∞

∑
j=2

Ajwj.

Thus, the Faber polynomial expansion of
Sm

q F(w)

G(w)
is given by

Sm
q F(w)

G(w)

= 1 +
∞

∑
j=2

[(
[j]mq Aj − Bj

) j−2

∑
l=1

R−1
l (B2, B3, ...Bl+1)

((
[j]mq − l

)
Aj−l − Bj−l

)]
wj−1. (6)

Since f ∈ CΣ(m, α, q) is in U and there exists a positive real part function

p(z) = 1 +
∞

∑
j=1

cjzj

so that

Sm
q f (z)
g(z)

= 1 + (1− α)p(z)

= 1 + (1− α)
∞

∑
j=1

cjzj. (7)

Similarly, for F ∈ CΣ(m, α, q) in U there exists a positive real part function

q(w) = 1 +
∞

∑
j=1

djwj
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so that

Sm
q F(z)
G(z)

= 1 + (1− α)q(w)

= 1 + (1− α)
∞

∑
j=1

djwj. (8)

Evaluating the coefficients of the Equations (5) and (7), for any j ≥ 2, yields

[j]mq aj − bj +
j−2

∑
l=1

R−1
l (b2, b3, ...bl+1)

((
[j]mq − l

)
aj−l − bj−l

)
= (1− α)cj−1. (9)

Evaluating the coefficients of the Equations (6) and (8), for any j ≥ 2, yields

[j]mq Aj − Bj +
j−2

∑
l=1

R−1
l (B2, B3, ...Bl+1)

((
[j]mq − l

)
Aj−l − Bj−l

)
= (1− α)dj−1. (10)

For special cases where j = 2, from (9) and (10), we obtain

[2]mq a2 − b2 = (1− α)c1,

[2]mq A2 − B2 = (1− α)d1.

Solving for a2 and taking the absolute values and using the Lemma 1, we can obtain

|a2| ≤
2

[2]mq
(2− α).

But under the assumption, 2 ≤ i ≤ j− 1, and ai = 0, respectively, we yield:

Aj = −aj

and

[j]mq aj − bj = (1− α)cj−1, (11)

[j]mq aj − Bj = (1− α)dj−1. (12)

By solving Equations (11) and (12) for aj and determining the absolute values, and by
the Carathéodory Lemma 1, we obtain

∣∣aj
∣∣ ≤ 2(1− α) + j

[j]mq
,

upon noticing that ∣∣bj
∣∣ ≤ j and

∣∣Bj
∣∣ ≤ j.

This completes Theorem 1.

Theorem 2. If f ∈ CΣ(α, q) is given by Equation (1), and if ai = 0, and 2 ≤ i ≤ j− 1, then

∣∣aj
∣∣ ≤ 2(1− α) + j

[j]q
for j ≥ 3.

For m = 1, and q→ 1−, we obtain a known corollary in Theorem 1 that was proven
in [23].
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Corollary 1 ([23]). If f ∈ CΣ(α) is given by Equation (1), and if ai = 0, and 2 ≤ i ≤ j− 1, then

∣∣aj
∣∣ ≤ 1 +

2(1− α)

j
, for j ≥ 3.

The following theorem for initial coefficients |a2| and |a3|, as well as
∣∣a3 − a2

2

∣∣ for
CΣ(m, α, q) is obtained as a particular case to Theorem 1.

Theorem 3. If f ∈ CΣ(m, α, q) is given by Equation (1), then

|a2| ≤


√

2(1−α)
[3]mq −[2]mq

if 0 ≤ α < 1− ([2]mq −1)
2

2([3]mq −[2]mq )
,

2(1−α)
[2]mq −1 if 1− ([2]mq −1)

2

2([3]mq −[2]mq )
≤ α < 1,

|a3| ≤


2(1−α)(2[3]mq −[2]mq )

(2[3]mq −[2]mq −2)([3]mq −1)
if 0 ≤ α < 1− ([2]mq −1)

2

2([3]mq −[2]mq )
,

2(1−α)
[3]mq −1 (3− 2α) if 1− ([2]mq −1)

2

2([3]mq −[2]mq )
≤ α < 1,

∣∣∣a3 − a2
2

∣∣∣ ≤ 2(1− α)

[3]mq − 1
.

Proof. In the proof of Theorem 1, considering g(z) = f (z), then we obtain aj = −bj. For
j = 2 in Equations (9) and (10) we thus yield

a2 =
(1− α)c1

[2]mq − 1

and

−a2 =
(1− α)d1

[2]mq − 1
.

Taking the absolute values, we obtain

|a2| ≤
2(1− α)

[2]mq − 1
.

For j = 3, in Equations (9) and (10), we have(
[3]mq − 1

)
a3 −

(
[2]mq − 1

)
a2

2 = (1− α)c2 (13)

and (
2a2

2 − a3

)(
[3]mq − 1

)
−
(
[2]mq − 1

)
a2

2 = (1− α)d2. (14)

By adding Equations (13) and (14) and find |a2|, we arrive at∣∣∣a2
2

∣∣∣ = (1− α)|d2 + c2|
2
(
[3]mq − [2]mq

) .

By applying the Carathéodory’s Lemma 1, we have

|a2| ≤
√

2(1− α)

[3]mq − [2]mq
.
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As a result, we obtain the estimate√
2(1− α)

[3]mq − [2]mq
<

2(1− α)

[3]mq − [2]mq
.

Reducing Equation (14) to its simplest form, we obtain(
2[3]mq − [2]mq − 1

)
a2

2 −
(
[3]mq − 1

)
a3 = (1− α)d2. (15)

Multiplying Equation (13) by

2[3]mq − [2]mq − 1

[2]mq − 1

and adding it to Equation (15), we obtain

|a3| =
(1− α)(

2[3]mq − [2]mq − 2
)(

[3]mq − 1
) ∣∣∣(2[3]mq − [2]mq − 1

)
c2 + d2

∣∣∣.
Applying the Carathéodory’s Lemma 1, we obtain

|a3| ≤
2(1− α)

(
2[3]mq − [2]mq

)
(

2[3]mq − [2]mq − 2
)(

[3]mq − 1
) .

Substituting a2 = c1(1−α)
[2]mq −1 into Equation (13), we have

a3 =
(1− α)

[3]mq − 1

{
c2 + (1− α)c2

1

}
.

Taking the modulus and applying the Carathéodory’s Lemma 1

|a3| ≤
2(1− α)

[3]mq − 1
(3− 2α).

Lastly, subtracting Equations (13) from (14), we have∣∣∣a3 − a2
2

∣∣∣ ≤ 2(1− α)

[3]mq − 1
.

Theorem 4. If f ∈ CΣ(α, q) is given by Equation (1). Then,

|a2| ≤


√

2(1−α)
q2 if 0 ≤ α < 1

2 ,
2(1−α)

q if 1
2 ≤ α < 1,

|a3| ≤


2(1−α)(1+q+2q2)

q(1+q)2(2q−1)
if 0 ≤ α < 1

2 ,
2(1−α)
q(1+q) (3− 2α) if 1

2 ≤ α < 1,

∣∣∣a3 − a2
2

∣∣∣ ≤ 2(1− α)

q(1 + q)
.

In Theorem 3, we obtain the known corollary proven in [23] for m = 1 and q→ 1−.
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Corollary 2 ([23]). Let f ∈ CΣ(α) be given by Equation(1). Then,

|a2| ≤
{ √

2(1− α) if 0 ≤ α < 1
2 ,

2(1− α) if 1
2 ≤ α < 1,

|a3| ≤
{

2(1− α) if 0 ≤ α < 1
2 ,

(1− α)(3− 2α) if 1
2 ≤ α < 1.

Example 1. For j ≥ 3, we will demonstrate that f (z) = z + 1−α
j−1 zj is bi-close-to-convex of the

order α, 0 ≤ α < 1 in U . For the function g(z) = z− 1−α
j−α zj star-like in U ; we have

Sm
q f (z)
g(z)

=
1 +

[j]mq (1−α)

j−α zj−1

1− (1−α)
j−α zj−1

= 1 +
∞

∑
k=1

(
(1− α)k

(j− α)k +
[j]mq (1− α)k

(j− 1)(j− α)k−1

)
z(j−1)k.

Therefore,

Sm
q f (z)
g(z) − α

1− α
= 1 +

∞

∑
k=1

 [j]mq j +
(

j− [j]mq α
)
− 1

(j− 1)(j− α)

 (1− α)k

(j− α)k−1 z(j−1)k

=
X0

2
+

∞

∑
k=1

Xkz(j−1)k.

Since limk→∞ Xk = 0, we note that Xk is a convex null sequence and

X0 −X1 ≥ X1 −X2 ≥ ... ≥ Xk −Xk−1 ≥ ... ≥ 0.

Therefore,

Re

(
Sm

q f (z)
g(z)

− α

)
> 0 in U .

For F = f−1, we have

F(w) = w− 1− α

j− 1
wj

and let
G(z) = z +

1− α

j− α
wj

which is star-like in U . As a result, we have

Sm
q F(z)
G(z) − α

1− α
=

2
2
+

∞

∑
k=1

(−1)k
[j]mq j +

(
j− [j]mq α

)
− 1

(j− 1)(j− α)

 (1− α)k

(j− α)k−1 w(j−1)k.

Obviously,

Re

(
Sm

q F(z)
G(z)

− α

)
> 0 in U .

Since its coefficients are dominated by the convex null sequence Xk.
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Example 2. For j ≥ 3, we will demonstrate that f (z) = z + 1−α
j−1 zj is bi-close-to-convex of the

order α, 0 ≤ α < 1 in U . For the function g(z) = z− 1−α
j−α zj star-like in U ; we have

zDq f (z)
g(z)

=
1 + [j]q(1−α)

j−α zj−1

1− (1−α)
j−α zj−1

= 1 +
∞

∑
k=1

(
(1− α)k

(j− α)k +
[j]q(1− α)k

(j− 1)(j− α)k−1

)
z(j−1)k.

Therefore,

zDq f (z)
g(z) − α

1− α
= 1 +

∞

∑
k=1

(
[j]q j +

(
j− [j]qα

)
− 1

(j− 1)(j− α)

)
(1− α)k

(j− α)k−1 z(j−1)k

=
w0

2
+

∞

∑
k=1

wkz(j−1)k.

Since limk→∞ wk = 0, we note that wk is a convex null sequence and

w0 − w1 ≥ w1 − w2 ≥ ... ≥ wk − wk−1 ≥ ... ≥ 0.

Therefore,

Re
(

zDq f (z)
g(z)

− α

)
> 0 in U .

For F = f−1, we have

F(w) = w− 1− α

j− 1
wj

and let
G(z) = z +

1− α

j− α
wj

which is star-like in U . As a result, we have

zDq f (z)
g(z) − α

1− α
=

2
2
+

∞

∑
k=1

(
(−1)k [j]q j +

(
j− [j]qα

)
− 1

(j− 1)(j− α)

)
(1− α)k

(j− α)k−1 w(j−1)k.

Obviously,

Re
(

zDqF(z)
G(z)

− α

)
> 0 in U .

Since its coefficients are dominated by the convex null sequence Xk.

4. Conclusions

In this paper, we used the q-difference operator and the Sălăgean q-differential operator
to systematically define subclasses of analytical bi-close-to-convex functions, which were
prompted mainly by recent research in GFT. We determined the general Taylor–Maclaurin
coefficient of the functions of newly defined classes by using the Faber polynomial method
and investigated the unpredictable behaviour of initial coefficients |a2|, |a3| and Fekete–
Szegő problem

∣∣a3 − a2
2

∣∣ of subclasses of bi-close-to-convex functions. In addition, the paper
showed how the findings are improved and generalized many interesting corollaries by
appropriate specialization of the parameters m and q factors, including some recently
published results.

Making use of the definition of q-difference and Sălăgean q-differential operators
could inspire researchers to create new, different subclasses of bi-close-to-convex functions.
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A number of new subclasses of bi-close-to-convex functions can be defined by using the
symmetrical q-calculus operator theory, and the unpredictable behaviour of coefficient
bounds can be discussed by using the Faber polynomial expansion technique.
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