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Abstract: The optimal power flow problem is one of the most widely used problems in power system
optimizations, which are multi-modal, non-linear, and constrained optimization problems. Effective
constrained optimization methods can be considered in tackling the optimal power flow problems.
In this paper, an ε-constrained method-based adaptive differential evolution is proposed to solve the
optimal power flow problems. The ε-constrained method is improved to tackle the constraints, and a
p-best selection method based on the constraint violation is implemented in the adaptive differential
evolution. The single and multi-objective optimal power flow problems on the IEEE 30-bus test
system are used to verify the effectiveness of the proposed and improved εadaptive differential
evolution algorithm. The comparison between state-of-the-art algorithms illustrate the effectiveness
of the proposed and improved εadaptive differential evolution algorithm. The proposed algorithm
demonstrates improvements in nine out of ten cases.

Keywords: adaptive differential evolution; optimal power flow; constrained optimization problems

MSC: 68w50

1. Introduction

The optimal power flow (OPF) is a key problem in power system operation and
control, which aims to minimize the objective function by optimizing the control variables
in energy transportation and production. In the OPF, the operation cost is a fundamental
basic goal, with an emphasis on sustainability and safety, the emissions and real power
loss, as well as voltage stability, are also taken into account. In addition to the generator
of active power, voltage magnitude, transformer tap and shunt capacitors, which can be
directly controlled and need to be varied within a certain range, it is also necessary to
ensure that the line loading and voltage of buses satisfy the safety constraints. Meanwhile,
the presence of the equality constraints makes the OPF problem become a highly complex
optimization problem. Hence, it is necessary to develop an effective algorithm to deal with
OPF problems. The key objective of the OPF problem is to deal with the constraints, where
the objective function should be optimized at the same time. Evolutionary algorithms have
been employed to tackle the OPF variants [1–4]. Ida et al. [2] applies the multi-objective
horse herd optimization to OPF. In the paper, a mechanism is proposed to update the
constraint matrix in handling constraints. Bouchekara [3] improves electromagnetic field
optimization (EFO) algorithm by using chaotic numbers instead of random numbers in
calculation of the force of electromagnetic particles. Mugemanyi et al. [4] applied the bat
algorithm in OPF. The proposed algorithm introduced the chaotic sequences to enhance its
global search ability. Saha et al. [5] proposed the symbiotic organism search-based hybrid
differential evolution and applied to OPF. Farhat et al. [6] proposed the neighborhood
dimension learning search strategy-based slime mould algorithm and applied to OPF.
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Abdel-satter et al. [7] applied the improved salp swarm algorithm (ISSA) to OPF. Taher et al.
applied an improved moth flame optimization to OPF. Akdag [8] improved the Archimedes
optimization algorithm and applied it to OPF. Abbasi et al. [9] combined the harmony
search (HS) algorithm with the differential evolution algorithm. This method divides
decision variables into ordered spans and searches. Teeparthi and Binod Kumar [10]
improved the artificial physics optimization (APO) by fuzzifying the gravitational constant
(G). EI-Fergany and Hasanien [11] improved the slap swarm algorithm (SSA) to tackle
OPF problems. Naderi et al. [12] integrated the particle swarm optimization (PSO) with a
differential evolution, and applied it to multi-objective OPF problems. Fuzzy rules help
to dynamically set the inertia factor in iterations. Four fitness functions and a voltage
stability based on the model analysis are considered. Elatter et al. [13] applied the Manta
Ray Foraging Optimizer in OPF, where a method of selecting an ideal solution is used in the
proposed algorithm. Kahraman et al. [14] introduced the crowding distance into the manta
ray foraging optimization.The proposed algorithm shows a competitive performance in
complex multi-objective problems. In recent years, many improved algorithms have been
proposed and applied to OPF. Gong et al. [1] proposed an adaptive differential evolution
to deal with the OPF, which is quite effective. Attia [15] combined the Levy flight with
the sine–cosine algorithm to enhance the global searching ability, aiming at improving
the efficiency of power systems. Flexible AC Transmission Systems (FACTs) are proposed,
which determines the optimal location and size of FACTS devices [16]. Taking the optimal
location and size of some devices into consideration, Mohamed et al. [17] combined the
moth–flame optimization algorithm and gradient-based optimizer to solve OPF. This paper
presents a performance evaluation of the ε method of the constraint handling in OPF
problems. The main contribution of this paper is as follows. A constrained adaptive
differential evolution is employed to address the OPF problems. A constrained mutation
operator is embedded in the algorithm, which enables us to consider the constraint violation
and the objective at the same time. Then, the proposed algorithm is used to tackle the OPF
problems, and the experimental results illustrate the effectiveness of the algorithm.

The rest of this paper is organized as follows. Section 2 presents the proposed con-
strained adaptive differential evolution. Section 3 gives the mathematical model of OPF.
The experimental results are presented in Section 3.1.3. Section 4 concludes the paper.

2. Adaptive Differential Evolution Based on Improved pbest Selection

Similar to genetic algorithms, the DE consists of four operations: initialization, muta-
tion, crossover and selection. The adaptive differential evolution (JADE) is an effective DE
variant. Compared with the classical DE, both the mutation and crossover parameters in
JADE are changed adaptively. A new selection strategy for the best individual is proposed
to increase the population diversity. The framework of the classical JADE can be presented
as follows.

2.1. Initialization

In DE, a target vector xi,G consisting of D dimensions is defined as an individual,
where G denotes the current iteration number. xi,G represents a decision variable vector
of the problem. During the initialization phase, NP individuals are randomly generated
within the search range. Therefore, an individual represents a solution set of the constrained
optimization problem. The formulation of initialization is as follows:

xj
i,1 = xj

min + rand(0, 1) · (xj
max − xj

min) (1)

where xi,1 represents the vector of the first generation of the i-th individual. xj
min and xj

max
denotes to the lower and upper bound of the j-th dimension,respectively. i = 1, ..., NP,
j = 1, ..., D. rand(0, 1) represents a random number between 0 and 1.
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2.2. Mutation

DE has different mutation operations to choose from. “DE/rand/1” is the most
commonly used mutation strategy, which can be formulated as:

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), r1 6= r2 6= r3 6= i (2)

where vi,G+1 denotes the mutation vector. xr1,G, xr2,G and xr3,G are three individuals
randomly chosen from the G-th generation of the population. F is a mutation control pa-
rameter.

In JADE, a new mutation strategy called ”DE/current-to-pbest/1” has been proven
to take into account the convergence speed and global search ability, which can be formu-
lated as:

vi,G+1 = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G), r1 6= r2 6= i (3)

where xbest,G denotes the top 100p% individuals in the current population. F is a random
number that follows the Cauchy distribution with a mean of uF and a standard deviation
of 0.1. Usually uF is initialized to 0.5.

After the mutation and crossover, the collection of all successful mutation factors Fi at
each generation is denoted by SF. Then, uF is updated as follows:

uF = (1− c) · uF + c ·meanL(SF) (4)

where meanL(SF) indicates that the Lehmer mean of the SF, c is a constant between 0 and 1.

2.3. Crossover

Crossover(CR) operations create trial vectors ui,G+1 by randomly selecting components
from the target vector xi,G or its mutant vectorvi,G+1. The binomial crossover is typically
described as

uj
i,G+1 = vj

i,G+1, i f rand < CRi or j = nj (5)

where nj is an integer random from 1 to D, ensuring that at least one dimension originates
from the Vi mutation vector. CRi is the crossover rate of the i-th individual, which follows
the normal distribution y distribution with a mean of uCR and a standard deviation of 0.1.

Similar to SF, SCR records the CRi of successful individuals in each generation. The uCR
is updated as follows:

uF = (1− c) · uCR + c ·meanA(SCR) (6)

where meanA indicates the arithmetic mean of SCR.
In JADE, CRi is randomly generated and assigned to each individual. Gong et al. [18]

proposed a CR sorting mechanism, which relates the CR value to individual fitness. In this
process, normally distribute CR values are first randomly generated, and then the CR
values and individuals fitness are arranged in ascending order, and each CR value is then
assigned to an individual in order. Therefore, individuals with better fitness will assign
smaller CR values, which can help the information from better individuals to survive into
the next generation.
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2.4. Improved ε Method

In the differential evolution, greedy strategies are applied to select offspring from a
target vector xi,G and a trial vector ui,G+1. The one with the better fitness value will survive
into the next generation. The selection formula is as follows:

xi,G+1 =

{
ui,G+1, i f f (ui,G+1) ≤ f (xi,G+1)

Xi,G, otherwise
(7)

where f denotes the fitness of the individual.
The selection operator in the proposed algorithm is based on the improved ε-constrained

methods. The ε-constrained methods will exaggerate the feasible region at the beginning of
the evolutionary process and then narrow it down until it meets the original feasible region.
In the classical ε-constrained method proposed by Taka [19], the ε-level control strategy is
as follows: 

ε(0) = φ(xθ)

ε(t) =

{
ε(0) · (1− G/T)cp, 0 < G < T
0, G ≥ T

(8)

where the initial value of ε is based on the population constraint violation level. The initial
value of ε(0) is set as the top θth individual’s constraint violation. The G-th generation ε
value is proportion to the t and initial value of ε(0). When the generation G reaches a certain
value T, the ε(t) will be set as zero. In this way, the infeasible solutions will be guided to
the feasible region along the evolution process. The setting of the ε value is improved with
the following adaptive method: However, this method ignores the information about the
current population. The framework of the proposed algorithm can be presented as follows
(Algorithm 1).

Algorithm 1 Improved ε-JADE

1: Initialization:NP = 50;
2: Generate NP individuals randomly;
3: Evaluate the objective function and constraint violation for each individual;
4: Set G = 0; FES = 0;
5: while FES < MaxFES do
6: SF = [];SCR = [];
7: G = G + 1;
8: for each individual i in the population NP do
9: CRi = randci(µCR,0.1); Fi = randni(µF,0.1);

10: Use DE/current-to-pbest/1 mutation operator to generate the mutation vector.
11: Use crossover ranking technique to assign the crossover control parameter.
12: Use exponential crossover to generate the trial vector.
13: Apply Formula (7) to compare the trial vector with the base vector and choose the

better one to survive into the next generation.
14: end for
15: Update the pbest individuals.
16: Apply the Formula (8) to update the ε value
17: Set FES = FES + NP
18: end while

3. Problem Formulation

This section will introduce the mathematical model of the OPF problems. The variables,
constraints and objectives will be presented.
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3.1. Problem Formulation

The OPF problems aim to optimize the objective function within the feasible region
that satisfies the constraints. The general model of the constrained optimization problem
could be formulated as follows:

MinimizeF(x)

Subjectto

gi(x) = 0, i = 1, 2, 3, ..., m

hj(x) ≤ .0, j = 1, 2, 3, ..., n

(9)

where F is the objective function, x is the decision variable, gi indicates the equality
constraints, hj is the inequality constraints. and m and n are the total number of equality
and inequality.

3.1.1. Decision Variables

In OPF problems, the decision variables can be divided into dependent and indepen-
dent variables. The independent variables can be presented as follows:

U = [PG, VG, QC, Ttap]1×d

PG = [PG1 , PG2 , ..., PG(NG−1)]1×NG i 6= slack

VG = [VG1 , VG2 , ..., VG(NG)
]1×NG

QC = [QC1 , QC2 , ..., QCNC
]1×NC

Ttap = [Ttap1
, Ttap2

, ..., TtapNT
]1×NT

d = (NG − 1) + NG + NC + NT

(10)

where PG denotes the output active power of the generator. NG is the number of generators.
VG represents the voltage of the generation bus. QC is the injected reactive power of
the shunt compensator. NC is the number of the shunt compensators. Ttap denotes the
tap setting of the transformers. NT represents the number of the transformers. d is the
dimension of the decision variables. The dependent variables include the generated power
of the slack bus, voltage of the load bus, load bused number, the reactive power output
generators, the apparent power flow in transmission line, and the number of transmission
lines. The independent variables include the output active power of the generator, generator
number, voltage of the generation bus, injected reactive power of shunt compensators,
the number of shunt compensator, the tap setting of transformers and the number of the
transformers. The dependent variables can be given as follows:

X = [PG0 , VL,1, ..., VL,NPQ, QG,1, ..., QG,NPV , STL,1, ..., STL,NTL] (11)

3.1.2. Objective Functions

Six single objective functions of OPF and four multi-objective functions were studied
in this part. The multi-objective functions are transformed into single objectives with
weighted factors. The multi-objective method can be used to tackle the objectives [20].

Case 1: Fuel cost minimization
The fuel cost ($/h) is the most commonly used objective in OPF problems. The quadratic

function is employed to model the generation cost.
The formulas can be given as follows:

F1(X) =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) (12)

where the ai, bi and ci are the cost coefficients of the i-th generator.



Mathematics 2023, 11, 1250 6 of 13

Case 2: Fuel cost with valve point-effect minimization
The fuel cost with valve point-effect and prohibited zones is used to describe the

generation cost. It consists of two parts. One of them is the total fuel cost F1, and the other
is a sinusoidal function. A sinusoidal function is used to simulate the valve effect.

FC =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) +

∣∣∣di · sin(ei · (Pmin
Gi
− PGi ))

∣∣∣ (13)

where the di and ei are the fuel cost coefficients of the i-th generator with valve-point effects.
The input flow of the steam is adjusted by the generation units to control the output flow
by different valves.

Case 3: Voltage stability minimization
The voltage is an important index in power system stability, which should be varied

within a suitable region. Hence, the load bus L-index is used, whose value should be within
the range of 0 to 1. The formula can be given as follows:

Lj =

∣∣∣∣∣1− NG

∑
i=1

Fij ·Vi/Vj

∣∣∣∣∣, j = 1, ...NL.

FV−stability = max(Lj), j = 1, ...NL.

(14)

where Vi and represent the voltage of the i-th generator and j-th P-Q bus, respectively; Fijis
calculated from the X-matrix.

Case 4: Emission minimization
The emission in the power system is an important environmental index that is highly

related to global warming and carbon emission issues. Hence, the emission in this case is
formulated with the following formula:

FE =
NG

∑
i=1

αi + βi · PGi + γi · P2
Gi
+ δi · eφi PGi (15)

where αi, βi, γi, δi and φi represent the i-th generator emission coefficients, and their values
are provided in Table 1.

Table 1. Cost and emission coefficients of generators for the IEEE 30-bus system.

Generator Bus a b c d e alpha beta gamma w mu

G1 1 0 2 0.00375 18 0.037 4.091 −5.554 6.49 0.0002 2.857
G2 2 0 1.75 0.0175 16 0.038 2.543 −6.047 5.638 0.0005 3.333
G3 5 0 1 0.0625 14 0.04 4.258 −5.094 4.586 0.000001 8
G4 8 0 3.25 0.00834 12 0.045 5.326 −3.55 3.38 0.002 2
G5 11 0 3 0.025 13 0.042 4.258 −5.094 4.586 0.000001 8
G6 13 0 3 0.025 13.5 0.041 6.131 −5.555 5.151 0.00001 6.667

Case 5: Real power loss minimization
Power loss in transmission systems is inevitable due to the intrinsic resistance of the

wires. Therefore, the active power loss is worth considering. The mathematical model of
this case is given as follows:

FLoss =
nl

∑
i=1

nl

∑
i 6=j

Gij · [V2
i + V2

j − 2Vi ·Vj · cos(δi − δj)] (16)

Case 6: emission and generation cost minimization
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The emission cost and generation cost are both considered in this case. The emission
and generation costs are formulated as follows:

FVD =
NL

∑
i=1

(VLP − 1.0) (17)

Case 7: Fuel cost and real power loss minimization
This multi-objective case is converted to a single objective by multiplying a weight

factor by one of the objectives. The problem can be formulated as follows:

F1(X) =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) + λP · FLoss (18)

where FLoss is calculated according to Case 5 and the factor of λP is set as 40.
Case 8: Fuel cost and voltage deviation minimization
Voltage deviation is a measure of voltage quality in the network. The index of deviation

is also vital from a security aspect. The indicator is formulated as the cumulative deviation
of the voltages of all load buses (PQ buses) in the network from the nominal value of unity.
The formula is as follows

F1(X) =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) + λV D ·VD (19)

where λV D is a weighted factor set as 100.
Case 9: Fuel cost and enhancement of voltage stability minimization
The objective function is to minimize the weighted sum of the fuel cost and enhance the

voltage stability of the system. The multiple objectives are converted to a single objective,
as follows.

F1(X) =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) + λL · Lmax (20)

where ΛL is the weighted factor set as 100.
Case 10: Fuel cost, emission, voltage deviation and power losses minimization
Four objectives, which are fuel cost, emission, voltage deviation and power losses, are

considered in this case.

F1(X) =
NG

∑
i=1

(ai · P2
Gi
+ bi · P2

Gi
+ ci) + λE · FE + λV D · FVD + λP · FLoss (21)

where three weighted factors are set as λE = 19, λV D = 21 and λP = 22, which can be
referred to [21].

3.1.3. Constraints

There are various types of constraints in OPF problems. The active power should be
equal to the reactive power, which are equality constraints.

PGi − PDi −Vi ·
NB

∑
j=1

Vj · [Gijcos(δi − δj) + Bijsin(δi − δj)] = 0, i = 1, ..., NB

QGi −QDi −Vi ·
NB

∑
j=1

Vj · [Gijcos(δi − δj)− Bijsin(δi − δj)] = 0, i = 1, ..., NB

(22)

where PDi represents the active load. QDi is the reactive load and δi is the i-th bus voltage
angle. NB is the number of the buses. Gij and Bij are the transfer conductance and the
susceptance between buses i and j, respectively. There are four inequality constraints,
which can be presented as follows:
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(1) Generator constraints:

Pmin
Gi
≤ PGi ≤ Pmax

Gi
, i = 1, .., NG

Qmin
Gi
≤ QGi ≤ Qmax

Gi
, i = 1, .., NG

Vmin
Gi
≤ VGi ≤ Vmax

Gi
, i = 1, .., NG

(23)

where the i-th bus generator active power PGi , reactive power output QGi and volt-
age magnitude at the i-th generator bus VGi are generated within their lower and
upper bounds.

(2) Shunt compensator constraints:

Qmin
Cj
≤ QCj ≤ Qmax

Cj
, j = 1, .., NC (24)

where the shunt compensator at the j-th bus QCj should lie in its lower and upper limits.
(3) Transformer constraints:

Tmin
k ≤ Tk ≤ Tmax

k , k = 1, .., NT (25)

where the k-th branch transformer tap Tk is within its lower and upper limits.
(4) Security constraints:

Vmin
Lm
≤ VLm ≤ Vmax

Lm
, k = 1, .., NL

SLn ≤ Smax
Ln

, n = 1, ..., nl
(26)

where the voltage magnitude at the m-th load bus VLm and n-th line loading should
follow its lower and upper bounds.

Experimental Results

The IEEE 30-bus test system is used to test the effectiveness of the algorithm. The sys-
tem has 6 bus generators, and 24 load buses. The lower bounds of the voltage magnitude
is 0.95 p.u. The upper bounds of the PV buses and PQ buses are 1.1 p.u. and 1.05 p.u.,
respectively. The lower and upper bound of transformer tappings are 0.9 and 1.1 p.u.,
respectively. The proposed IεJADE algorithm is compared with state-of-the-art DEs, which
are ECHT-DE [22], SF-DE [22], SP-DE [22] and ACDE [1].

3.2. Results of the OPF Problems

In this subsection, the proposed algorithm is compared with ECHT-DE. SF-DE, SP-DE
and ACDE. The experimental results are shown in Table 2. It is worth mentioning that
the control parameters of the proposed algorithm are the same as ACDE. The biggest
difference between ACDE and Iε-JADE is the constraint handling technique. ACDE uses
the SF method rather than the ε constraint method in Iε-JADE.The maximum, minimum
and average values of thirty independent runs are shown in Table 2. The best results among
all the algorithms are marked in boldface.

• For case 1, the simulation results show that ACDE has a better Min values, Max values
and Std values than the improved εJADE. Improved ε-JADE presents better mean
values in this case, which indicates that the effectiveness of the proposed algorithm.

• For case 2, case 3, case 5, case 6 and case 10, the proposed improved ε-JADE algorithm
exhibits a competitive performance on the Min, Max and Mean values when compared
with the other four state-of-the-art DE algorithms;

• For case 4, all compared DE algorithms provide the same competitive results.
• For case 8, ACDE and SP-DE achieve the best Mean value, while the improved εJADE

demonstrates a remarkable performance in terms of the Min value;
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• With regard to case 7 and case 9, the proposed improved εJADE demonstrates better
results in terms of the Mean and Min values.

In addition, the comparison results between the ACDE and improved εJADE are
shown in the box plot in Figure 1. In the first four cases, the improved εJADE and ACDE
are equally good. Meanwhile, in case 5 and case 6, the improved εJADE demonstrates a
better performance.

Table 2. Experimental results of the IεJADE and the state-of-the-art algorithms.

Case Algorithm Min Max Mean Std

Case1 ECHT-DE 800.4148 800.4258 800.4206 0.0026
SF-DE 800.4131 800.4192 800.4151 0.0015
SP-DE 800.4293 800.4684 800.4413 0.0100
ACDE 800.4113 800.4176 800.4133 0.0015
Iε-JADE 800.4115 800.4229 800.4135 0.0021

Case2 ECHT-DE 832.1356 832.2239 832.1811 0.0222
SF-DE 832.0882 832.1291 832.1056 0.0105
SP-DE 832.4813 832.8760 832.6550 0.0963
ACDE 832.0722 832.3941 832.0957 0.0581
IεJADE 832.0698 832.1225 832.0809 0.0109

Case3 ECHT-DE 0.1363 0.1372 0.1369 0.0002
SF-DE 0.1367 0.1370 0.1369 0.0001
SP-DE 0.1374 0.1386 0.1378 0.0002
ACDE 0.1364 0.1368 0.1366 0.0001
IεJADE 0.1364 0.1367 0.1365 0.0001

Case4 ECHT-DE 0.2048 0.2048 0.2048 0.0000
SF-DE 0.2048 0.2048 0.2048 0.0000
SP-DE 0.2048 0.2048 0.2048 0.0000
ACDE 0.2048 0.2048 0.2048 0.0000
IεJADE 0.2048 0.2048 0.2048 0.0000

Case5 ECHT-DE 3.0850 3.0871 3.0858 0.0005
SF-DE 3.0845 3.0857 3.0849 0.0003
SP-DE 3.0844 3.0854 3.0848 0.0003
ACDE 3.0840 3.0862 3.0845 0.0005
IεJADE 3.0840 3.0851 3.0844 0.0003

Case6 ECHT-DE 0.0878 0.0916 0.0893 0.0009
SF-DE 0.0867 0.0890 0.0880 0.0007
SP-DE 0.0867 0.0892 0.0877 0.0007
ACDE 0.0856 0.0878 0.0865 0.0007
IεJADE 0.0856 0.0884 0.0863 0.0007

Case7 ECHT-DE 1040.1510 1040.2330 1040.1810 0.0213
SF-DE 1040.1250 1040.1620 1040.1400 0.0096
SP-DE 1040.1340 1040.3370 1040.2390 0.0444
ACDE 1040.1133 1040.1891 1040.1268 0.0177
IεJADE 1040.1127 1040.1642 1040.1245 0.0115

Case8 ECHT-DE 813.1742 813.4095 814.2470 0.0490
SF-DE 813.1956 813.3376 813.2585 0.0444
SP-DE 813.1959 813.2643 813.2306 0.0181
ACDE 813.1100 813.5334 813.1379 0.0805
IεJADE 813.1099 813.5583 813.1462 0.0846

Case9 ECHT-DE 814.1708 814.2001 814.1843 0.0075
SF-DE 814.1649 814.1956 814.1767 0.0063
SP-DE 814.1841 814.2273 814.2017 0.0121
ACDE 814.1588 814.2957 814.1897 0.0305
IεJADE 814.1588 814.2162 814.1746 0.0118

Case10 ECHT-DE 964.1331 964.1564 964.1437 0.0061
SF-DE 964.1254 964.1418 964.1307 0.0038
SP-DE 964.1234 964.1399 964.1276 0.0034
ACDE 964.1179 964.1493 964.1252 0.0083
IεJADE 964.1176 964.1380 964.1227 0.0050
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(a) Boxplot of case 1 (b) Boxplot of case 2 (c) Boxplot of case 3

(d) Boxplot of case 4 (e) Boxplot of case 5 (f) Boxplot of case 10

Figure 1. Comparison of IεJADE and ACDE.

The convergence curves of ACDE and the improved ε JADE (ε JADE is used for short
in the legend) are shown in Figure 2. The figure shows that the improved ε JADE has a
competitive convergence rate with ACDE. As mentioned above, using the ε method will
lead to a slow convergence speed towards the feasible region compared with SF. For con-
strained optimization problems with a relatively small feasible region, the ε method is more
effective in guiding the population to move toward the feasible region. By considering both
target values and constraints, the proposed method will not lead to a significant decrease
in the convergence speed.

Based on the comparison results of five DE variants, it is found that the performance
of the algorithm, especially the robustness, is significantly improved by the ε method.

(a) Convergence curve of case 1 (b) Convergence curve of case 2 (c) Convergence curve of case 3

(d) Convergence curve of case 4 (e) Convergence curve of case 5 (f) Convergence curve of case 6

Figure 2. Convergence curve of improved εJADE and ACDE.
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From the Figure 3, the load bus voltages of different load buses in all the six cases
are within bound, which means that the solutions are all feasible. We can observe that the
load bus voltage of different load buses follows the same trend, which can help solve other
problems in this series.

Figure 3. Security graph.

Comparison between Improved εJADE and ACDE

The convergence curves of the improved εJADE and ACDE in the first six cases are
given in Figure 2.

Compared with the ACDE, it can be observed that the proposed improved εJADE has
a competitive performance with ACDE. The convergence speed of the proposed algorithm
is faster than that of ACDE in most cases.

From the boxplots in Figure 1, it can be observed that the proposed algorithm ob-
tains more stable and robust results than ACDE, which illustrates the effectiveness of the
improved algorithm.

4. Discussion

Compared with state-of-the-art algorithms in dealing with OPF problems, it can be
concluded that the improved ε method with the adaptive differential evolution can achieve
competitive results. In dealing with the constrained optimization problems, the algorithm
is important in searching for the optimal and constraint handling method. The adaptive
differential evolution can be applied in solving the constrained optimization problems
without extra computations. It is still more efficient in finding the feasible solutions than
the classical differential evolution. The proposed selection based on the constraint violation
is simple yet effective in improving the algorithm. The ε method has shown a great
performance in complex constrained optimization problems [23]; meanwhile, it is effective
without losing the efficiency through the experimental results in OPF problems. Compared
with the simple feasible rules methods, the improved ε method can be more suitable in
dealing with the complex OPF problems.
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5. Conclusions

In this paper, an improved ε method based on the adaptive differential evolution is
utilized to solve the optimal flow problems. The improved ε method can help the algorithm
move toward the feasible region, and the improved algorithm is efficient in searching for
the feasible global optimum. The effectiveness of the proposed algorithm is tested on the
IEEE-30 buses series benchmark functions. Compared with the state-of-the-art algorithms,
the performance of the proposed algorithm is competitive in terms of the convergence
speed and precision.

In the future, the proposed algorithms could be used to solve more complex optimal
flow problems. More effective constraint handling techniques could be combined with
the improved adaptive differential evolution algorithms in dealing with the complex
constrained optimization problems. It is also promising to implement the machine-learning-
based parameter-setting methods within the algorithm rather than fine tuning the control
parameters by experiments.
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