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Abstract: An observer is a crucial part of the sensorless control of a permanent magnet synchronous
motor (PMSM). An observer, based on mathematical equations, depends on information regarding
several parameters of the controlled motor. If the motor is replaced, then we need to know the motor
parameter values and reset the observer’s parameters. This article discusses an intelligent observer
that can be used for several motors with different parameters. The proposed intelligent observer was
developed using machine learning methods. This observer’s core algorithm is a modified Jordan
neural network. It processes Iα, Iβ, vα, and vβ to produce Sin θ and Cos θ values. It is combined with a
phase-locked loop function to generate position and speed feedback information. The offline learning
process is carried out using data acquired from the simulations of PMSM motors. This study used
five PMSMs with different parameters, three as the learning reference sources and two as testing
sources. The proposed intelligent observer was successfully used to control motors with different
parameters in both simulation and experimental hardware. The average error in position estimated
for the simulation was 0.0078 p.u and the error was 0.0100 p.u for the experimental realization.

Keywords: intelligent observer; PMSM drive control; machine learning realization; modified Jordan
neural networks

MSC: 37N35

1. Introduction

The permanent magnet synchronous motor (PMSM) is one of the most popular electric
motors. This motor, also known as a brushless direct current motor (BLDCM) with sinu-
soidal back emf, has better efficiency than the trapezoidal back emf BLDCM [1–4]. PMSM
control can be sensored [5–8] or sensorless [9–14]. Controlling PMSMs without sensors can
reduce manufacturing costs and eliminate the presence of sensors in the motor.

There are several types of sensorless PMSM control techniques. Back EMF (electromo-
tive force) estimation: this technique estimates the position of the rotor by measuring the
voltage generated by the motor’s windings as the rotor rotates [15–17]. High-frequency
injection: this technique injects a high-frequency signal into the motor windings and mea-
sures the resulting changes in current to determine the position of the rotor [18–23]. Kalman
filter: this technique uses a statistical filter to estimate the position of the rotor based on
the measured currents and voltages [24–28]. Sliding mode observer: this technique uses
a mathematical model of the motor to estimate the position of the rotor based on the
measured currents and voltages [29–34]. The Luenberger observer: Provides a simple and
computationally efficient method for estimating rotor position and speed. It can operate
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over a wide range of speeds and can compensate for disturbances and uncertainties in the
system [35,36]. The motor’s specification parameters are needed for observer calculation.

Some more research has revealed that observers can be developed using a machine
learning (ML) method. Some research mentioned that ML-based observers could be
established after some training processes in artificial neural networks (ANN) [37–40].
Training data used in the training process were current and voltage data from the simulation
control process. The learning process did not involve the specific motor parameters.

Previously, the authors successfully implemented an ML-based observer in a sensor-
less PMSM field-oriented control motor (PMSM-FOC) in both simulation and hardware
experiments. The ML-based observer was developed using modified Elman neural net-
works (MENN). Figure 1 shows the MENN consisted of seven neurons in the hidden layer
and seven in the context layer. The hidden layer emitted seven data arrays ([1 2 3 4 5 6 7]).
There were a total of 98 networks leading into the hidden layer. Learning data were taken
from a PMSM control simulation by Simulink-MATLAB. DSP-Texas Instrument F28069M
hardware could handle the procedure correctly at 10KHz sampling frequency. However, if
the number of neurons increased, the hardware implementation process would not run
correctly [39].
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Figure 1. Modified Elman neural network.

In the configuration of neural networks, the more neurons, the more network con-
nections, which means that the network’s computational process also becomes longer.
Although it becomes longer, this can increase the performance of neural networks. There-
fore, it is necessary to consider the number of neurons [41–45]. In previous studies, the
length of the computational process affected hardware performance [39].

This paper proposes an intelligent observer. The novelty of the proposed intelligent
observer is its compatibility with several PMSMs with different parameters and a shorter
calculation time process. A trained modified Jordan neural network (MJNN) is used as the
observer’s core. Figure 2 shows the MJNN configuration.

Mathematics 2023, 11, 1254 2 of 20 
 

 

on the measured currents and voltages [29–34]. The Luenberger observer: Provides a sim-
ple and computationally efficient method for estimating rotor position and speed. It can 
operate over a wide range of speeds and can compensate for disturbances and uncertain-
ties in the system [35,36]. The motor’s specification parameters are needed for observer 
calculation. 

Some more research has revealed that observers can be developed using a machine 
learning (ML) method. Some research mentioned that ML-based observers could be es-
tablished after some training processes in artificial neural networks (ANN) [37–40]. Train-
ing data used in the training process were current and voltage data from the simulation 
control process. The learning process did not involve the specific motor parameters. 

Previously, the authors successfully implemented an ML-based observer in a sensor-
less PMSM field-oriented control motor (PMSM-FOC) in both simulation and hardware 
experiments. The ML-based observer was developed using modified Elman neural net-
works (MENN). Figure 1 shows the MENN consisted of seven neurons in the hidden layer 
and seven in the context layer. The hidden layer emitted seven data arrays ([1 2 3 4 5 6 7]). 
There were a total of 98 networks leading into the hidden layer. Learning data were taken 
from a PMSM control simulation by Simulink-MATLAB. DSP-Texas Instrument F28069M 
hardware could handle the procedure correctly at 10KHz sampling frequency. However, 
if the number of neurons increased, the hardware implementation process would not run 
correctly [39]. 

 
Figure 1. Modified Elman neural network. 

In the configuration of neural networks, the more neurons, the more network con-
nections, which means that the network’s computational process also becomes longer. 
Although it becomes longer, this can increase the performance of neural networks. There-
fore, it is necessary to consider the number of neurons [41–45]. In previous studies, the 
length of the computational process affected hardware performance [39]. 

This paper proposes an intelligent observer. The novelty of the proposed intelligent 
observer is its compatibility with several PMSMs with different parameters and a shorter 
calculation time process. A trained modified Jordan neural network (MJNN) is used as 
the observer’s core. Figure 2 shows the MJNN configuration. 

 
Figure 2. Modified Jordan neural network. Figure 2. Modified Jordan neural network.

Figures 1 and 2 show the modified part in both Elman and Jordan marked with a
dashed line. The output value was returned to the input layer as a part of the input param-
eter. Both Elman and Jordan networks have a context layer that acts as a memory. Jordan’s
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context layer memorizes data from the output layer, while Elman’s context memorizes
data from the hidden layer [46]. In this study, the output layer had two neurons: Sin θ and
Cos θ values. Therefore, the proposed MJNN algorithm had simpler networks; only two
neurons were needed in the context layer. There were a total of 63 networks leading into
the hidden layer.

Similar to earlier research, PMSM control simulation data were used as the source
for the learning data in this work. The values of Iα, Iβ, vα, and vβ, along with Sin θ and
Cos θ, were recorded as the simulation data [38,39]. However, this work differs from other
research that it incorporates some data from several simulations of PMSMs. This is intended
to make the proposed observer smarter. Then, the initial algorithm from the successfully
developed and trained ML-based observer model is merged with a phase-locked loop
function (PLL) to form an intelligent observer [38,39]. The proposed intelligent observer of
the sensorless PMSM drive control system was successfully evaluated in both simulation
and TI F28335-based experimental hardware.

Figure 3 shows how to implement the intelligent observer in a sensorless PMSM-FOC
control process. The proposed intelligent observer receives and processes Iα, Iβ, vα, and vβ

data from the control process. Then, the observer gives the information of rotor position
θe and rotor speed ωe to the process. At start-up, there are no values for Iα, Iβ, vα, and vβ.
That is why there are two switch modes in the control process. Switch mode-1 is to activate
the start-up process using an open-loop I-f start-up mechanism. Switch mode-2 is to start
the close-loop sensorless control motor scheme [31,33,47–50].
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As an overview, the following steps were taken to develop and realize the proposed
intelligent observer:

• Developing the initial intelligent observer algorithm with the MJNN method;
• Collecting the learning data from several PMSM control simulations;
• Training and validating the ML-basing observer developed in the first step using the

data obtained from the second step;
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• Merging the trained ML-based observer algorithm with the PLL function to be an
intelligent observer;

• Simulating the intelligent observer in the PMSM sensorless control simulation process
by using Simulink-MATLAB;

• Implementing the intelligent observer into the experimental hardware platform.

The next section of this paper explains in more detail the sensorless PMSM drive
system, proposed intelligent observer, simulation results, experimental hardware results,
and conclusions.

2. Sensorless PMSM Drive System

The sensorless PMSM drive system scheme used in this paper is shown in Figure 3 [33,39].
The PMSM mathematical model is often written as Equation (1). The voltages vd and vq are
the voltages on the d-q axis, respectively, and the resistance rs is the resistance of each stator
winding. In surface-mounted PMSM, Ls = Ld = Lq, where Ld and Lq are the inductance
values of the q-d axis; id and iq are currents on the d-q axis; the rotating speed of the magnetic
flux is symbolized by ωe and the permanent magnet flux linkage is denoted by λ f .{

vd = rsid + Ls
d
di id −ωeLsiq

vq = rsiq + Ls
d
di iq −ωeLsid + ωeλ f

(1)

In this study, at start-up (mode-1), the iq start-up and θ values were generated
by using an I-f start-up mechanism. The presence of vq and θ allows the inverse park
(Equations (2) and (3)) to produce vα and vβ. The values of vα and vβ become references
for SVPWM to activate the inverter that rotates the motor.

vα = vd Cos θ + vq Sin θ (2)

vβ = vd Sin θ + vq Cos θ (3)

When the motor starts to rotate, a current flows in each phase. The Clarke transforma-
tion function (Equations (4) and (5)) transforms this current flow value into Iα and Iβ.

Iα = ia (4)

Iβ =
1√
3

ia +
2√
3

ib (5)

Furthermore, the Park transformation (Equations (6) and (7)) changes Iα and Iβ to
id and iq. In control mode-1, id and iq values are not used as a reference control. Dur-
ing mode-1, the angular position θ value still refers to the angle generated by the I-f
start-up mechanism.

id = Iα Cos θ + Iβ Sin θ (6)

iq = Iα Sin θ + Iβ Cos θ (7)

After the motor rotates, the vα, vβ, Iα and Iβ values can be obtained. The outer close-
loop PI control drives the motor speed. The inner close-loop PI control drives the currents
id and iq. id is controlled to reach the constant zero value, while iq is controlled to follow
the iq* value. The iq* reference obtained from the speed control results in the outer closed
loop. The control mode switches to mode-2 if all the I-f start-up mechanism parameters are
met. Mode-2 control means the motor runs under sensorless control; the rotor position θ
information is taken from the observer.

3. Proposed Intelligent Observer

The proposed intelligent observer model was developed based on a machine learning
development process [51]. Figure 4 illustrates the intelligent observer development process.
Simulation data from several PMSMs with different parameters were acquired and used
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as training and validating data. The initial algorithm of the observer model did not have
observer capabilities. Some simulation data extraction was used for the intelligent observer
model’s training process, and other extracted data were used for the validation process. An
intelligent observer model was formed at the end of this learning stage.
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3.1. Modified Jordan Neural Network

Figure 2 is the configuration of the MJNN. If the input is denoted by x and context is
denoted by c, then the output y in discrete time k is a function of y that can be formulated by:

y(k) = f (x(k), y(k− 1), c(k)) (8)

Figure 5 in this subsection illustrates the MJNN method established in this study. The
input layer consists of the original input xi (where i = 1 to d) and the feedback output y’j;
the output layer yj; the context layer cj (where j = 1 to n); and the hidden layer zp (where
p = 1 to m). If the layer context memory coefficients are mch and mcho, then the value of cj is
formulated by Equation (9):

cj(k) =
(
yj(k− 1)×mch

)
+
(
cj(k− 1)×mcho

)
(9)

Then the value of the hidden layer zp(k) is obtained by the following two formulas:

in_zp(k) = vbp(k) +
n

∑
j=1

yj(k− 1)vy′ jp +
d

∑
i=1

xi(k)vxip +
n

∑
j=1

cj(k)vcjp (10)

zp(k) = f
(
in_zp(k)

)
=

2

1 + e−(in_zp(k))
− 1 (11)

where vbp is the bias of the hidden neuron, vy’jp is the weight between y’ (feedback from
the output) and hidden neuron z, vxip is the weight between input x and hidden neuron z,
and vcjp is the weight between context layer c and hidden neuron z. Equation (11) shows
that the activation function used in zp(k) is the Tansig activation function [52]. Then the
output of the network yj(k) is obtained using the following formula:

yj(k) = wbj(k) +
m

∑
p=1

zp(k)wzpj (12)

where wbj is the output bias of the neuron and wzpj is the weight between hidden neuron z
and output neuron y.

Furthermore, the training process was carried out using the same back-propagation
method that applies in the back-propagation neural network, utilizing the error difference
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coefficient between the output and the target to update the weights in the network. The
MATLAB editor was successfully used to construct and run the programs based on every
stage of the MJNN algorithms.
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As previously mentioned, even though the Jordan and Elman networks were identical,
the use of the Jordan network had a better processing time in the case of this research.
Table 1 shows the processing time comparison between the two of them. It is the result of
running ten tests to calculate the network computation time to execute 100 iterations of the
training process in the same system environment. It is evidenced that the Jordan network
is 22.12% faster than the Elman network.

Table 1. Processing time comparison.

No MENN Processing Time (Second) MJNN Processing Time (Second)

1 12.34 9.42
2 13.45 9.79
3 13.43 10.54
4 12.60 10.76
5 12.77 10.15
6 11.97 10.24
7 13.02 10.12
8 13.33 9.79
9 13.16 9.67

10 12.93 9.99

Average 12.90 10.05

3.2. Learning Process
3.2.1. Learning Data Acquisition

This research’s learning data were taken from the PMSM motor control simulation
instead of the experimental control process [37–40]. Based on the sensored control scheme
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shown in Figure 6, the simulation was developed using the motor control block library
(mcb-library) in Simulink-MATLAB [53]. Data log acquisition was carried out using the
Simulation Data Inspector, with the sampling occurring every 1 × 10−4 s. The values of
vα, vβ, Iα, and Iβ, were recorded as input for the neural network training process, and the
values of Sin θ and Cos θ were recorded for the targeted data training. Table 2 shows the
five PMSMs used in this study. PMSM 1, PMSM 2 and PMSM 3 were used for learning and
testing, and PMSM 4 and PMSM 5 were used only for testing.
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Table 2. Types of PMSMs and their parameters.

No Motor Power Rate Voltage Rate Current Rate Speed Used for

1 PMSM 1 40 W 24 Vac 1.80 A 6000 rpm Learning, testing
2 PMSM 2 40 W 24 Vac 3.50 A 4000 rpm Learning, testing
3 PMSM 3 400 W 200 Vac 2.80 A 3000 rpm Learning, testing
4 PMSM 4 40 W 24 Vac 7.10 A 6000 rpm Testing
5 PMSM 5 750 W 220 Vac 4.24 A 2000 rpm Testing

Speed command and load variations were applied during the simulation process
for each motor. For training data, the combination of speed–load set-point variations is
shown in Figure 7. Meanwhile, for validating data, the combination of speed–load set-point
variations is shown in Figure 8. In the current investigation, to make the computational
process as efficient as possible, a per-unit system, also known as a p.u system, was utilized
to scale the international value system of units or SI as p.u-values ranging from −1 to 1.
For example, if the motor’s maximum speed is 6000 rpm, 3000 rpm of the motor speed
becomes 0.5 p.u speed, and −0.8 p.u speed means 4800 rpm in the reverse direction [54].



Mathematics 2023, 11, 1254 8 of 20

Mathematics 2023, 11, 1254 8 of 20 
 

 

 
Figure 7. Speed–load set-point combination for training data acquisition. 

 
Figure 8. Speed–load set-point combination for validating data acquisition. 

3.2.2. Training and Validating Process 
All three PMSM simulation data acquired were combined and used to train the initial 

model of the MJNN. The total data training comprised 2,708,576 rows of data. The offline 
training process was performed with learning rate = 0.002, and after 27,347 epochs, the 
final MSE value reached 5 × 10−6. At the end of the training process, the final values of 
weights and biases were stored as the model’s core. In order to validate the model, another 
600,000 rows of simulation data were used. The histogram errors of both the training and 
validating process are shown in Figures 9 and 10. From these two error histograms, it can 
be concluded that the MJNN model can respond well to the input given. 

Figure 7. Speed–load set-point combination for training data acquisition.

Mathematics 2023, 11, 1254 8 of 20 
 

 

 
Figure 7. Speed–load set-point combination for training data acquisition. 

 
Figure 8. Speed–load set-point combination for validating data acquisition. 

3.2.2. Training and Validating Process 
All three PMSM simulation data acquired were combined and used to train the initial 

model of the MJNN. The total data training comprised 2,708,576 rows of data. The offline 
training process was performed with learning rate = 0.002, and after 27,347 epochs, the 
final MSE value reached 5 × 10−6. At the end of the training process, the final values of 
weights and biases were stored as the model’s core. In order to validate the model, another 
600,000 rows of simulation data were used. The histogram errors of both the training and 
validating process are shown in Figures 9 and 10. From these two error histograms, it can 
be concluded that the MJNN model can respond well to the input given. 

Figure 8. Speed–load set-point combination for validating data acquisition.

3.2.2. Training and Validating Process

All three PMSM simulation data acquired were combined and used to train the initial
model of the MJNN. The total data training comprised 2,708,576 rows of data. The offline
training process was performed with learning rate = 0.002, and after 27,347 epochs, the
final MSE value reached 5 × 10−6. At the end of the training process, the final values of
weights and biases were stored as the model’s core. In order to validate the model, another
600,000 rows of simulation data were used. The histogram errors of both the training and
validating process are shown in Figures 9 and 10. From these two error histograms, it can
be concluded that the MJNN model can respond well to the input given.
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Figure 9. Error histogram of the training process.
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3.3. Intelligent Observer Function Block

After training and validating, the intelligent observer could precisely estimate the
values of Sin θ and Cos θ from the input given (vα, vβ, Iα and Iβ). In addition, PLL was
added to the model. The result of the combined structure, as shown in Figure 11, was an
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intelligent observer function block that generates the position θe and speed feedback ωe
information. This function block was then utilized as an observer in the sensorless PMSM
control scheme shown in Figure 3.
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4. Simulation Results and Discussions

In the next step, the proposed observer was implemented in the PMSM-FOC sensorless
control process simulation to validate its observer function performance in the complete
control process environment. All PMSMs in Table 2 were used in the simulation control
process. The simulation was run with Simulink-MATLAB, and the results were logged with
Simulation Data Inspector. As mentioned, the I-f start-up mechanism started the motor
from zero to a certain constant speed using an open loop and then switched it to closed
loop sensorless mode using the proposed observer.

4.1. Simulation Results of Rotor Position Information

Based on Figure 11, the proposed observer generated rotor position and speed feedback
information. Figure 12 shows the simulation result samples for the rotor position generated
by the proposed observer compared with the position reference. Figure 12a–c are the results
for the learning source PMSMs. Figure 12d,e are for non-learning PMSMs. Table 3 shows
the average position error for each PMSM. The rotor positions generated by the observer
have small errors compared to the position reference, 0.0078 p.u on average. This fact
confirms that the observer can generate rotor position information correctly.
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4.2. Simulation Results of Rotor Speed Feedback Information 
Speed feedback information generated by the proposed observer is discussed in this 

sub-section. The simulation used per-unit speed values, and just two PMSM simulation 
results were used as a representation. This was to make the performance comparisons 
clear. In the control simulation, by using the I-f start-up mechanism, the motor started in 
open-loop mode and then switched to the closed-loop sensorless mode. The proposed ob-
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Figure 12. Simulation results for the rotor positions (a) PMSM 1; (b) PMSM 2; (c) PMSM 3;
(d) PMSM 4; and (e) PMSM 5.

Table 3. Position error.

No Motor Average Error Position (p.u)

1 PMSM 1 0.0069
2 PMSM 2 0.0062
3 PMSM 3 0.0089
4 PMSM 4 0.0081
5 PMSM 5 0.0088

Average 0.0078

4.2. Simulation Results of Rotor Speed Feedback Information

Speed feedback information generated by the proposed observer is discussed in this
sub-section. The simulation used per-unit speed values, and just two PMSM simulation
results were used as a representation. This was to make the performance comparisons
clear. In the control simulation, by using the I-f start-up mechanism, the motor started
in open-loop mode and then switched to the closed-loop sensorless mode. The proposed
observer was used during this sensorless mode. Figure 13 shows the comparison of speed
reference and speed feedback information generated by the observer for PMSM 1 (as a
learning source PMSM) and PMSM 4 (as a non-learning source PMSM). The speed feedback
from the two PMSMs control processes could smoothly follow the speed reference, as
shown in Figure 13. In more detail, for low, middle, and high-speed ranges, the proposed
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observer had a better speed feedback response for PMSM 1 than for PMSM 4. However,
because the gap was very small, there was no significant difference in the overall PMSM
control process. It can be emphasized that the observer performs well in generating speed
feedback information.
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4.3. Simulation Results of Rotor Speed Control

The proposed observer’s good performance in generating rotor position and speed
feedback information guarantees the success of the motor control process. Figure 14 shows
the simulation results for all PMSM rotor speed responses. All the rotor speeds could
smoothly track the reference speed in sensorless mode. The results show that the rotor
speed response could follow speed reference in constant speed, speed-up transition and
speed-down transition. This demonstrates that, in general, the proposed observer can
work well in the PMSM-FOC sensorless control process for learning source PMSMs and
non-learning source PMSMs.
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4.4. Simulation Results of the Current Response and External Load Robustness

The proposed observer was trained in the learning stage using various speeds and
load data training (Figure 7). Previous simulation results show that the proposed observer
performs well in variable speed control. The simulation results in this subsection aim to
know the performance of the proposed observer in response to load change. For this reason,
the d-q current response was observed during the load variation. The motor was run in
simulation in step-up speeds from 0.15 to 0.25; 0.45; 0.65; and 0.90 p.u speed. Load given
was to the motor at 0.25 p.u speed (t = 6 s to 10 s); 0.45 p.u speed (at 17 s to 21 s); 0.65 p.u
speed (29 s to 33 s); and 0.90 p.u speed (39 s to 43 s). Figure 15 shows the speed and d-q
current value in response to the load given to the PMSM control system.
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From the speed graphs, both PMSM 1 and PMSM 4 control systems can handle the
load well. They have a small speed spike down for a moment when the load is ON.
Contrary, a speed spike up occurs when the load is OFF. This demonstrates that the applied
PI parameters can effectively handle the load and the proposed observer can adapt to this
controlling behavior. The current id value was maintained well, close to the id* reference
(zero). The value of the current iq increased following the increasing value of the current
reference iq*, which was proportional to the increase in speed and load. There was a small
current spike up in response to the speed up of the rotor. When the load was activated, the
currents of iq and iq* increased. When the load was released, the current values of iq and iq*
were reduced. All these current responses indicate that the control process ran as expected.
This verifies that the proposed observer works as expected when the workload fluctuates.

5. Experimental Results and Discussions

Previously, the proposed observer implementation simulation process has shown
good results for controlling learning-source PMSMs and non-learning-source PMSMs.
This section discusses the implementation of the proposed observer in real hardware
realization. A Texas Instrument TMS320F28335 was used for digital signal processing.
This microcontroller (MCU) had a 150 MHz frequency and 512 KB memory. This MCU
was integrated into a control card attached to a High Voltage Motor Control Developer’s
Kit. A non-learning source PMSM was deployed as a tested PMSM; it was PMSM 5 from
Table 2. This PMSM 5 was coupled to a generator connected to the controllable electrical
load. The experimental control process was carried out and monitored using a Simulink-
MATLAB Host File and Code Composer Studio (CCS). The MCU, Simulink, and CSS data
communication allowed for real-time monitoring and data logging. The experimental
hardware realization used SI units instead of per-unit systems to monitor the real values of
speeds and currents. Figure 16 shows the experimental hardware realization setup. Table 4
shows the experimental hardware specifications.
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3 Control card TMS320F28335
4 Generator 750 W
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5.1. Experimental Results for Speed Variation

In this experiment, we aimed to know the rotor position (Figure 17) and speed feed-
back (Figure 18) information generated by the proposed observer in the real hardware
implementation. Figure 17 shows the PMSM 5 was controlled from zero speed to 300 rpm
using an open loop, and using the I-f start-up mechanism, the control switched to the
closed-loop sensorless mode. The experimental results for the position and speed feedback
information were taken in the sensorless mode when the proposed observer was used in
the control process. Figure 16 shows the experimental results for the rotor position infor-
mation generated by the proposed observer. Compared with the rotor position reference,
the rotor position information generated by the proposed observer had small errors in all
speed stages (400 rpm, 760 rpm, and 1265 rpm). The average error position was 0.0100 p.u
position. This indicates that, in the experimental hardware, the observer worked well in
generating rotor position information.
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Figure 18 shows in the sensorless mode, the proposed observer produced speed
feedback information close to the speed reference. This occurred in all control conditions:
the constant speed, the speed-up transition, and the speed-down transition. This fact
means the rotor speed can follow the speed reference as well. It can be emphasized that,
in the experimental hardware, the proposed observer worked well in terms of speed
variation control.
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5.2. Experimental Results for Load Variation

In this sub-section, we aim to uncover the speed and d-q current characteristics in
response to the load addition in the real hardware implementation. The load was given at
low, medium, and high speeds. Figure 19 shows the results. For the speed characteristic,
there were speed spikes down when the load was ON and up when the load was OFF. This
shows that, despite the PI control speed settings, the observer properly generated speed
feedback information in the load-ON and load-OFF conditions.

Mathematics 2023, 11, 1254 17 of 20 
 

 

 
Figure 19. Experimental results for speed and current response to load variation. 

Figure 19 also shows spike currents in iq* and iq in every speed-up change. These 
current values also increased at higher speeds and when the load was applied. The other 
fact is the id current was well controlled close to the id* reference value. Our experimental 
results show that the proposed observer can be used properly to control a PMSM, even if 
it is a non-learning source PMSM. 

Based on simulations and experimental results, the proposed observer in this study 
is consistent with other studies that used a sliding mode observer [31,33,33] and machine-
learning-based observers [38,39]. The proposed observer can accurately estimate position. 
Table 5 shows a comparison of the proposed observer’s performance with those in previ-
ous studies. As can be seen, the proposed observer performs better than those of previous 
studies since its position error is lower than in previous studies. 

Table 5. Position error comparison. 

No Result 
Position Error (p.u-Position) 

Previous Study [39] Proposed Observer 
1 Simulation  0.0127 0.0078 
2 Experimental 0.0607 0.0100 

The proposed control process also provides a good response when the speed and 
load are changed. What sets it apart from previous research is that in a sliding mode ob-
server-based study, the SMO parameter set must be changed according to the PMSM 
used. Similarly, there is only one PMSM that can use machine-learning-based observers. 
In this study, PMSMs with different parameters could be controlled using the same pro-
posed observer. 

6. Conclusions 
An intelligent observer was successfully designed and implemented into the PMSM 

control process both in simulation and experimental hardware. The “brain” of this intel-
ligent observer is a MJNN. This algorithm was found to be 22% faster than the previous 
algorithm. The learning process of machine learning with some PMSM control simulation 

Figure 19. Experimental results for speed and current response to load variation.

Figure 19 also shows spike currents in iq* and iq in every speed-up change. These
current values also increased at higher speeds and when the load was applied. The other
fact is the id current was well controlled close to the id* reference value. Our experimental
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results show that the proposed observer can be used properly to control a PMSM, even if it
is a non-learning source PMSM.

Based on simulations and experimental results, the proposed observer in this study is
consistent with other studies that used a sliding mode observer [31,33,33] and machine-
learning-based observers [38,39]. The proposed observer can accurately estimate position.
Table 5 shows a comparison of the proposed observer’s performance with those in previous
studies. As can be seen, the proposed observer performs better than those of previous
studies since its position error is lower than in previous studies.

Table 5. Position error comparison.

No Result
Position Error (p.u-Position)

Previous Study [39] Proposed Observer

1 Simulation 0.0127 0.0078
2 Experimental 0.0607 0.0100

The proposed control process also provides a good response when the speed and load
are changed. What sets it apart from previous research is that in a sliding mode observer-
based study, the SMO parameter set must be changed according to the PMSM used. Simi-
larly, there is only one PMSM that can use machine-learning-based observers. In this study,
PMSMs with different parameters could be controlled using the same proposed observer.

6. Conclusions

An intelligent observer was successfully designed and implemented into the PMSM
control process both in simulation and experimental hardware. The “brain” of this intel-
ligent observer is a MJNN. This algorithm was found to be 22% faster than the previous
algorithm. The learning process of machine learning with some PMSM control simulation
data makes the observer capable of being used to control several PMSMs, even PMSMs
that are not a source of learning.

Variations in speed and load were utilized to evaluate the observer’s effectiveness in
the PMSM control process. All testing, including simulation and experimental hardware,
produced accurate outcomes. Simulation revealed that the observer’s position information
had variation position errors from 0.0061 p.u to 0.0089 p.u position. As for the experimental
hardware realization, the inaccuracy was 0.0100 p.u position.
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Nomenclature

Iα and Iβ The currents generated by Clarke transform in the FOC process
vα and vβ The voltages generated by Park inverse transform in the FOC process
θ The rotor position angle
ω The rotor speed
id and iq The currents on the d-q axis
vd and vq The voltages on the d-q axis
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k Discrete time
x Input layer’s neurons
y Output layer’s neurons
y’ Feedback from the output layer’s neurons
z Hidden layer’s neurons
c Context layer’s neurons
mch and mcho The context layer’s memory coefficients
vb The bias of the hidden neuron
vx The weights between input layer’s neurons and hidden layer’s neurons
vy’ The weights between feedback neurons and hidden layer’s neurons
vc The weights between context layer’s neurons and hidden layer’s neurons
wb The bias of the output neurons
wz The weights between hidden layer’s neurons and output layer’s neurons
Z−1 Delay
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