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Abstract: The artificial Gorilla Troop Optimization (GTO) algorithm (GTO) is a metaheuristic opti-
mization algorithm that simulates the social life of gorillas. This paper proposes three innovative
strategies considering the GTO algorithm’s insufficient convergence accuracy and low convergence
speed. First, a shrinkage control factor fusion strategy is proposed to expand the search space and
reduce search blindness by strengthening the communication between silverback gorillas and other
gorillas to improve global optimization performance. Second, a sine cosine interaction fusion strategy
based on closeness is proposed to stabilize the performance of silverback gorillas and other gorilla
individuals and improve the convergence ability and speed of the algorithm. Finally, a gorilla in-
dividual difference identification strategy is proposed to reduce the difference between gorilla and
silverback gorillas to improve the quality of the optimal solution. In order to verify the optimization
effect of the modified artificial gorilla troop optimization (MGTO) algorithm, we used 23 classic
benchmark functions, 30 CEC2014 benchmark functions, and 10 CEC2020 benchmark functions to
test the performance of the proposed MGTO algorithm. In this study, we used a total of 63 functions
for algorithm comparison. At the same time, we carried out the exploitation and exploration balance
experiment of 30 CEC2014 and 10 CEC2020 functions for the MGTO algorithm. In addition, the
MGTO algorithm was also applied to test seven practical engineering problems, and it achieved
good results.

Keywords: artificial gorilla troop optimization algorithm; convergence strategy of contraction control
factors; sine cosine interaction fusion strategy; identification strategies of individual differences
in gorillas

MSC: 49K35

1. Introduction

Metaheuristic Algorithms (MAs) have developed rapidly in recent decades, attracting
the attention of scholars in many fields. They do not rely on gradient information but are
inspired by nature, such as group behavior, social behavior, physics, etc. Its core idea is
that several simple individuals form a group and show advanced and complex functions
through cooperation, competition, interaction, and learning mechanisms. Therefore, in the
process of solving optimization problems, it is not required to have continuity, derivative,
and other conditions. Without local information and models, complex problems can still be
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solved. With the progress of time, science and technology are also developing rapidly, but
there are still many complex optimization problems that are difficult to describe and solve.
In the face of these problems, traditional optimization methods require more time and
cost. At the same time, with the change in application scenarios, the solutions are different.
Therefore, it is necessary to improve the original algorithm to improve its performance in
solving complex problems.

In recent decades, various metaheuristic algorithms were proposed. These meta-
heuristic algorithms are generally divided into three categories: the physical-based, the
evolution-based, and the swarm-based algorithms. Although these metaheuristic algo-
rithms are different, they all have advantages. The algorithms represented by physics-based
algorithms include the Simulated Annealing Algorithm (SA) [1], the Equilibrium Opti-
mizer Algorithm (EO) [2], the Multi-Verse Optimizer Algorithm (MVO) [3], the Arithmetic
Optimization Algorithm (AOA) [4], the Ray Optimization Algorithm (RO) [5], the Sine
Cosine Algorithm (SCA) [6], and the Thermal Exchange Optimization Algorithm (TEO) [7].
Some famous algorithms based on evolutionary algorithms include the Genetic Algorithm
(SPGA) [8], the Evolutionary Strategy (ES) algorithm [9], the Genetic Programming (GP)
algorithm [10], the Evolutionary Deduction (ED) algorithm [11], and the Differential Evolu-
tion (DE) algorithm [12]. As we all know, the swarm-based algorithm is common, and its
inspiration comes from the living habits of animals. Representative algorithms include the
Particle Swarm Optimization Algorithm (PSO) [13], the Gray Wolf Optimizer Algorithm
(GWO) [14], the Artificial Bee Colony Optimization Algorithm (ABC) [15], the Remora
Optimization Algorithm (ROA) [16], the Seagull Optimization Algorithm (SOA) [17], the
Harris Hawk Optimization Algorithm (HHO) [18], the Whale Optimization Algorithm
(WOA) [19], the Spotted Hyena Optimizer Algorithm (SHO) [20], etc.

The artificial Gorilla Troop Optimization Algorithm (GTO) [21] is a new metaheuristic
algorithm proposed by Abdollahzadeh et al. in 2021. Its inspiration comes from gorilla
social behavior, such as the gorilla’s migration, competition, and following behaviors.
The principle is to change other gorillas’ positions with the silverback gorilla, a process
divided into two stages: exploitation and exploration. So far, the algorithm has been
used in many fields, such as shortest-path planning problems, engineering optimization
problems, robot parking problems, etc. Jayashree Piri [22] and other scholars proposed
an excellent gorilla initialization strategy based on mutual tag information. For the first
time, a new discrete artificial gorilla force optimization technology was introduced to deal
with FS tasks in the healthcare sector. Mahmoud A. El-Dabah [23] and other scholars
proposed a method to optimize the stabilizer unit of a power system by combining GTO
optimization algorithms. Hadel Alsolai [24] introduced a clustering protocol based on
the Enhanced Artificial Gorilla Troops Optimizer–based Clustering Protocol for a UAV-
Assisted Intelligent Vehicular Network (EAGTOC-UIVN) to achieve maximum life and
energy efficiency from the vehicle network. Abdullah Shaheen [25] developed Gorilla
Troops T technology for power system optimal power flow based on the gorilla force
optimization algorithm. However, due to strong randomness in the optimization process,
the GTO algorithm, like other swarm intelligence algorithms, has the problem of imbalance
between exploration and exploitation, which leads to problems such as that the algorithm
is easy to fall into the optimal local solution, and it has low convergence accuracy and
slow convergence speed. In addition, the No Free Lunch (NFL) theorem [26] shows that
no algorithm can perfectly solve all optimization problems. Therefore, we improved and
modified the GTO algorithm according to the NFL theorem and the defects of the GTO
algorithm to solve more practical engineering problems more effectively; our study is
summarized as follows:

(1) This paper proposes a modified artificial gorilla troop optimization algorithm
called the MGTO algorithm. In this paper, three innovative strategies are proposed: a
shrinkage control factor fusion strategy, a sine cosine interaction fusion strategy based on
closeness, and a gorilla individual difference identification strategy. First, the shrinkage
control factor fusion strategy is embedded into the GTO algorithm to expand the search
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space of the algorithm and reduce the blindness of the search. In addition, the sine cosine
interaction fusion strategy based on closeness is used to distinguish the distance between
other gorilla individuals and silverback gorillas and stabilize their performance. Finally,
the gorilla individual difference identification strategy is used to narrow the differences
between the silverback gorilla and other gorillas to improve the quality of the optimal
solution.

(2) To verify the MGTO algorithm’s effectiveness, we used 23 classic benchmark
functions, 30 CEC2014 benchmark functions, and 10 CEC2020 benchmark functions for
testing. The performance of the MGTO algorithm was verified by comparing it with the
traditional GTO algorithm and eight other popular optimization algorithms.

(3) At the same time, we also applied the MGTO algorithm to solve practical engi-
neering problems. Seven engineering problems were selected for this paper: the pressure
vessel design problem, the reducer design problem, the welding beam design problem,
the tension/compression spring design problem, the cantilever beam design problem, a
multi-plate clutch brake failure scenario, and the vehicle collision optimization problem.
The final experimental results show that the MGTO algorithm has strong convergence
ability and global search ability and achieves a good balance between exploitation and
convergence.

The structure of this paper is as follows. The second section briefly describes the GTO
algorithm, the third section introduces the three improved strategies and the framework of
the improved algorithm, MGTO, the fourth section sets up and discusses the experiments
and results, the fifth section applies the improved algorithm (MGTO) to engineering
problems for testing, and the last section summarizes this paper.

2. Gorilla Troops Optimizer (GTO)

The artificial gorilla troop optimization algorithm is a metaheuristic algorithm based
on gorilla social behavior. The gorilla is the largest primate and strongest primate in the
world today. Gorillas are social animals. Each group is led by an adult male gorilla and
has a strong sense of territory. Because the hair on the back of some male gorillas is white,
these gorillas are also called silverback gorillas.

A gorilla colony usually consists of an adult male gorilla, several adult female gorillas,
and their offspring. As leaders, adult male gorillas assume the responsibilities of defending
territory, making decisions, and guiding other gorillas to find food. Male gorillas can
expand their territory through competition, and competition between male gorillas and
female gorillas is inevitable. Moreover, the relationship between male and female gorillas
is close, while the relationship between female gorillas is cold.

2.1. Exploration Stage

In this section, the optimization process in the exploration phase is described. In the
gorilla community, we know that there is a silverback gorilla who manages all decisions.
Gorillas sometimes go places to look for food, which may be places they have been to or
strange places. The silverback gorilla is considered the optimal candidate solution at each
optimization exploration stage. This section also introduces three mechanisms that activate
at this stage.

The three mechanisms in the exploration stage are expressed in Equation (1), where p
is a parameter between 0 and 1 that controls the migration strategy of unknown positions.
When rand < p, the current gorilla’s position will move to an unknown position. This
allows the GTO algorithm to better monitor the entire problem space, which makes the
distribution of solutions more scattered and comprehensive. Conversely, if rand ≥ p, two
other mechanisms will be chosen. Then, if rand ≥ 0.5, the gorilla will move in the direction
of other gorillas. This mechanism makes the current solution closer to other solutions and
improves the exploration performance of the GTO algorithm. When rand < 0.5, the gorillas
migrate to the known position. This improved the ability of the GTO algorithm to escape
from local optimal solutions. Equation (1) is as follows:
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GX(t + 1) =


(UB− LB)× r1 + LB, rand < p
(r2 − C)× Xr(t) + L× H, rand ≥ 0.5
X(t)− L× (L× (X(t)− GX(t))) + r3 × (X(t)− GXr(t)), rand < 0.5

}
, rand ≥ p

(1)

where GX(t + 1) represents the position vector of the gorilla at the next iteration and X(t)
represents the current position of the gorilla. The position vector dimension here is defined
by the dimension of the problem. r1, r2, r3, and rand all represent random numbers between
0 and 1 produced with a uniform distribution. The variables’ upper and lower bounds are
expressed as UB and LB. Xr and GXr are the position vectors of randomly selected gorillas.
The equation for calculating C, L, and H in Equation (1) is as follows:

C = F×
(

1− t
MaxIt

)
(2)

where t represents the current number of iterations and MaxIt represents the maximum
number of iterations. During the initial stage, the value of C has a large change in the
early stage and a small change in the later stage. This makes the early stage have greater
randomness to expand the exploration range, and in the later stage, it gets smaller to
achieve the effect of rapid convergence. F is calculated as follows:

F = cos(2× r4) + 1 (3)

where r4 is a random number between 0 and 1 in a uniform distribution to ensure the
randomness of the search, which is conducive to finding the global optimal solution.

L is a parameter that is used to simulate the silverback gorilla’s leadership, which is
calculated with the following equation:

L = C× l (4)

where l is a random number between −1 and 1 produced with uniform distribution.
Silverback gorillas may make mistakes in finding food or managing groups due to a lack
of experience. Therefore, they can obtain reliable experience and extreme stability under
the guidance of leaders. At the same time, Equation (4) is used to simulate the silverback
gorilla’s leadership. Meanwhile, H in Equation (1) can be calculated with Equation (5). The
Z in Equation (5) can be calculated with Equation (6), where Z is a random value in the
problem dimensions and the range of −C, C.

H = Z× X(t) (5)

Z = [−C, C] (6)

At the end of the exploration phase, the fitness values of GX and X are calculated. If
the fitness value of GX(t) is less than the fitness value of X(t), then the position of GX(t) will
replace the position of X(t).

2.2. Exploitation Stage
2.2.1. Following the Silverback

In the exploitation stage, two behaviors are taken: following the silverback gorilla and
competing with adult female gorillas. In the gorilla group, the behavior of the silverback
gorilla leading the other gorillas and competing with female gorillas are two different
behaviors. Here, the value of C controls whether adult male gorillas follow the silverback
gorilla or compete with other males. When C meets different conditions, the corresponding
strategy will be selected. W is the parameter to be set before optimization.

Silverback gorillas and other gorillas are better able to perform their duties when
young. At the same time, male gorillas prefer to follow silverback gorillas. Moreover, each
gorilla can influence other gorillas. That is to say, the current individual position solution
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of the gorilla will follow the optimal solution of the silverback gorilla. They will influence
each other, and each solution will affect other solutions. That is, if C ≥W, then the policy
will be executed. This behavior is simulated with Equation (7):

GX(t + 1) = L×M× (X(t)− Xsilverbak) + X(t) (7)

where XSilverback represents the optimal solution, and M can be calculated with Equation (8):

M =

(∣∣∣∣∣ 1
N

N

∑
i=1

GXi(t)

∣∣∣∣∣
g) 1

g

(8)

where GXi(t) refers to the vector position of each candidate gorilla during the iteration. The
position vector dimension here is defined by the dimension of the problem, N represents
the total number of gorillas, and g can be calculated with Equation (9) as follows:

g = 2L (9)

2.2.2. Competition for Adult Females

One of adolescent gorillas’ main behaviors is to compete with other male gorillas for
the opposite sex. This kind of competition is characterized by being intense, lasting, and
able to influence other members. The competition between them represents the mutual
influence of solutions. The silverback gorilla’s optimal solution moves towards the position
of other solutions, thereby affecting the current solution to a certain extent and aiding the
search for a better solution in the process. This behavior is simulated with Equation (10):

GX(t) = Xsilverback − (Xsilverback ×Q− X(t)×Q)× A (10)

Q = 2× r5 − 1 (11)

A = β× E (12)

E =

{
N1, rand ≥ 0.5
N2, rand < 0.5

(13)

where Q is the competition intensity of the simulated gorilla, r5 is a random number
between 0 and 1 in a uniform distribution, A is the coefficient vector used to simulate the
degree of competition, β is the parameter set before the optimization operation, E is used to
simulate the impact of violence on the solution dimension, and Rand is a random number
between 0 and 1. When rand ≥ 0.5, E will be equal to the random value in the normal
distribution and the problem dimension; otherwise, E will be equal to the random number
in the normal distribution.

3. Modified Gorilla Troops Optimizer (MGTO)
3.1. Convergence Strategy of Contraction Control Factors

As we all know, communication between the silverback gorilla and its members is
an important part of decision-making. Therefore, to enhance the algorithm’s exploration
ability, we propose a contraction control factor fusion strategy to simulate this link. Because
the original algorithm fell into the problem of the local optimum, which is the problem
of incomplete exploration of the entire space, we moved one solution to the position of
another optimal solution so that the local space of the optimal solution can be fully explored
and developed. In addition, we used randomness to move a solution to the exploration
space that is not reached by the algorithm and made the algorithm have the ability to jump
out of the local optimal solution so it can obtain a more reasonable and effective solution.
Thus, we simulated the random movement process of the gorilla to better improve the
quality of the solution. U simulates the degree of experience possessed by the gorillas at
this stage. When gorillas are inexperienced, i.e., when U > 1, we introduce a contraction
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factor CAN, which enables gorillas to explore more unknown spaces. There are two kinds
of exploration of unknown spaces. If |CAN| ≥ 0.5, then the behavior of gorillas to explore
unknown positions is simulated completely according to their cognition. The other type
of exploration is that of unknown positions after gorillas exchange experiences with one
another, which is included to reduce the blindness of exploration. The parameter CAN
controls how the gorillas choose between these two strategies, effectively expanding the
gorilla’s exploration of unknown fields and increasing the algorithm’s search space. When
experience is sufficient, gorillas still need to communicate with other gorillas to ensure a
full, reliable, and stable pool of experience and reduce the blindness of their search. The
specific update equation is as follows:

Shrinkage factor:

CAN = e1− t
MaxIt × cos(

t
2
+

π

4
) (14)

Empirical parameters:

U =
Fi − Silverback_Score

Mean− Silverback_Score
(15)

where, among them, Fi represents the fitness value of the ith gorilla, Silverback_Score refers
to the fitness value of the silverback gorilla, and Mean refers to the average fitness value of
all gorillas.

When U > 1, the update equation is as follows:

GXi = [(UB− LB)× (|CAN|−rand)× rand(1, dim)]/2 + LB, |CAN|≥ 0.5 (16)

GXi = (Xi − Xr1)× D, |CAN|< 0.5 (17)

where rand refers to a random number between 0 and 1, rand(1,dim) refers to a random
vector with a problem dimension ranging from 0 to 1 with a uniform distribution, dim
represents the dimension of the problem, Xr1 represents a random gorilla individual, and
D refers to a random vector with problem dimension generated in the interval [−|CAN|,
−|CAN|] with uniform distribution. The calculation equation is as follows:

D = uni f rnd(−|CAN|, |CAN|, 1, dim) (18)

Similarly, to increase the effectiveness of the exploration when U ≤ 1, we fused current
gorilla individuals with random gorilla individuals, multiplying empirical parameters
and combining the influence of current gorilla individuals. We purposefully moved the
position of the solution of the current individual to the random individual solution. The
parameter U makes the range of movement large or small so the local space between the
two solutions can be fully explored and a better solution can be found. This enhances the
ability to explore effectively while largely avoiding blind searches. The following position
updates are performed:

GXi = Xr2 + (Xi − Xr2)×U + [Xi/(Xi × rand(1, dim))]× (1−U) (19)

3.2. Sine Cosine Interaction Fusion Strategy Based on Closeness

As we all know, due to the randomness of the algorithm, the solutions of the individual
position of the gorilla are different. Therefore, in order to improve the exploitation ability
of the original algorithm, we divided these individual solutions into good positions and
bad positions, and we then improved the quality of the solution of the individual position
to improve the exploitation performance of the algorithm. Thus, we divided the gorilla
population according to the closeness of their relationships with the silverback gorilla,
calculated the distance between the leader of the silverback gorilla and the gorilla in the
gorilla population with the minimum average closeness, and normalized the calculated
closeness value to the inverse cosine to obtain the Gamma. When the Gamma is greater
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than 0, it means that the current relationship between gorillas and silverback gorillas is
close and stable, which means that the current position of the individual gorilla is relatively
good; otherwise, the relationship is cold. Gamma is calculated as follows:

x = 2× sum(min(Xi, Silverback)) (20)

y = sum(Xi + Silverback) (21)

C = x/y (22)

Gamma = atan(C)× 2/π (23)

When the gorilla is closely related to the silverback gorilla, considering that the
decision-making of the silverback gorilla is inevitably wrong sometimes, and that the
silverback gorilla has a certain degree of humanization, the silverback gorilla should com-
municate with the group to make the decision conform to the wishes of the group and
ensure the correctness of the decision. Here, the optimal individual solution is fused with
the randomly generated individual position to ensure randomness and further improve
exploration ability while taking into account the focus of the overall solution of the popu-
lation, thereby avoiding blind search and exploitation. The specific calculation equation
is shown in Equation (24). At the same time, it was also considered that individuals and
silverback gorillas should fully communicate to increase their experience. This is to make
the current individual solution more effective and move it to the position of the optimal
individual solution so the local area of the current individual solution and the local area
of the optimal individual solution can be explored to some extent, and thus, the quality
of the current solution can be improved. Therefore, a sine cosine interaction equation is
proposed here. Through the constant changes of sine cosine functions, individual gorillas
and silverback gorillas can conduct in-depth communication in many aspects to obtain a
more reliable decision-making scheme. Because the sine and cosine functions are periodic
and are between [−1, 1], this can make the distance between the individual solution and
the optimal solution larger or smaller as the number of iterations increases; thus, the local
space around them is fully developed, and the exploration of the global space is also taken
into account so better location solutions can be found more comprehensively. The specific
calculation equation is shown in Equation (25). The standard normal distribution random
number h regulates the two aforementioned behaviors. The following dim represents
the dimension of the problem. When Gamma > 0 at this time, the individual position is
better; thus, we mainly let the area around it be comprehensively developed to find a better
solution than the current one. The specific mathematical equation is as follows:

GXi = (Silverback + ((UB− LB)× rand(1, dim)) + LB× rand(1, dim))× rand(1, dim)− P, h > 0.7 (24)

GXi = Xi + mean(sin(3× t +
π

4
)× Xi+

∣∣∣sin(3× t +
π

3
)
∣∣∣×Silverback)× 2rand(1, dim), h ≤ 0.7 (25)

where P simulates the decision-making willingness of gorilla groups, and its calculation
equation is as follows:

P = (mean(GXall)× CAN2−mean(Xall))× (rand− 1) (26)

where, among them, mean(GXall) refers to the mean vector of all candidate gorilla positions,
mean(Xall) refers to the mean vector of gorilla population positions, and rand is a random
number between 0 and 1. The calculation equation of CAN2 is as follows:

CAN2 = 3e−t/200×
∣∣∣∣cos(

1
4
(t− 3

π
))

∣∣∣∣ (27)

When the relationship between the two is cold, the silverback gorilla, as the leader,
wants to conquer the individual gorilla. That is, considering that the current position of the
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silverback gorilla may fall into the local optimal position, in order to make it jump out of
the local defect, the sine and cosine function is used to migrate the position of the silverback
gorilla to the individual position of other gorillas to find a better global solution. At the
same time, considering that they also need to exchange experience, they also communicate
through the constant changes of the sine and cosine functions to improve the quality of
solutions. CAN3 regulates these two behaviors. The specific mathematical equation is
as follows:

CAN3 = 5× (
498
500

+ (1− t
MaxIt

)× cos(
1
3
(t +

π

4
))− 1) (28)

When Gamma ≤ 0,

GXi = mean(Xi + Silverback) + CAN3× (Xi/2− Silverback), |CAN3|> 0.8 (29)

GXi = Xi + mean(cos(3× t +
π

4
)× Xi−

∣∣∣cos(3× t +
π

3
)
∣∣∣×Silverback)× 2rand(1, dim),

∣∣∣CAN3
∣∣∣≤ 0.8 (30)

3.3. Identification Strategies of Individual Differences in Gorillas

There are some differences between gorillas and silverback gorillas. The solution to
narrow the difference between the current solution and the optimal solution was inspired
by the habits of the gorilla population. Gorillas will continue to learn from silverback
gorillas and improve themselves to narrow the differences between them. Therefore, we
took advantage of the differences between the current gorilla solitary solution and the
optimal silverback gorilla optimal solution by having their positions update according to
the magnitude of the difference. For example, when Xij/Silverback ≥ 1, it indicates that
they are more different; thus, the maximum difference factor D1 and the influence degree
bj of the silverback gorilla’s optimal solution are used to adjust the differences between the
current individual solution and individual optimal solutions. If the difference is small, that
is, when 0 < Xij/Silverback < 1, the smallest difference factor D2 and the influence degree
bj of the silverback gorilla’s solution are used to adjust the difference between the gorilla
and the silverback gorilla. These two mechanisms can further fully develop the optimal
individual position and improve the convergence speed of the algorithm. At the same time,
we considered that it may fall into the situation of the local optimum; thus, for other cases,
we used D1 and D2 to further differentiate the current individual gorilla and the silverback
gorilla, respectively, to let them get out of the area of local solution in an attempt to deviate
the algorithm from the problem of the local optimum. The specific updates are as follows:

GXi,j = (Silverback j × r5 − Xi,j × bj × D1)− D1
3
× d1, Xi,j/Silverback j ≥ 1 (31)

GXi,j = (Silverback j × r6+
∣∣Xi,j

∣∣×bj × D2)− D2× d2, 1 > Xi,j/Silverback j > 0 (32)

GXi,j = (Xi,j × bj × D1× randi(−2, 2) + Silverback j)− D2× d3, others (33)

where r5 and r6 are random integers of −1 or 1, d1, d2, and d3 are uniformly distributed
random values generated in the interval [−2, 2], D1 and D2 are the maximum and minimum
difference factors of the individual gorillas, and b is the vector of influence degree of the
silverback gorilla on individual gorillas, which the following equation can calculate:

b =
Silverback

sum(Silverback2)
(34)

D1 = max(|Xi|−Silverback) (35)

D2 = min(|Xi|−Silverback) (36)

where, among them, sum(Silverback2) refers to the sum of the square of the vector positions
of the silverback gorilla.
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After the individual difference identification of gorillas, the fitness values of candidate
gorilla GX and gorilla individual X are calculated and compared. Suppose the fitness
value of GX is less than the fitness value of X. In that case, the individual position of GX
will replace the individual position of X, and the position of the silverback gorilla will
be updated. Then, the communication between the two can be improved through the
change of sine and cosine functions to improve the corresponding exploitation convergence
capability. The specific equation is as follows:

GXi = mean(2× cos(3× t +
π

4
)× Xi − cos(3× t +

π

2
)× Silverback)× rand× ones(1, dim) (37)

3.4. Implementation of the MGTO Algorithm

In the initialization phase, the MGTO algorithm randomly generates the population
Xi and initializes the position of the silverback gorilla. In the exploration phase, the MGTO
algorithm realizes the three mechanisms of the original algorithm, compares and updates
the individuals’ positions, and introduces the shrinkage control factor fusion strategy to
expand the algorithm’s search space and reduce its search blindness. After following the
silverback gorilla and competing for adult female gorillas in the exploitation stage, the
MGTO algorithm introduces the sine cosine interaction fusion strategy based on closeness
and the gorilla individual difference identification strategy. After each strategy updates
its position, they then update the position of the silverback gorilla in a timely manner to
achieve an efficient search. Finally, the above steps are repeated until the maximum number
of iterations is reached. The pseudocode of the MGTO algorithm is shown in Algorithm 1.

Algorithm 1: Pseudocode of MGTO algorithm

Initialize the population and set corresponding parameters β,w, and p, set the population size N
and the maximum number of iterations T.
Calculate the fitness value of the initialized gorilla.
%Main Loop
While (t <= maximum iteration)

Update C, L using Equations (2) and (4).
%Exploration phase

For (each gorilla(Xi)) do
Use Equation (1) for position updates.

End for
Calculate the fitness values of gorilla; if GX is better than X, replace them.
Set XSilverback as the position of silverback(best position).
Use Equations (14) and (15) to update U and CAN.
For (each gorilla(Xi)) do

Use Equations (16)–(19) for position updates.
End for
Calculate the fitness values of gorilla; if GX is better than X, replace them.

%Exploitation phase
For (each gorilla(Xi)) do

If (|C| ≥ 1) then
Update the position gorilla using Equation (7).

Else
Update the position gorilla using Equation (10).

End if
End for
Calculate the fitness values of the gorilla and replace them after comparison.
For (each gorilla(Xi)) do

If (Gamma > 0) then
Update using Equations (24) and (25).

Else
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Algorithm 1: Pseudocode of MGTO algorithm

Update using Equations (29) and (30).
End if

End for
Calculate the fitness values of the gorilla and replace them after comparison.
For (each gorilla(Xi)) do

For (1 to J dimension, J is a random integer between 1 and the total dimension) do
Use Equations (31)–(33) for position updates.

End for
End for
Calculate the fitness values of the gorilla and replace them after comparison.
For (each gorilla(Xi)) do

Use Equation (37) for position updates.
End for
Calculate the fitness values of the gorilla and replace them after comparison.

End while
Return Xsilverback and its fitness value.

The corresponding flow chart is shown in Figure 1.
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3.5. Complexity Analysis

The time complexity depends on the size of the gorilla population (N), the given
problem dimension (dim), the number of iterations of the algorithm (T), and the evaluation
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cost of the solution function (C). Therefore, the time complexity of the MGTO algorithm is
shown in Equation (38).

O(MGTO) = O(define parameters) + O(population initialization)
+O(dunction evaluation cos t) + O(location update)

(38)

The specific definition of each complexity of Equation (38) is as follows:
(1) The initialization time of the problem definition is O(1).
(2) The time required to initialize the population position is O(N × dim).
(3) The update time of the gorilla position is O(2 × T × N × dim).
(4) The time required for the contraction control factor fusion strategy is O(T × N).
(5) The time required for the sine cosine interactive fusion strategy based on closeness

is O(T × N).
(6) The time required for the gorilla individual difference identification strategy is

O(2 × T × N).
(7) The time cost of calculating the function includes the calculation time cost of the

algorithm itself, the calculation time of the fusion strategy of contraction control factors, the
calculation time of the sine cosine interaction fusion strategy based on closeness, and the
calculation time of the gorilla individual difference identification strategy. The calculation
time cost of the algorithm itself is O(2 × T × N × C). The calculation time cost of the three
strategies is O(T × N × C). Therefore, the total time cost is O(5 × T × N × C).

Therefore, the time complexity of the MGTO algorithm is:

O(MGTO) = O(1 + 4× T × N + N × dim + 5× T × N × C + 2× T × N × dim) (39)

Because 1� T × N × C, 1� T × N × dim, N × dim� T × N × C, and N × dim� T
× N × dim, Equation (39) can be replaced by Equation (40):

O(MGTO) ∼= O(6× T × N + 5× T × N × C + 2× T × N × dim) (40)

The computational complexity of the GTO algorithm initialization process is O(N).
There are two stages of exploitation and exploration in the update process, and its compu-
tational complexity is equal to O(T × N) + O(T × N × D). Therefore, the computational
complexity of GTO is O(N × (1 + T + TD) × 2).

It can be seen that although the MGTO algorithm has increased in time complexity, it
is far superior to the original algorithm.

4. Experimental Results and Discussion

In this section, we explain how 23 classic benchmark functions were used to evaluate
the performance of the improved algorithm. In order to better demonstrate the perfor-
mance of the improved algorithm, nine algorithms were selected for comparison. These
nine algorithms are the Artificial Gorilla Troop Optimization Algorithm (GTO) [21], the
Sine Cosine Algorithm (SCA) [6], the Remora Optimal Algorithm (ROA) [16], the Whale
Optimization Algorithm (WOA) [19], the Reptile Search Algorithm (RSA) [27], the Spotted
Hyena Optimizer Algorithm (SHO) [20], the Seagull Optimization Algorithm (SOA) [17],
the Arithmetic Optimization Algorithm (AOA) [4], and the Honey Badger Algorithm
(HBA) [28]. At the same time, to verify the optimization effect of improving the GTO
algorithm, the maximum number of iterations and population size of the algorithms in
all experiments were set to 500 and 30, respectively. In addition, to further prove the
performance of the improved algorithm, 30 benchmark functions in CEC2014 and 10 in
CEC2020 were used for further experiments. Many articles use these benchmark functions
to evaluate the algorithm’s performance. The criteria for evaluating the performance of the
optimization algorithm depend on whether the algorithm can keep the balance between
exploration and exploitation while jumping out of the local optimal solution.
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All of the experiments reported in this paper were completed on a computer with an
11th generation Intel (R) Core (TM) i7-11700 processor. The main frequency of the processor
was 2.50 GHz, the memory was 16 GB, the operating system was 64-bit Windows 11, and
Matlab 2020b was used. The parameter settings of all of the above algorithms are shown in
Table 1.

Table 1. Parameter settings for the comparative algorithms.

Algorithm Parameters Value

MGTO/GTO
p 0.03
β 3
w 0.8

SCA α 2

ROA C 0.1

WOA

Coefficient vectors
→
A 1

Coefficient vectors
→
C [−1, 1]

Helical parameter b 0.75
Helical parameter l [−1, 1]

RSA
α 0.1
β 0.005

SHO \ \
SOA b 1

AOA

MOP_Max 1
MOP_Min 0.2

A 5
Mu 0.499

HBA
β 6
C 2

4.1. Experiments on 23 Standard Benchmark Functions

These 23 classical benchmark functions can be divided into three categories: single-
mode functions (UM), multimodal functions (MM), and composite functions (CM). Single
mode functions (F1–F7) have only one optimal solution and are often used to evaluate
the exploration ability of algorithms. Multiple optimal solutions characterize multimodal
functions (F8–F13). These functions can be used to evaluate the ability to jump out of the
optimal solution in complex situations. Composite functions (F14–F23) are usually used to
evaluate the stability of algorithms. See Table 2 for details on the 23 benchmark functions,
where F is the corresponding mathematical function, dim is the dimension, the range is
the limit of the search space, and Fmin is the optimal value that the corresponding function
can achieve. The MGTO optimization algorithm and the other nine comparison algorithms
were independently run 30 times to obtain the corresponding algorithm’s optimal value,
average value, and standard deviation, as given in Table 3. The image F1–F13 of thirteen
classical benchmark functions is shown in Figure 2.
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Table 2. Details of 23 benchmark functions.

Type F dim Range Fmin

Unimodal
benchmark functions

F1(x) = ∑n
i=1 x2

i 30/500 [−100, 100] 0

F2(x) = ∑n
i=1|xi|+ IIn

i=1|xi| 30/500 [−10, 10] 0

F3(x) = ∑n
i=1 (∑

i
j−1 xj)

2 30/500 [−100, 100] 0

F4(x) = max{|xi|, 1 ≤ i ≤ n} 30/500 [−100, 100] 0

F5(x) = ∑n−1
i=1 [100(xi+1 − x2

i )
2
+ (xi − 1)2] 30/500 [−30, 30] 0

F6(x) = ∑n
i=1 (xi + 5)2 30/500 [−100, 100] 0

F7(x) = ∑n
i=1 i× x4

i + random[0, 1) 30/500 [−1.28, 1.28] 0

Multimodal
benchmark functions

F8(x) = ∑n
i=1−xi sin(

√
|xi|) 30/500 [−500, 500] −418.9829 × dim

F9(x) = ∑n
i=1 [x

2
i − 10 cos(2πxi) + 10] 30/500 [−5.12, 5.12] 0

F10(x) = −20 exp(−0.2
√

1
n ∑n

i=1 x2
i − exp( 1

n ∑n
i=1 cos(2πxi)) + 20 + e) 30/500 [−32, 32] 0

F11(x) = 1
400 ∑n

i=1 x2
i −Πn

i=1 cos( xi√
i
) + 1 30/500 [−600, 600] 0

F12(x) = π
n

{
10 sin(πy1) + ∑n−1

i=1 (yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2
}

+∑n
i=1 u(xi, 10, 100, 4), where yi = 1 + xi+1

4 ,

u(xi, a, k, m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

30/500 [−50, 50] 0

F13(x) = 0.1(sin2(3πx1) + ∑n
i=1 (xi − 1)

2
[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]) + ∑n
i=1 u(xi, 5, 100, 4)

30/500 [−50, 50] 0

Fixed-dimension multimodal
benchmark functions

F14(x) = ( 1
500 + ∑25

j=1
1

j+∑2
i=1 (xi−aij)

6 )
−1 2 [−65, 65] 1

F15(x) = ∑11
i=1

[
ai −

x1(b2
i +bi x2)

b2
i +bi x3+x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + x4

2 2 [−5, 5] −1.0316

F17(x) = (x2 − 5.1
4π2 x2

1 +
5
π x1 − 6)

2
+ 10(1− 1

8π ) cos x1 + 10 2 [−5, 5] 0.398
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Table 2. Cont.

Type F dim Range Fmin

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 32

2)]

×[30 + (2x1 − 3x2)
2 × (18− 32x2 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2)]

5 [−2, 2] 3

F19(x) = −∑4
i=1 ci exp(−∑3

j=1 aij(xj − pij)
2) 3 [−1, 2] −3.86

F20(x) = −∑4
i=1 ci exp(−∑6

j=1 aij(xj − pij)
2) 6 [0, 1] −3.32

F21(x) = −∑5
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.1532

F22(x) = −∑7
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.4028

F23(x) = −∑10
i=1 [(X− ai)(X− ai)

T + ci]
−1 4 [0, 10] −10.5363

Table 3. Statistical results of 23 standard reference functions.

F dim Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

F1

30
min 0 0 3.02 × 10−3 0 2.36 × 10−84 0 0 1.76 × 10−14 1.32 × 10−169 9.41 × 10−144

mean 0 0 1.90 × 101 0 5.85 × 10−72 0 0 6.04 × 10−12 4.81 × 10−26 1.61 × 10−135

std 0 0 3.51 × 101 0 3.20 × 10−71 0 0 1.12 × 10−11 1.56 × 10−25 4.90 × 10−135

500
min 0 0 1.34 × 105 0 1.48 × 10−81 0 0 1.34 × 10−2 5.92 × 10−1 1.40 × 10−119

mean 0 0 2.19 × 105 0 9.05 × 10−70 0 0 1.20 × 10−1 6.51 × 10−1 3.42 × 10−112

std 0 0 4.83 × 104 0 4.94 × 10−69 0 0 1.03 × 10−1 4.14 × 10−2 1.46 × 10−111

F2

30
min 0 5.75 × 10−208 3.05 × 10−4 2.97 × 10−192 1.50 × 10−57 0 0 1.45 × 10−9 0 2.52 × 10−76

mean 0 1.00 × 10−192 1.75 × 10−2 1.37 × 10−164 2.03 × 10−51 0 0 1.23 × 10−8 0 7.34 × 10−71

std 0 0 2.42 × 10−2 0 6.84 × 10−51 0 0 1.10 × 10−8 0 3.83 × 10−70

500
min 0 3.06 × 10−199 5.04 × 101 3.00 × 10−187 7.43 × 10−56 0 0 2.62 × 10−3 5.63 × 10−13 2.68 × 10−63

mean 0 1.24 × 10−189 1.22 × 102 2.35 × 10−159 4.11 × 10−48 0 0 6.53 × 10−3 1.51 × 10−3 4.29 × 10−61

std 0 0 5.60 × 101 1.29 × 10−158 1.43 × 10−47 0 0 2.81 × 10−3 1.74 × 10−3 8.32 × 10−61
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Table 3. Cont.

F dim Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

F3

30
min 0 0 1.73 × 102 0 1.17 × 104 0 0 2.50 × 10−7 3.81 × 10−152 2.75 × 10−108

mean 0 0 7.70 × 103 1.58 × 10−312 4.67 × 104 0 0 6.28 × 10−4 7.40 × 10−3 8.30 × 10-97
std 0 0 5.35 × 103 0 1.54 × 104 0 0 2.58 × 10−3 1.50 × 10−2 3.25 × 10−96

500
min 0 0 4.64 × 106 1.57 × 10−313 1.58 × 107 0 0 5.93 × 103 1.36 × 101 3.03 × 10−75

mean 0 0 7.02 × 106 1.25 × 10−261 3.13 × 107 0 0 1.43 × 105 3.12 × 101 1.41 × 10−64

std 0 0 1.39 × 106 0 1.18 × 107 0 0 1.07 × 105 1.53 × 101 6.28 × 10−64

F4

30
min 0 3.03 × 10−208 1.46 × 101 1.85 × 10−189 2.99 0 0 1.20 × 10−4 3.00 × 10−61 1.53 × 10−61

mean 0 2.36 × 10−192 3.47 × 101 3.13 × 10−170 5.09 × 101 0 0 3.97 × 10−3 2.27 × 10−2 2.89 × 10−57

std 0 0 9.51 0 2.91 × 101 0 0 8.09 × 10−3 2.09 × 10−2 1.22 × 10−56

500
min 0 2.43 × 10−203 9.83 × 101 1.03 × 10−189 3.54 × 101 0 0 9.71 × 101 1.54 × 10−1 1.39 × 10−30

mean 0 3.89 × 10−188 9.90 × 101 1.86 × 10-159 8.51 × 101 0 0 9.88 × 101 1.80 × 10−1 3.38 × 10−28

std 0 0 2.77 × 10−1 1.02 × 10−158 1.89 × 101 0 0 5.54 × 10−1 1.58 × 10−2 5.74 × 10−28

F5

30
min 1.30 × 10−10 4.41 × 10−6 5.03 × 101 2.87 × 101 2.72 × 101 9.87 × 10−26 2.87 × 101 2.70 × 101 2.78 × 101 2.29 × 101

mean 2.55 × 10−7 1.60 2.19 × 104 2.87 × 101 2.79 × 101 2.51 × 101 2.88 × 101 2.83 × 101 2.85 × 101 2.42 × 101

std 4.72 × 10−7 6.10 3.92 × 104 1.76 × 10−2 5.15 × 10−1 1.00 × 101 1.10 × 10−1 6.06 × 10−1 3.21 × 10−1 1.11

500
min 3.30 × 10−8 7.75 × 10−5 9.07 × 108 4.94 × 102 4.96 × 102 4.99 × 102 4.98 × 102 5.48 × 102 4.99 × 102 4.95 × 102

mean 2.56 × 10−4 1.48 2.00 × 109 4.94 × 102 4.96 × 102 4.99 × 102 4.99 × 102 9.52 × 102 4.99 × 102 4.98 × 102

std 4.00 × 10−4 2.89 5.16 × 108 2.32 × 10−1 4.35 × 10−1 0.00 × 100 1.33 × 10−1 4.06 × 102 7.94 × 10−2 7.46 × 10−1

F6

30
min 6.04 × 10−16 6.47 × 10−9 4.58 1.02 × 10−1 5.67 × 10−2 6.36 3.14 × 10−2 2.31 2.47 2.53 × 10−6

mean 2.71 × 10−11 2.86 × 10−7 3.69 × 101 6.11 × 10−1 3.65 × 10−1 7.26 3.32 3.25 3.12 2.52 × 10−2

std 6.58 × 10−11 5.21 × 10−7 6.69 × 101 3.16 × 10−1 2.35 × 10−1 3.30 × 10−1 2.49 5.10 × 10−1 2.54 × 10−1 7.63 × 10−2

500
min 1.99 × 10−9 1.06 × 10−3 1.06 × 105 5.66 × 10−1 1.39 × 101 1.25 × 102 1.16 × 102 1.14 × 102 1.13 × 102 9.44 × 101

mean 9.03 × 10−7 4.33 × 10−1 2.03 × 105 8.85 3.27 × 101 1.25 × 102 1.23 × 102 1.16 × 102 1.16 × 102 9.78 × 101

std 1.15 × 10−6 3.85 × 10−1 7.01 × 104 4.51 9.46 0 2.35 9.19 × 10−1 1.35 2.15

F7

30
min 3.12 × 10−7 5.48 × 10−6 1.06 × 10−2 5.41 × 10−6 1.51 × 10−4 1.35 × 10−5 8.03 × 10−6 3.44 × 10−4 9.78 × 10−7 5.16 × 10−5

mean 2.02 × 10−5 1.12 × 10−4 8.69 × 10−2 1.54 × 10−4 3.27 × 10−3 9.68 × 10−5 1.27 × 10−4 2.89 × 10−3 9.06 × 10−5 3.78 × 10−4

std 1.79 × 10−5 1.01 × 10−4 6.18 × 10−2 1.52 × 10−4 3.47 × 10−3 9.60 × 10−5 1.90 × 10−4 2.40 × 10−3 7.89 × 10−5 2.91 × 10−4

500
min 2.37 × 10−6 5.82 × 10−6 7.89 × 103 3.17 × 10−6 1.73 × 10−4 3.83 × 10−6 2.47 × 10−6 2.51 × 10−2 2.05 × 10−6 3.72 × 10−5

mean 2.60 × 10−5 8.81 × 10−5 1.44 × 104 1.11 × 10−4 4.26 × 10−3 1.72 × 10−4 8.06 × 10−5 8.87 × 10−2 8.52 × 10−5 4.28 × 10−4

std 2.03 × 10−5 6.24 × 10−5 3.00 × 103 8.38 × 10−5 4.84 × 10−3 1.61 × 10−4 7.64 × 10−5 4.69 × 10−2 7.23 × 10−5 2.90 × 10−4
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Table 3. Cont.

F dim Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

F8

30
min −1.26 × 104 −1.26 × 104 −5.08 × 103 −1.26 × 104 −1.26 × 104 −5.66 × 103 −4.01 × 103 −6.87 × 103 −6.73 × 103 −1.02 × 104

mean −1.26 × 104 −1.26 × 104 −3.82 × 103 −1.25 × 104 −1.01 × 104 −5.46 × 103 −2.66 × 103 −5.05 × 103 −5.39 × 103 −8.59 × 103

std 3.29 × 10−6 4.27 × 10−5 3.30 × 102 1.91 × 102 1.89 × 103 2.16 × 102 7.06 × 102 7.06 × 102 4.46 × 102 9.82 × 102

500
min −2.09 × 105 −2.09 × 105 −1.72 × 104 −2.09 × 105 −2.09 × 105 −7.61 × 104 −2.05 × 104 −3.81 × 104 −2.64 × 104 −1.01 × 105

mean −2.09 × 105 −2.09 × 105 −1.52 × 104 −2.07 × 105 −1.73 × 105 −6.42 × 104 −1.32 × 104 −2.30 × 104 −2.27 × 104 −7.32 × 104

std 2.66 × 10−2 3.12 × 101 9.19 × 102 7.21 × 103 2.89 × 104 5.62 × 103 4.83 × 103 4.21 × 103 1.46 × 103 1.35 × 104

F9

30
min 0 0 1.96 × 10−2 0 0 0 0 8.53 × 10−13 0 0

mean 0 0 3.74 × 101 0 0 0 0 3.19 0 0
std 0 0 4.58 × 101 0 0 0 0 5.87 0 0

500
min 0 0 4.93 × 102 0 0 0 0 4.11 × 10−5 0 0

mean 0 0 1.21 × 103 0 6.06 × 10−14 0 0 7.01 7.21 × 10−6 0
std 0 0 4.62 × 102 0 3.32 × 10−13 0 0 9.00 7.25 × 10−6 0

F10

30
min 8.88 × 10−16 8.88 × 10−16 3.07 × 10−2 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 ×

10−16 2.00 × 101 8.88 × 10−16 8.88 × 10−16

mean 8.88 × 10−16 8.88 × 10−16 1.24 × 101 8.88 × 10−16 4.80 × 10−15 8.88 × 10−16 8.88 ×
10−16 2.00 × 101 8.88 × 10−16 8.88 × 10−16

std 0 0 9.42 0 2.53 × 10−15 0 0 1.62 × 10−3 0 0

500
min 8.88 × 10−16 8.88 × 10−16 7.92 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 ×

10−16 2.00 × 101 7.22 × 10−3 8.88 × 10−16

mean 8.88 × 10−16 8.88 × 10−16 1.93 × 101 8.88 × 10−16 4.68 × 10−15 8.88 × 10−16 3.54 2.00 × 101 7.91 × 10−3 4.64
std 0 0 3.42 0 2.63 × 10−15 0 4.27 7.17 × 10−5 3.77 × 10−4 8.56

F11

30
min 0 0 1.40 × 10−4 0 0 0 0 7.85 × 10−13 2.31 × 10−2 0

mean 0 0 1.09 0 4.49 × 10−3 0 0 2.00 × 10−2 2.33 × 10−1 0
std 0 0 8.47 × 10−1 0 2.46 × 10−2 0 0 3.85 × 10−2 1.63 × 10−1 0

500
min 0 0 2.64 × 102 0 0 0 0 8.27 × 10−4 5.83 × 103 0

mean 0 0 1.74 × 103 0 0 0 0 5.30 × 10−2 9.15 × 103 0
std 0 0 7.17 × 102 0 0 0 0 7.76 × 10−2 2.35 × 103 0
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Table 3. Cont.

F dim Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

F12

30
min 2.50 × 10−15 7.46 × 10−11 9.42 × 10−1 6.17 × 10−3 3.37 × 10−3 4.69 × 10−1 1.42 × 10−4 1.49 × 10−1 4.13 × 10−1 7.54 × 10−7

mean 3.67 × 10−12 2.23 × 10−8 4.99 × 104 3.28 × 10−2 1.21 × 10−1 1.38 2.06 × 10−4 3.45 × 10−1 5.14 × 10−1 2.00 × 10−4

std 4.44 × 10−12 3.29 × 10−8 2.08 × 105 2.06 × 10−2 4.07 × 10−1 4.24 × 10−1 2.56 × 10−5 1.62 × 10−1 4.73 × 10−2 9.72 × 10−4

500
min 3.07 × 10−15 7.19 × 10−8 3.77 × 109 1.65 × 10−4 2.03 × 10−2 1.21 3.69 × 10−4 1.10 1.06 6.93 × 10−1

mean 1.77 × 10−9 2.47 × 10−4 6.19 × 109 2.26 × 10−2 8.65 × 10−2 1.21 9.65 × 10−1 1.94 1.08 7.48 × 10−1

std 4.59 × 10−9 2.85 × 10−4 1.30 × 109 1.40 × 10−2 3.67 × 10−2 4.52 × 10−16 3.72 × 10−1 9.48 × 10−1 1.34 × 10−2 2.73 × 10−2

F13

30
min 2.10 × 10−14 6.32 × 10−10 2.99 1.42 × 10−2 1.49 × 10−1 2.20 × 10−30 2.92 1.60 2.59 1.90 × 10−3

mean 1.89 × 10−10 2.10 × 10−3 2.64 × 105 3.49 × 10−1 5.91 × 10−1 5.73 × 10−1 2.96 1.99 2.83 3.22 × 10−1

std 6.57 × 10−10 6.90 × 10−3 1.12 × 106 2.00 × 10−1 2.23 × 10−1 1.17 1.91 × 10−2 2.03 × 10−1 1.03 × 10−1 2.82 × 10−1

500
min 1.55 × 10−10 1.58 × 10−6 4.36 × 109 1.37 × 10−1 7.04 5.00 × 101 4.99 × 101 5.42 × 101 5.01 × 101 4.88 × 101

mean 1.85 × 10−7 6.74 × 10−2 9.40 × 109 5.30 1.84 × 101 5.00 × 101 5.00 × 101 7.32 × 101 5.02 × 101 4.93 × 101

std 3.95 × 10−7 1.15 × 10−1 2.32 × 109 2.88 × 100 6.99 0 1.76 × 10−2 1.51 × 101 3.81 × 10−2 2.79 × 10−1

F14 2
min 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1 1.06 1.06 9.98 × 10−1 9.98 × 10−1 9.98 × 10−1

mean 9.98 × 10−1 9.98 × 10−1 1.53 4.78 2.73 4.72 9.52 2.48 9.71 1.72
std 0 0 8.92 × 10−1 4.56 2.98 3.55 3.97 2.46 3.65 1.89

F15 4
min 3.07 × 10−4 3.07 × 10−4 5.14 × 10−4 3.40 × 10−4 3.09 × 10−4 7.36 × 10−4 3.10 × 10−4 1.22 × 10−3 3.72 × 10−4 3.07 × 10−4

mean 3.07 × 10−4 4.30 × 10−4 9.37 × 10−4 9.01 × 10−4 6.56 × 10−4 2.79 × 10−3 3.17 × 10−4 1.25 × 10−3 1.08 × 10−2 7.21 × 10−3

std 1.84 × 10−18 3.17 × 10−4 3.24 × 10−4 5.74 × 10−4 4.45 × 10−4 1.97 × 10−3 5.01 × 10−6 5.07 × 10−5 1.30 × 10−2 1.00 × 10−2

F16
2

min −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −1.03

mean −1.03 −1.03 −1.03 −1.03 −1.03 −1.03 −9.48 ×
10−1 −1.03 −1.03 −1.03

std 6.32 × 10−16 6.39 × 10−16 5.45 × 10−5 4.96 × 10−8 1.43 × 10−9 5.90 × 10−3 1.85 × 10−1 2.56 × 10−6 1.34 × 10−7 6.05 × 10−16

F17 2
min 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.99 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

mean 3.98 × 10−1 3.98 × 10−1 4.00 × 10−1 3.98 × 10−1 3.98 × 10−1 4.26 × 10−1 5.37 × 10−1 3.98 × 10−1 3.98 × 10−1 3.98 × 10−1

std 0 0 1.60 × 10−3 9.33 × 10−6 1.54 × 10−5 3.04 × 10−2 4.25 × 10−1 8.10 × 10−5 1.07 × 10−7 0

F18 5
min 3.00 3.00 3.00 3.00 3.00 3.00 3.40 3.00 3.00 3.00

mean 3.00 3.00 3.00 3.00 3.00 5.78 2.26 × 101 3.00 5.70 9.30
std 1.71 × 10−15 1.21 × 10−15 4.66 × 10−5 9.32 × 10−4 1.10 × 10−4 8.48 3.39 × 101 4.74 × 10−4 8.24 2.09 × 101
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Table 3. Cont.

F dim Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

F19 3
min −3.86 −3.86 −3.86 −3.86 −3.86 −3.86 −3.85 −3.86 −3.86 −3.86

mean −3.86 −3.86 −3.85 −3.76 −3.86 −3.79 −3.46 −3.85 −3.85 −3.86
std 2.54 × 10−15 2.65 × 10−15 4.12 × 10−3 1.63 × 10−1 5.23 × 10−3 5.49 × 10−2 4.63 × 10−1 7.04 × 10−3 3.62 × 10−3 2.60 × 10−15

F20 6
min −3.32 −3.32 −3.16 −3.28 −3.32 −2.98 −3.11 −3.19 −3.22 −3.32

mean −3.31 −3.28 −2.92 −3.04 −3.24 −2.47 −2.68 −3.01 −3.08 −3.26
std 4.11 × 10−2 5.70 × 10−2 3.30 × 10−1 1.61 × 10−1 9.60 × 10−2 4.39 × 10−1 2.38 × 10−1 1.68 × 10−1 9.54 × 10−2 7.68 × 10−2

F21 4
min −1.02 × 101 −1.02 × 101 −5.44 −1.02 × 101 −1.02 × 101 −5.06 −8.06 −1.01 × 101 −8.70 −1.02 × 101

mean −1.02 × 101 −1.02 × 101 −2.29 −9.85 −8.68 −5.01 −4.04 −4.17 −4.08 −1.02 × 101

std 5.67 × 10−15 6.04 × 10−15 1.67 1.46 2.45 2.24 × 10−1 1.43 4.03 1.50 8.14 × 10−6

F22 4
min −1.04 × 101 −1.04 × 101 −7.31 −1.04 × 101 −1.04 × 101 −5.09 −5.96 −1.04 × 101 −8.54 −1.04 × 101

mean −1.04 × 101 −1.04 × 101 −2.91 −1.04 × 101 −8.12 −5.09 −4.40 −5.64 −4.08 −9.07
std 8.08 × 10−16 8.08 × 10−16 1.89 7.55 × 10−2 3.08 8.73 × 10−7 1.05 4.39 1.80 3.04

F23 4
min −1.05 × 101 −1.05 × 101 −8.94 −1.05 × 101 −1.05 × 101 −5.13 −5.85 −1.05 × 101 −9.27 −1.05 × 101

mean −1.05 × 101 −1.05 × 101 −4.25 −1.03 × 101 −7.13 −5.13 −4.07 −6.74 −3.96 −8.32
std 1.98 × 10−15 2.84 × 10−15 1.83 1.02 3.10 1.86 × 10−6 1.28 4.19 1.96 3.47
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enhanced over its predecessor. Good results were achieved in the later stage for the F8 
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Figure 2. Schematic diagram of 23 standard reference functions.

4.1.1. Result Statistics and Convergence Curve Analysis of 23 Standard Data Functions

Table 3 shows the statistical results of 10 algorithms across 23 benchmark functions. It
can be seen from the table that the MGTO algorithm obtained the theoretical optimal value
in both the 30 and 500 dimensions of F1–F4 and had a very stable effect. The RSA and SHO
algorithms had the same performance. The GTO algorithm obtained the theoretical optimal
value in F1 and F3, and the ROA algorithm obtained the optimal value in F1. In F5–F8, the
MGTO algorithm had almost all of the best fitness values. It was very stable and far superior
to other algorithms, showing that the MGTO algorithm has better optimization than the
GTO algorithm. For F9–F11, the MGTO algorithm, GTO algorithm, ROA, and RSA all
obtained the theoretical optimal value. The SHO algorithm could obtain the optimal value
in the 30 dimensions of F10 but could only approach the optimal value in 500 dimensions.
Therefore, the SHO algorithm is not strong in multi-dimensional exploration. In the
30 dimensions of F12 and in 500 dimensions, the MGTO algorithm obtained the best fitness
value and was stable. In the 30 dimensions of F13, the MGTO algorithm obtained the best
fitness value only compared to the RSA algorithm, but it obtained a better fitness value,
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one that was far better than those of the other algorithms. In 500 dimensions, the MGTO
algorithm obtained the best fitness value and had better stability. The F14–F23 functions
are relatively simple, and it was easy to find a better fitness value. The MGTO algorithm
obtained the optimal fitness value in the optimal fitness test of combined functions, proving
the superiority of the MGTO algorithm’s performance.

It is difficult to fully explain the advantages of the MGTO algorithm in the 23 standard
reference functions only through Table 3; the optimization effect can be better understood
by analyzing the convergence curve image. The convergence curves of each algorithm
are shown in Figures 3–5. It can be seen from these images that the MGTO algorithm had
strong convergence and exploitation ability in F1–F4 and quickly found the optimal values.
For F5–F6, it can be seen from the figure that the MGTO algorithm found the optimal
value faster and was more stable than other algorithms, which means its performance was
far better than other algorithms. In F7, the MGTO algorithm quickly found the fitness
value and, at the same time, continuously jumped out of the optimal local solution in
the later stages, which shows that the exploration ability of the MGTO algorithm was
enhanced over its predecessor. Good results were achieved in the later stage for the F8
function when testing the MGTO algorithm, GTO algorithm, and ROA algorithm. Still,
the early exploitation performance of the MGTO algorithm was better, which made it
converge rapidly. In F9–F11, the MGTO algorithm found the optimal fitness value faster
than other algorithms. In F12 and F13, MGTO’s exploration and exploitation performance
were superior to other algorithms. In F14–F23, these algorithms found better fitness values,
which shows that these algorithms have good optimization effects, but the MGTO algorithm
also found very good fitness values. It can be clearly seen from the results regarding F14,
F15, and F19–F23 that the MGTO algorithm is better. The comprehensive analysis of these
tables and images shows that the MGTO algorithm is relatively more stable and can find
better values.
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ference between the two algorithms. The specific operation results can be seen in Table 4. 
It can be seen from the table that most test results have p-values less than 0.05, whereas 
those of some results exceed 0.05. Many results in F9–F11 are equal to 1, indicating that 
many algorithms can find the same optimal value in F9–F11. For F16–F23, the functions 
are relatively simple; thus, there is not much difference between the original GTO algo-
rithm and the improved MGTO algorithm. The MGTO algorithm achieved excellent re-
sults in the Wilcoxon test of 23 benchmark functions; thus, it can be concluded that there 
are significant differences between the MGTO algorithm and other comparison algo-
rithms. 

Therefore, the experimental results show that the MGTO algorithm has a good opti-
mization effect in 23 benchmark functions, performs better than the original algorithm, 
and has significant differences compared to other algorithms. 
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4.1.2. Analysis of Wilcoxon Rank Sum Test Results

Although the performance of the MGTO algorithm was verified with these benchmark
functions, to fully verify the robustness of the improved algorithm, the Wilcoxon rank-
sum test was used to further verify the significant differences between the results of each
algorithm. The Wilcoxon rank-sum test is a non-parametric statistical test that can find
more complex data distribution patterns. The chosen significance level was 5%. When the
p-value is less than 5%, the null hypothesis is rejected, indicating a significant difference
between the two algorithms. If the p-value is greater than 5%, then there is little difference
between the two algorithms. The specific operation results can be seen in Table 4. It can be
seen from the table that most test results have p-values less than 0.05, whereas those of some
results exceed 0.05. Many results in F9–F11 are equal to 1, indicating that many algorithms
can find the same optimal value in F9–F11. For F16–F23, the functions are relatively simple;
thus, there is not much difference between the original GTO algorithm and the improved
MGTO algorithm. The MGTO algorithm achieved excellent results in the Wilcoxon test
of 23 benchmark functions; thus, it can be concluded that there are significant differences
between the MGTO algorithm and other comparison algorithms.

Table 4. Experimental results of the Wilcoxon rank-sum test on 23 standard benchmark functions.

F dim
MGTO

Vs
GTO

MGTO
Vs

SCA

MGTO
Vs

ROA

MGTO
Vs

WOA

MGTO
Vs

RSA

MGTO
Vs

SHO

MGTO
Vs

SOA

MGTO
Vs

AOA

MGTO
Vs

HBA

F1
30 1 1.73 × 10−6 1 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1 1.73 × 10−6 1 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F2
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F3
30 1 1.73 × 10−6 6.25 × 10−2 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F4
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F5
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.31 × 10−5 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6
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Table 4. Cont.

F dim
MGTO

Vs
GTO

MGTO
Vs

SCA

MGTO
Vs

ROA

MGTO
Vs

WOA

MGTO
Vs

RSA

MGTO
Vs

SHO

MGTO
Vs

SOA

MGTO
Vs

AOA

MGTO
Vs

HBA

F6
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F7
30 6.98 × 10−6 1.73 × 10−6 1.25 × 10−4 1.73 × 10−6 6.89 × 10−5 1.73 × 10−6 1.73 × 10−6 7.51 × 10−5 1.73 × 10−6

50 3.06 × 10−4 1.73 × 10−6 6.32 × 10−5 1.92 × 10−6 1.48 × 10−4 1.73 × 10−6 1.73 × 10−6 2.26 × 10−3 6.98 × 10−6

F8
30 3.61 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 4.73 × 10−6 1.73 × 10−6 9.32 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F9
30 1 1.73 × 10−6 1 5.00 × 10−1 1 1.73 × 10−6 1.73 × 10−6 1 1
50 1 1.73 × 10−6 1 1 1 1.73 × 10−6 1.73 × 10−6 8.86 × 10−5 1

F10
30 1 1.73 × 10−6 1 2.41 × 10−6 1 1.73 × 10−6 1.73 × 10−6 1 5.00 × 10−1

50 1 1.73 × 10−6 1 3.22 × 10−5 1 1.73 × 10−6 1.72 × 10−6 1.73 × 10−6 9.77 × 10−4

F11
30 1 1.73 × 10−6 1 5.00 × 10−1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1
50 1 1.73 × 10−6 1 1 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1

F12
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F13
30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.48 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

50 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

F14 2 2.50 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.72 × 10−1

F15 4 4.49 × 10−2 1.73 × 10−6 1.64 × 10−5 2.16 × 10−5 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 6.34 × 10−6 8.32 × 10−6

F16 2 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1
F17 2 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1
F18 5 4.81 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.93 × 10−2

F19 6 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1
F20 3 1.25 × 10−1 1.73 × 10−6 1.73 × 10−6 8.47 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.57 × 10−4

F21 4 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.25 × 10−1

F22 4 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.81 × 10−3

F23 4 1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 3.13 × 10−2

Therefore, the experimental results show that the MGTO algorithm has a good opti-
mization effect in 23 benchmark functions, performs better than the original algorithm, and
has significant differences compared to other algorithms.

4.2. Experiments on 30 CEC2014 and 10 CEC2020 Benchmark Function

The above 23 benchmark functions are simple test functions, which are insufficient to
prove the MGTO algorithm superior performance fully. In order to effectively prove the
effectiveness of the MGTO algorithm, the CEC2014 and CEC2020 test functions were used
for further testing. Within the set of CEC2014 test functions, CEC1–CEC3 are unimodal
functions, CEC4–CEC16 are simple multiple functions, CEC17–CEC22 are hybrid functions,
and CEC23–30 are composition functions. For CEC2020 test functions, functions CEC1–
CEC4 are, in ascending order, the translation rotation function, the translation rotation
Schwefel function, the translation rotation Lunacek double grating function, and the
extended Rosenbrock plus Griewangk function. The CEC5–CEC7 functions in this set are
mixed functions, and the CEC8–CEC10 functions are compound functions. All algorithms
were independently run 30 times to obtain each algorithm’s best value, average value, and
standard deviation.

See Table 5 for the test results of all algorithms with the CEC2014 function. It can
be seen from the table that the MGTO algorithm provided 25 best results for the average
value, 28 best results for the optimal value, and 21 best results for the standard deviation of
30 benchmark functions. HBA provided the optimal value for CEC6, CEC9, and CEC25
in terms of average value, and it provided the best value for CEC6 and CEC9 in terms
of optimal value. For the CEC6 and CEC9 test functions, the mean values and optimal
values of the MGTO algorithm were all inferior to HBA and superior to other algorithms.
Regarding STD, the improved algorithm was more stable than the original algorithm and
superior to most algorithms. In the CEC8 and CEC25 test functions, the MGTO algorithm
obtained the optimal values; its mean value was only inferior to HBA, and its stability was
also stronger than those of most other algorithms. For the CEC24 test function, the MGTO
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algorithm also obtained the optimal value, with its average value second only to those of
SOA, SCA, and HBA. This shows that the MGTO algorithm is a stronger optimizer.

Table 5. CEC2014 Algorithm Results of Benchmark Functions.

CEC2014 Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

CEC1
MIN 1.04 × 106 1.63 × 106 2.82 × 108 3.52 × 108 5.42 × 107 6.49 × 108 1.53 × 109 5.83 × 107 4.26 × 108 2.22 × 106

MEAN 3.91 × 106 7.97 × 106 4.96 × 108 7.72 × 108 2.05 × 108 1.11 × 109 1.99 × 109 1.79 × 108 1.19 × 109 1.12 × 107

STD 2.28 × 106 4.64 × 106 1.68 × 108 2.59 × 108 9.96 × 107 2.42 × 108 2.53 × 108 9.38 × 107 4.08 × 108 5.76 × 106

CEC2
MIN 4.11 × 103 1.36 × 104 1.76 × 1010 3.19 × 1010 4.30 × 109 6.54 × 1010 7.74 × 1010 6.73 × 109 4.77 × 1010 9.76 × 104

MEAN 2.72 × 104 2.83 × 105 2.90 × 1010 5.94 × 1010 7.41 × 109 7.37 × 1010 8.67 × 1010 1.55 × 1010 7.06 × 1010 1.28 × 107

STD 2.79 × 104 3.27 × 105 5.85 × 109 1.38 × 1010 2.42 × 109 4.98 × 109 4.91 × 109 4.83 × 109 1.00 × 1010 5.40 × 107

CEC3
MIN 1.77 × 103 2.62 × 103 4.44 × 104 5.80 × 104 5.48 × 104 6.52 × 104 9.39 × 104 4.83 × 104 6.66 × 104 5.22 × 103

MEAN 5.44 × 103 6.90 × 103 7.65 × 104 8.84 × 104 1.27 × 105 7.84 × 104 9.21 × 105 6.29 × 104 8.39 × 104 1.06 × 104

STD 1.87 × 103 3.69 × 103 1.78 × 104 7.90 × 103 6.42 × 104 7.39 × 103 1.33 × 106 9.32 × 103 8.35 × 103 4.16 × 103

CEC4
MIN 4.19 × 102 4.88 × 102 1.72 × 103 4.23 × 103 8.31 × 102 6.30 × 103 1.18 × 104 8.52 × 102 5.07 × 103 4.90 × 102

MEAN 5.19 × 102 5.43 × 102 2.83 × 103 9.27 × 103 1.39 × 103 1.10 × 104 1.79 × 104 1.47 × 103 1.31 × 104 5.70 × 102

STD 3.79 × 101 4.79 × 101 7.54 × 102 3.22 × 103 4.24 × 102 3.11 × 103 3.23 × 103 5.36 × 102 4.53 × 103 5.05 × 101

CEC5
MIN 5.20 × 102 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

MEAN 5.20 × 102 5.20 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102 5.21 × 102

STD 2.38 × 10−1 3.06 × 10−1 5.20 × 10−2 8.38 × 10−2 1.08 × 10−1 6.51 × 10−2 7.36 × 10−2 9.35 × 10−2 7.12 × 10−2 1.75 × 10−1

CEC6
MIN 6.18 × 102 6.24 × 102 6.35 × 102 6.35 × 102 6.35 × 102 6.38 × 102 6.43 × 102 6.28 × 102 6.36 × 102 6.17 × 102

MEAN 6.25 × 102 6.30 × 102 6.39 × 102 6.40 × 102 6.39 × 102 6.40 × 102 6.46 × 102 6.34 × 102 6.39 × 102 6.23 × 102

STD 2.93 × 100 3.72 × 100 2.29 × 100 2.95 × 100 3.27 × 100 1.89 × 100 1.91 × 100 3.57 × 100 2.82 × 100 4.72 × 100

CEC7
MIN 7.00 × 102 7.00 × 102 8.76 × 102 9.58 × 102 7.26 × 102 1.12 × 103 1.34 × 103 7.39 × 102 1.14 × 103 7.00 × 102

MEAN 7.00 × 102 7.00 × 102 9.62 × 102 1.13 × 103 7.47 × 102 1.33 × 103 1.57 × 103 8.37 × 102 1.35 × 103 7.01 × 102

STD 4.82 × 10−2 2.23 × 10−1 4.99 × 101 9.85 × 101 1.40 × 101 1.03 × 102 8.82 × 101 5.37 × 101 9.97 × 101 2.84 × 10−1

CEC8
MIN 8.56 × 102 9.10 × 102 1.05 × 103 1.06 × 103 9.92 × 102 1.13 × 103 1.18 × 103 9.77 × 102 1.09 × 103 8.61 × 102

MEAN 9.02 × 102 9.33 × 102 1.08 × 103 1.12 × 103 1.03 × 103 1.16 × 103 1.22 × 103 1.03 × 103 1.15 × 103 8.92 × 102

STD 2.92 × 101 1.97 × 101 2.46 × 101 2.94 × 101 4.83 × 101 1.93 × 101 4.28 × 101 2.84 × 101 3.53 × 101 2.38 × 101

CEC9
MIN 1.01 × 103 1.03 × 103 1.18 × 103 1.20 × 103 1.14 × 103 1.21 × 103 1.29 × 103 1.08 × 103 1.20 × 103 9.84 × 102

MEAN 1.06 × 103 1.08 × 103 1.23 × 103 1.25 × 103 1.24 × 103 1.25 × 103 1.32 × 103 1.14 × 103 1.24 × 103 1.03 × 103

STD 2.35 × 101 2.50 × 101 2.83 × 101 2.85 × 101 6.58 × 101 2.10 × 101 2.56 × 101 3.20 × 101 2.15 × 101 2.99 × 101

CEC10
MIN 1.69 × 103 3.28 × 103 7.32 × 103 6.98 × 103 5.74 × 103 7.44 × 103 8.82 × 103 5.51 × 103 6.55 × 103 2.82 × 103

MEAN 2.78 × 103 4.74 × 103 8.00 × 103 7.69 × 103 6.45 × 103 7.90 × 103 9.91 × 103 7.02 × 103 7.39 × 103 4.09 × 103

STD 4.72 × 102 1.10 × 103 4.09 × 102 7.01 × 102 7.26 × 102 5.58 × 102 7.55 × 102 8.43 × 102 6.20 × 102 1.25 × 103

CEC11
MIN 1.23 × 103 1.57 × 103 2.26 × 103 1.85 × 103 1.59 × 103 2.26 × 103 2.99 × 103 1.70 × 103 1.71 × 103 1.27 × 103

MEAN 1.63 × 103 2.01 × 103 2.56 × 103 2.56 × 103 2.22 × 103 2.61 × 103 3.48 × 103 2.25 × 103 2.11 × 103 1.99 × 103

STD 1.75 × 102 3.45 × 102 2.54 × 102 2.59 × 102 3.67 × 102 2.28 × 102 2.77 × 102 3.19 × 102 2.84 × 102 4.29 × 102

CEC12
MIN 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103

MEAN 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103 1.20 × 103

STD 1.37 × 10−1 2.15 × 10−1 2.91 × 10−1 3.49 × 10−1 5.20 × 10−1 4.10 × 10−1 7.98 × 10−1 3.41 × 10−1 2.77 × 10−1 3.64 × 10−1

CEC13
MIN 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103

MEAN 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103 1.30 × 103

STD 6.59 × 10−2 1.02 × 10−1 1.58 × 10−1 1.08 1.89 × 10−1 6.43 × 10−1 1.13 1.64 × 10−1 1.19 9.69 × 10−2

CEC14
MIN 1.40 × 103 1.40 × 103 1.40 × 103 1.40 × 103 1.40 × 103 1.41 × 103 1.43 × 103 1.40 × 103 1.41 × 103 1.40 × 103

MEAN 1.40 × 103 1.40 × 103 1.40 × 103 1.41 × 103 1.40 × 103 1.41 × 103 1.44 × 103 1.40 × 103 1.43 × 103 1.40 × 103

STD 6.10 × 10−2 2.36 × 10−1 6.06 × 10−1 8.30 2.40 × 10−1 5.84 1.06 × 101 1.03 9.46 2.04 × 10−1

CEC15
MIN 1.50 × 103 1.50 × 103 1.51 × 103 1.51 × 103 1.50 × 103 1.76 × 103 3.23 × 103 1.50 × 103 1.58 × 103 1.50 × 103

MEAN 1.50 × 103 1.50 × 103 1.59 × 103 2.20 × 103 1.51 × 103 5.83 × 103 2.19 × 104 1.66 × 103 5.27 × 103 1.50 × 103

STD 4.57 × 10−1 1.49 4.45 × 102 1.51 × 103 5.63 3.46 × 103 2.19 × 104 8.45 × 102 5.14 × 103 5.89 × 10−1

CEC16
MIN 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103

MEAN 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103 1.60 × 103

STD 3.06 × 10−1 3.86 × 10−1 2.39 × 10−1 3.20 × 10−1 3.69 × 10−1 2.15 × 10−1 2.86 × 10−1 3.03 × 10−1 3.05 × 10−1 3.51 × 10−1

CEC17
MIN 1.77 × 103 1.96 × 103 8.48 × 103 3.77 × 103 7.57 × 103 2.59 × 105 6.07 × 105 5.17 × 103 2.89 × 104 2.24 × 103

MEAN 2.39 × 103 2.61 × 103 6.86 × 104 4.35 × 105 2.41 × 105 4.84 × 105 6.05 × 106 1.06 × 105 3.95 × 105 9.16 × 103

STD 3.66 × 102 6.66 × 102 7.75 × 104 3.62 × 105 3.35 × 105 1.17 × 105 8.34 × 106 1.82 × 105 1.76 × 105 1.04 × 104

CEC18
MIN 1.81 × 103 1.82 × 103 5.30 × 103 2.51 × 103 2.02 × 103 8.98 × 103 2.19 × 105 2.36 × 103 1.95 × 103 1.97 × 103

MEAN 1.85 × 103 1.90 × 103 3.55 × 104 1.20 × 104 9.68 × 103 1.47 × 105 2.12 × 107 1.48 × 104 1.09 × 104 9.75 × 103

STD 2.46 × 101 5.33 × 101 3.22 × 104 8.69 × 103 9.10 × 103 2.36 × 105 2.98 × 107 1.31 × 104 8.97 × 103 7.50 × 103

CEC19
MIN 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.91 × 103 1.92 × 103 1.90 × 103 1.90 × 103 1.90 × 103

MEAN 1.90 × 103 1.90 × 103 1.91 × 103 1.91 × 103 1.91 × 103 1.92 × 103 1.97 × 103 1.90 × 103 1.95 × 103 1.90 × 103

STD 9.62 × 10−1 1.37 1.26 1.19 × 101 1.43 1.48 × 101 3.64 × 101 1.02 2.95 1.68

CEC20
MIN 2.01 × 103 2.01 × 103 2.13 × 103 2.13 × 103 2.26 × 103 6.01 × 103 2.93 × 104 2.21 × 103 4.81 × 103 2.08 × 103

MEAN 2.03 × 103 2.09 × 103 8.79 × 103 3.46 × 104 1.43 × 104 3.85 × 104 3.08 × 106 1.04 × 104 9.69 × 103 3.41 × 103

STD 1.79 × 101 8.23 × 101 5.48 × 103 4.51 × 104 8.69 × 103 1.27 × 105 5.11 × 106 7.95 × 103 5.73 × 103 1.87 × 103

CEC21
MIN 2.10 × 103 2.12 × 103 4.33 × 103 3.29 × 103 1.38 × 104 9.73 × 103 4.91 × 104 3.34 × 103 3.75 × 103 2.24 × 103

MEAN 2.35 × 103 2.44 × 103 1.35 × 104 1.84 × 105 1.18 × 106 1.38 × 106 6.16 × 106 1.37 × 104 1.00 × 106 2.91 × 103

STD 1.78 × 102 2.34 × 102 5.51 × 103 8.18 × 105 3.05 × 106 2.21 × 106 1.15 × 107 8.29 × 103 1.73 × 106 4.51 × 102

CEC22
MIN 2.20 × 103 2.22 × 103 2.24 × 103 2.23 × 103 2.23 × 103 2.28 × 103 2.29 × 103 2.23 × 103 2.24 × 103 2.21 × 103

MEAN 2.22 × 103 2.24 × 103 2.30 × 103 2.35 × 103 2.32 × 103 2.43 × 103 2.78 × 103 2.28 × 103 2.43 × 103 2.30 × 103

STD 7.22 5.64 × 101 4.41 × 101 7.99 × 101 9.39 × 101 7.55 × 101 2.16 × 102 5.77 × 101 1.09 × 102 8.66 × 101

CEC23
MIN 2.50 × 103 2.50 × 103 2.64 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.50 × 103 2.63 × 103 2.50 × 103 2.50 × 103

MEAN 2.50 × 103 2.50 × 103 2.65 × 103 2.50 × 103 2.62 × 103 2.50 × 103 2.50 × 103 2.65 × 103 2.50 × 103 2.51 × 103

STD 0 0 6.76 0 4.95 × 101 0 0 8.92 0 2.24 × 101
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Table 5. Cont.

CEC2014 Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

CEC24
MIN 2.51 × 103 2.53 × 103 2.55 × 103 2.60 × 103 2.54 × 103 2.59 × 103 2.60 × 103 2.53 × 103 2.56 × 103 2.52 × 103

MEAN 2.57 × 103 2.58 × 103 2.56 × 103 2.60 × 103 2.58 × 103 2.60 × 103 2.60 × 103 2.55 × 103 2.59 × 103 2.56 × 103

STD 2.50 × 101 2.93 × 101 7.07 0 2.99 × 101 4.07 0 2.46 × 101 1.81 × 101 3.64 × 101

CEC25
MIN 2.63 × 103 2.70 × 103 2.67 × 103 2.70 × 103 2.67 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.67 × 103

MEAN 2.69 × 103 2.69 × 103 2.70 × 103 2.70 × 103 2.69 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.68 × 103

STD 1.23 × 101 1.70 × 101 1.44 × 101 0 1.53 × 101 0 0 1.55 3.43 2.70 × 101

CEC26
MIN 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103

MEAN 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.70 × 103 2.71 × 103 2.70 × 103 2.71 × 103 2.70 × 103

STD 7.71 × 10−2 8.27 × 10−2 2.06 × 10−1 1.80 × 101 1.82 × 10−1 7.36 × 10−1 1.75 × 101 1.36 × 10−1 2.45 × 101 1.17 × 10−1

CEC27
MIN 2.70 × 103 2.70 × 103 2.72 × 103 2.90 × 103 2.71 × 103 2.90 × 103 2.90 × 103 3.10 × 103 2.90 × 103 2.90 × 103

MEAN 2.83 × 103 2.84 × 103 3.05 × 103 2.89 × 103 3.18 × 103 2.90 × 103 2.90 × 103 3.14 × 103 2.92 × 103 3.00 × 103

STD 4.96 × 101 9.30 × 101 1.43 × 102 3.22 × 101 1.19 × 102 0 0 5.98 × 101 1.02 × 102 9.06 × 101

CEC28
MIN 3.00 × 103 3.00 × 103 3.24 × 103 3.00 × 103 3.00 × 103 3.00 × 103 3.00 × 103 3.17 × 103 3.00 × 103 3.03 × 103

MEAN 3.00 × 103 3.00 × 103 3.30 × 103 3.00 × 103 3.46 × 103 3.00 × 103 3.00 × 103 3.19 × 103 3.00 × 103 3.22 × 103

STD 0 0 5.49 × 101 0 2.05 × 102 0 0 9.96 × 100 0 1.44 × 102

CEC29
MIN 3.10 × 103 3.11 × 103 5.34 × 103 3.10 × 103 3.22 × 103 3.10 × 103 3.10 × 103 3.48 × 103 3.10 × 103 3.33 × 103

MEAN 3.10 × 103 6.88 × 104 2.26 × 104 2.05 × 105 2.99 × 105 3.10 × 103 3.10 × 103 5.62 × 103 7.72 × 105 8.44 × 105

STD 0 3.59 × 105 1.89 × 104 7.73 × 105 8.25 × 105 0 0 2.70 × 103 2.33 × 106 1.28 × 106

CEC30
MIN 3.20 × 103 3.49 × 103 4.13 × 103 3.73 × 103 3.79 × 103 3.20 × 103 3.20 × 103 3.79 × 103 4.89 × 103 3.46 × 103

MEAN 3.20 × 103 3.91 × 103 5.17 × 103 9.73 × 103 6.36 × 103 3.20 × 103 3.20 × 103 4.14 × 103 4.88 × 104 1.31 × 104

STD 0 4.51 × 102 1.07 × 103 1.11 × 104 1.99 × 103 0 0 2.74 × 102 1.06 × 105 3.24 × 104

Table 6 shows the results of all algorithms for all CEC2020 test functions. It can be
seen from the table that the MGTO algorithm provided the optimal results in 10 benchmark
functions, no matter the optimal value or the average value, and the MGTO algorithm
provided seven optimal results. This shows that the MGTO algorithm has a very significant
optimization effect. TD. For CEC3, CEC8, and CEC9, the MGTO algorithm was not
optimal for STD in numerical value, but its stability was also stronger than those of most
other algorithms.

Table 6. CEC2020 Algorithm Results of Benchmark Functions.

CEC2020 Metric MGTO GTO SCA ROA WOA RSA SHO SOA AOA HBA

CEC1
MIN 1.00 × 102 1.02 × 102 5.21 × 108 1.29 × 109 5.98 × 106 6.48 × 109 7.07 × 109 1.25 × 107 3.59 × 109 1.78 × 102

MEAN 8.74 × 102 2.57 × 103 1.15 × 109 4.79 × 109 6.72 × 107 1.19 × 1010 1.62 × 1010 4.00 × 108 1.01 × 1010 4.59 × 103

STD 5.15 × 102 3.18 × 103 3.57 × 108 3.22 × 109 8.06 × 107 4.44 × 109 5.00 × 109 3.69 × 108 4.32 × 109 3.93 × 103

CEC2
MIN 1.15 × 103 1.50 × 103 2.26 × 103 2.09 × 103 1.72 × 103 2.33 × 103 3.04 × 103 1.66 × 103 1.90 × 103 1.47 × 103

MEAN 1.66 × 103 2.02 × 103 2.55 × 103 2.59 × 103 2.33 × 103 2.78 × 103 3.47 × 103 2.11 × 103 2.29 × 103 1.89 × 103

STD 2.15 × 102 3.02 × 102 2.51 × 102 2.80 × 102 3.13 × 102 2.46 × 102 2.80 × 102 2.23 × 102 2.70 × 102 4.87 × 102

CEC3
MIN 7.07 × 102 7.26 × 102 7.70 × 102 7.74 × 102 7.55 × 102 7.97 × 102 8.42 × 102 7.55 × 102 7.74 × 102 7.21 × 102

MEAN 7.39 × 102 7.55 × 102 7.87 × 102 8.16 × 102 8.02 × 102 8.12 × 102 8.73 × 102 7.69 × 102 8.00 × 102 7.39 × 102

STD 1.46 × 101 1.73 × 101 1.41 × 101 2.89 × 101 2.83 × 101 1.13 × 101 2.26 × 101 1.58 × 101 1.65 × 101 1.47 × 101

CEC4
MIN 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103

MEAN 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103 1.90 × 103

STD 0 0 1.32 0 4.09 × 10−1 0 0 4.46 × 10−1 0 0

CEC5
MIN 1.78 × 103 1.94 × 103 1.25 × 104 5.46 × 103 3.68 × 103 3.26 × 105 4.12 × 105 5.66 × 103 9.75 × 103 1.87 × 103

MEAN 2.35 × 103 2.54 × 103 1.02 × 105 3.38 × 105 2.13 × 105 4.84 × 105 3.90 × 106 1.18 × 105 3.63 × 105 6.28 × 103

STD 2.73 × 102 5.79 × 102 1.16 × 105 2.98 × 105 3.73 × 105 7.88 × 104 5.11 × 106 1.85 × 105 1.72 × 105 8.09 × 103

CEC6
MIN 1.60 × 103 1.60 × 103 1.71 × 103 1.74 × 103 1.71 × 103 1.92 × 103 2.25 × 103 1.66 × 103 1.84 × 103 1.60 × 103

MEAN 1.64 × 103 1.75 × 103 1.87 × 103 1.92 × 103 1.87 × 103 2.27 × 103 2.75 × 103 1.82 × 103 2.09 × 103 1.81 × 103

STD 5.06 × 101 1.21 × 102 9.28 × 101 1.25 × 102 1.30 × 102 1.71 × 102 3.37 × 102 9.10 × 101 1.89 × 102 1.87 × 102

CEC7
MIN 2.10 × 103 2.11 × 103 4.96 × 103 2.93 × 103 8.95 × 103 2.35 × 104 3.66 × 104 3.11 × 103 5.39 × 103 2.18 × 103

MEAN 2.36 × 103 2.64 × 103 1.52 × 104 2.19 × 105 1.06 × 106 1.38 × 106 3.59 × 106 1.80 × 104 7.18 × 105 3.05 × 103

STD 2.07 × 102 6.00 × 102 1.07 × 104 7.49 × 105 2.93 × 106 2.02 × 106 3.57 × 106 3.67 × 104 1.14 × 106 7.36 × 102

CEC8
MIN 2.20 × 103 2.30 × 103 2.35 × 103 2.36 × 103 2.28 × 103 2.74 × 103 3.21 × 103 2.26 × 103 2.66 × 103 2.30 × 103

MEAN 2.30 × 103 2.30 × 103 2.46 × 103 2.74 × 103 2.52 × 103 3.29 × 103 3.97 × 103 3.02 × 103 3.10 × 103 2.30 × 103

STD 1.55 × 101 1.61 × 101 2.93 × 102 3.98 × 102 5.31 × 102 3.30 × 102 4.78 × 102 7.18 × 102 3.37 × 102 1.16 × 101

CEC9
MIN 2.50 × 103 2.50 × 103 2.77 × 103 2.72 × 103 2.60 × 103 2.81 × 103 2.86 × 103 2.74 × 103 2.77 × 103 2.74 × 103

MEAN 2.65 × 103 2.70 × 103 2.79 × 103 2.80 × 103 2.79 × 103 2.90 × 103 2.96 × 103 2.76 × 103 2.86 × 103 2.74 × 103

STD 1.22 × 102 1.11 × 102 3.66 × 101 7.18 × 101 5.20 × 101 6.80 × 101 7.01 × 101 4.58 × 101 8.25 × 101 6.91 × 101

CEC10
MIN 2.60 × 103 2.90 × 103 2.94 × 103 2.97 × 103 2.91 × 103 3.23 × 103 3.48 × 103 2.92 × 103 3.11 × 103 2.90 × 103

MEAN 2.92 × 103 2.94 × 103 2.99 × 103 3.22 × 103 2.98 × 103 3.51 × 103 3.90 × 103 2.95 × 103 3.39 × 103 2.93 × 103

STD 2.15 × 101 3.19 × 101 3.20 × 101 2.13 × 102 8.10 × 101 2.49 × 102 4.14 × 102 3.69 × 101 2.32 × 102 2.30 × 101

Analysis of Wilcoxon Rank-Sum Test Results

According to this analysis, the MGTO algorithm achieved good results in the CEC2014
and CEC2020 tests. Tables 7 and 8 show the Wilcoxon rank-sum test results for the CEC2014
and CEC2020 results, respectively. In most functions’ results, the p-values are less than 0.05,
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whereas a small part is greater than 0.05, indicating that the fitness values obtained by the
two algorithms in these functions are similar, and there is no significant difference between
them. In the results for the CEC2020 function, CEC4 function, CEC23 function, and CEC28
function, many values of 1 indicate that the MGTO algorithm obtained the same value as
these comparison algorithms. In most cases, they are less than 0.05, which shows that the
similarity between the MGTO algorithm and other algorithms is very low, and there are
significant differences.

Table 7. CEC2014 Experimental Results of Wilcoxon Rank-Sum Test on Benchmark Functions.

CEC2014
MGTO

VS
GTO

MGTO
VS

SCA

MGTO
VS

ROA

MGTO
VS

WOA

MGTO
VS

RSA

MGTO
VS

SHO

MGTO
VS

SOA

MGTO
VS

AOA

MGTO
VS

HBA

CEC1 3.32 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.41 × 10−4

CEC2 2.60 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC3 3.59 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.88 × 10−6

CEC4 4.28 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.65 × 10−1

CEC5 2.85 × 10−2 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

CEC6 3.88 × 10−4 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.64 × 10−5 1.73 × 10−6 9.63 × 10−4

CEC7 9.32 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC8 5.75 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.22 × 10−2

CEC9 7.34 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.29 × 10−6 1.73 × 10−6 6.98 × 10−6

CEC10 2.35 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 5.22 × 10−6

CEC11 1.89 × 10−4 1.73 × 10−6 1.73 × 10−6 2.35 × 10−6 1.73 × 10−6 1.73 × 10−6 2.35 × 10−6 2.88 × 10−6 2.16 × 10−5

CEC12 3.82 × 10−1 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.97 × 10−5 4.72 × 10−2

CEC13 1.64 × 10−5 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.02 × 10−5

CEC14 2.22 × 10−4 1.73 × 10−6 2.88 × 10−6 2.41 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.84 × 10−5

CEC15 1.11 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.29 × 10−1

CEC16 2.58 × 10−3 1.73 × 10−6 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 2.18 × 10−2

CEC17 4.05 × 10−1 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 4.29 × 10−6

CEC18 1.85 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC19 4.20 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 8.47 × 10−6 1.73 × 10−6 2.05 × 10−4

CEC20 8.94 × 10−4 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6

CEC21 5.45 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6

CEC22 3.39 × 10−1 1.73 × 10−6 5.75 × 10−6 2.35 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 2.13 × 10−6 3.32 × 10−4

CEC23 1 1.73 × 10−6 1 2.56 × 10−6 1 1 1.73 × 10−6 1 9.77 × 10−4

CEC24 6.96 × 10−1 1.92 × 10−6 1 1.75 × 10−2 1 1 2.60 × 10−6 3.42 × 10−2 1.15 × 10−4

CEC25 1.74 × 10−2 1.73 × 10−6 2.44 × 10−4 4.88 × 10−2 2.44 × 10−4 2.44 × 10−4 2.13 × 10−6 2.44 × 10−4 2.47 × 10−1

CEC26 5.04 × 10−1 1.73 × 10−6 1.92 × 10−6 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 4.29 × 10−6 1.73 × 10−6 7.81 × 10−1

CEC27 5.37 × 10−2 1.24 × 10−5 5.00 × 10−1 1.92 × 10−6 5.00 × 10−1 5.00 × 10−1 3.18 × 10−6 5.00 × 10−1 8.22 × 10−3

CEC28 1 1.73 × 10−6 1 1.73 × 10−6 1 1 1.73 × 10−6 5.00 × 10−1 1.73 × 10−6

CEC29 1.73 × 10−6 1.73 × 10−6 5.95 × 10−5 1.73 × 10−6 1 1 1.73 × 10−6 1.22 × 10−4 1.73 × 10−6

CEC30 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1 1 1.73 × 10−6 5.61 × 10−6 1.73 × 10−6

Table 8. CEC2020 Experimental Results of Wilcoxon Rank-Sum Test on Benchmark Functions.

CEC2020
MGTO

VS
GTO

MGTO
VS

SCA

MGTO
VS

ROA

MGTO
VS

WOA

MGTO
VS

RSA

MGTO
VS

SHO

MGTO
VS

SOA

MGTO
VS

AOA

MGTO
VS

HBA

CEC1 4.72 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 7.19 × 10−2

CEC2 1.48 × 10−4 1.73 × 10−6 1.73 × 10−6 7.69 × 10−6 1.73 × 10−6 1.73 × 10−6 4.45 × 10−5 4.29 × 10−6 1.25 × 10−2

CEC3 2.22 × 10−4 1.73 × 10−6 2.35 × 10−6 2.35 × 10−6 1.73 × 10−6 1.73 × 10−6 2.60 × 10−5 2.13 × 10−6 4.07 × 10−2

CEC4 1 1.22 × 10−4 1 3.13 × 10−2 1 1 2.50 × 10−1 1 1
CEC5 4.72 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.64 × 10−5

CEC6 2.61 × 10−4 1.73 × 10−6 4.29 × 10−6 3.18 × 10−6 1.73 × 10−6 1.73 × 10−6 8.92 × 10−5 1.73 × 10−6 1.36 × 10−4

CEC7 4.11 × 10−3 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.92 × 10−6 9.32 × 10−6

CEC8 2.70 × 10−2 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 1.73 × 10−6 6.87 × 10−2

CEC9 2.58 × 10−3 1.24 × 10−5 1.73 × 10−6 2.88 × 10−6 1.73 × 10−6 1.73 × 10−6 3.72 × 10−5 1.92 × 10−6 1.11 × 10−3

CEC10 2.80 × 10−1 4.73 × 10−6 1.73 × 10−6 1.92 × 10−6 1.73 × 10−6 1.73 × 10−6 3.82 × 10−1 1.73 × 10−6 6.73 × 10−1

4.3. Experimental Analysis between Exploration and Exploitation

In order to show that the exploration and exploitation of MGTO algorithm reach a
good balance, we carried out an exploration and exploitation balance experiment on 30
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CEC2014 functions and 10 CEC2020 functions for the MGTO algorithm. The following
Figures 6 and 7 show the specific results. Figure 6 shows the balance between exploration
and exploitation within MGTO algorithm when tested on the CEC2014 function. It can
be seen from the figure that the optimal value of most functions was obtained by a search
balance of nearly 90% exploitation and 10% exploration. For the best solution to the fifth
function of CEC2014, the algorithm was based on exploration. In the test of 10 CEC2020
functions, the MGTO algorithm also obtained most results at the balance point of 90%
exploitation and 10% exploration. Of course, only proper balance is not enough to achieve
good results. In most of the functions of the CEC2014 and CEC2020 sets, the MGTO
algorithm maintained an irregularly balanced response, which means that the shares of
exploration and exploitation continued to fluctuate. The algorithm is not always limited
to local exploitation, but it also pays attention to the comprehensive exploration of the
optimal solution that jumps out of the local optimum, which reflects the improvement of
the algorithm’s performance. It is also necessary to produce promising solutions to make
full use of the appropriate diversity of responses obtained within such a balance. Therefore,
the MGTO algorithm has a good exploration and exploitation mechanism that makes the
search scope comprehensive and extensive, which it then fully develops to obtain the global
optimal value and achieve the effect of rapid convergence.
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5. Constrained Engineering Design Problems

In this section, seven engineering problems were selected to test the optimization
performance of the MGTO algorithm. The selected engineering problems are those of
pressure vessel design, reducer design, welding beam design, tension/compression spring
design, cantilever beam design, multi plate clutch brake failure, and vehicle collision
optimization. Each algorithm was run independently 30 times. The specific experimental
results are as follows.

5.1. Pressure Vessel Design Problem

The pressure vessel design problem aims to minimize the total cost of cylindrical
pressure vessels to meet pressure requirements. There are four variables to be optimized
for this problem, namely: vessel wall thickness TS, head wall thickness Th, inner diameter
R, and vessel body length L. See Figure 8 for a detailed schematic diagram. The specific
mathematical model is as follows:
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Consider:
→
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Objective function:
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(→

x
)
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3 + 3.1661x2
1x4 + 19.84x2

1x3 (42)

Subject to:
g1(
→
x ) = −x1 + 0.0193x3 ≤ 0 (43)

g2(
→
x ) = −x3 + 0.00954x3 ≤ 0 (44)

g3(
→
x ) = −πx2

3x4 +
4
3

πx3
3
+ 1296000 ≤ 0 (45)
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g4(
→
x ) = −x4 − 240 ≤ 0 (46)

Variable Range:

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200 (47)

The results of this problem are shown in Table 9. They show that the improved MGTO
algorithm has advantages in solving pressure vessel design problems. It can be seen from
the table that the MGTO algorithm obtained TS = 0.7424, Th = 0.3702, R = 40.3196, and
L = 200; thus, the lowest cost of pressure vessels is 5734.9132. Among the algorithms
used for comparison, eight algorithms generated cost values greater than 6000, and three
algorithms generated cost values less than 6000.

Table 9. Experimental results of the pressure vessel design problem test.

Algorithm Ts Th R L Best Cost

MGTO 0.7424 0.3702 40.3196 200.0000 5734.9132

MGTOA [29] 0.754363 0.366375 40.42809 198.5652 5752.402458
EO [2] 1.0480 0.5114 55.3848 60.6465 6470.6125

HBA [28] 1.2404 0.5844 65.2252 10.0000 7141.3612
GWO [14] 0.8125 0.4375 42.0984 176.6366 6059.7143
HHO [18] 1.2492 0.5810 65.2139 10.0487 7149.8665
WOA [19] 0.8125 0.4375 42.09845 176.6366 6059.714335
MVO [3] 1.2269 0.5928 64.3294 14.0578 7106.0065
ACO [30] 0.8125 0.4375 42.10362 176.7387 6059.0888
NGO [31] 0.7427 0.3708 40.3199 200.0000 5735.0462
EROA [32] 0.84343 0.400762 44.786 145.9578 5935.7301
PSO [13] 0.8861 0.4306 46.9699 124.3784 6024.2816

5.2. Speed Reducer Design Problem

The speed reducer design problem’s goal is to minimize the weight of the speed
reducer. There are seven variable restrictions and four design constraints. The constraints
are the bending stress of the gear teeth, covering stress, lateral deflection of the shaft, and
stress in the shaft. The seven decision variables are tooth face width x1, gear module x2,
number of teeth on pinion x3, length of the first shaft between bearings x4, length of the
second shaft between bearings x5, the diameter of the first shaft x6, and diameter of the
second shaft x7. The variable diagram is shown in Figure 9.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5 x6 x7] (48)
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Objective function:

f (
→
x ) = 07854× x1 × x2

2 × (3.3333× x3
2 + 14.9334× x3−

43.0934)− 1.508× x1 × (x6
2 + x7

2) + 7.4777× x6
3 + x7

3+
0.7854× x4 × x6

2 + x5 × x7
2

(49)

Subject to:

g1(
→
x ) =

27
x1 × x22 × x3

− 1 ≤ 0 (50)

g2(
→
x ) =

397.5
x1 × x22 × x32 − 1 ≤ 0 (51)

g3(
→
x ) =

1.93× x4
3

x2 × x3 × x64 − 1 ≤ 0 (52)

g4(
→
x ) =

1.93× x5
3

x2 × x3 × x74 − 1 ≤ 0 (53)

g5(
→
x ) =

1
110× x63 ×

√
(

745× x4

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (54)

g6(
→
x ) =

1
85× x73 ×

√
(

745× x5

x2 × x3
)

2
+ 16.9× 106 − 1 ≤ 0 (55)

g7(
→
x ) =

x2 × x3

40
− 1 ≤ 0 (56)

g8(
→
x ) =

5× x2

x1
− 1 ≤ 0 (57)

g9(
→
x ) =

x1

12× x2
− 1 ≤ 0 (58)

g10(
→
x ) =

1.5× x6 + 1.9
x4

− 1 ≤ 0 (59)

g11(
→
x ) =

1.1× x7 + 1.9
x5

− 1 ≤ 0 (60)

Variable range:

2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3,
7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5 ≤ x7 ≤ 5.5

(61)

The MGTO algorithm obtained the optimal solution of 2988.2713, and the correspond-
ing variable values for this solution are x1 = 3.47641, x2 = 0.7, x3 = 17, x4 = 7.3, x5 = 7.8,
x6 = 3.3486, and x7 = 5.27678. Therefore, the MGTO algorithm can effectively solve this
problem. The results of the reducer design problem test are shown in Table 10.

Table 10. Experimental results of the speed reducer design problem test.

Algorithm
Optimal Values for Variables Optimal

Weightx1 x2 x3 x4 x5 x6 x7

MGTO 3.47641 0.7 17 7.3 7.8 3.3486 5.27678 2988.2713

MDA [33] 3.5 0.7 17 7.3 7.67039 3.54242 5.2481 3019.5833
MFO [34] 3.497455 0.7 17 7.82775 7.712457 3.351787 5.286352 2998.94083

CS [35] 3.5015 0.7 17 7.605 7.8181 3.352 5.2875 3000.981
RSA [27] 3.50279 0.7 17 7.30812 7.74715 3.35067 5.28675 2996.5157
HS [36] 3.520124 0.7 17 8.37 7.8 3.36697 5.288719 3029.002
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5.3. Welded Beam Design Problem

As shown in Figure 10, the purpose of the welded beam design problem is to minimize
the total cost of the design of welded beams. The problem is composed of four decision
variables and seven constraints. The four decision variables are weld width h, connecting
beam length l, beam height t, and connecting beam thickness b. The objective function,
constraint conditions, and variable range of the problem are as follows:
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4] = [h l t b] (62)

Objective function:

f (x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) (63)

Subject to:
g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0 (64)

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0 (65)

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0 (66)

g4

(→
x
)
= x1 − x4 ≤ 0 (67)

g5

(→
x
)
= P− Pc

(→
x
)
≤ 0 (68)

g6

(→
x
)
= 0.125− x1 ≤ 0 (69)

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 0.5 ≤ 0 (70)

where:

τ
(→

x
)
=

√
(τ′)2 + 2τ′τ′′

x2

2R
+ (τ′′ ), τ′ =

P√
2x1x2

, τ′′ =
MR

J
, (71)

M = P
(

L +
x2

2

)
, R =

√
x2

2
4

+

(
x1 + x3

2

)2
, σ
(→

x
)
=

6PL
x4x2

3
, (72)

J = 2

{√
2x1x2

[
x2

x
4

+

(
x1 + x3

2

)2
]}

, δ
(→

x
)
=

6PL3

Ex4x2
3

, (73)

Pc

(→
x
)
=

4.013E
√

x2
3x6

4
0

L2 ,

(
1− x3

2L

√
E

4G

)
,

(
1− x3

2L

√
E

4G

)
, (74)

P = 6000lb, L = 14 in, δmax = 0.25in, E = 30× 106 psi, (75)

τmax = 13600 psi, and σmax = 30000 psi (76)
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Variable range:

0.1 ≤ xi ≤ 2, i = 1, 4; 0.1 ≤ xi ≤ 10, i = 2.3 (77)

Table 11 shows the operating results for the design of welded beams. It can be seen
from the table that the MGTO algorithm obtains the minimum cost of welded beam design
of 1.6952, and the corresponding decision variables are h = 0.2057, l = 3.2531, t = 9.03662,
and b = 0.2057. Compared to the GTO, WOA, ROA, GWO, GA, MFO, MVO, GSA, and TSA
algorithms, the MGTO algorithm has better practicability.

Table 11. Experimental results of the welded beam design problem test.

Algorithm h l t b Best Weight

MGTO 0.2057 3.2531 9.03662 0.2057 1.6952

GTO [21] 0.2094 3.21 8.9565 0.2094 1.7087
WOA [19] 0.20536 3.48293 9.03746 0.206276 1.730499
ROA [16] 0.200077 3.365754 9.011182 0.206893 1.706447
GWO [14] 0.205676 3.478377 9.03681 0.205778 1.72624

GA [37] 0.1829 4.0483 9.3666 0.2059 1.8242
MFO [34] 0.2057 3.4703 9.0364 0.2057 1.72452
MVO [3] 0.205463 3.473193 9.044502 0.205695 1.72645
GSA [38] 0.182129 3.856979 10 0.202376 1.879952
TSA [39] 0.24415 6.223 8.2955 0.2444 2.3824

MROA [40] 0.2062185 3.254893 9.020003 0.206489 1.699058

5.4. Tension/Compression Spring Design Problem

The purpose of the tension/compression spring design problem is to minimize the
weight of the spring, as shown in Figure 11. Three constraints affecting frequency, shear
stress, and deflection in this optimization problem should be satisfied. At the same time,
there are three decision variables: conductor diameter d, average coil diameter D, and
effective coil number N.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3] = [d D N] (78)

Objective function:
f (x) = (x3 + 2)× x2 × x2

1 (79)

Subject to:

g1(x) = 1−
x3 × x3

2
71785× x4

1
≤ 0 (80)

g2(x) =
4× x2

2 − x1 × x2

12566× x4
1

+
1

5108× x2
1
− 1 ≤ 0 (81)
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g3(x) = 1− 140.45× x1

x2
2 × x3

≤ 0 (82)

g4(x) =
x1 + x2

1.5
− 1 ≤ 0 (83)

Variable range:
0.05 ≤ x1 ≤ 2.0; 0.25 ≤ x2 ≤ 1.3;
2.0 ≤ x3 ≤ 15.0

(84)

The results show that the MGTO algorithm was effective at solving this problem. The
optimization results of the MGTO algorithm and other algorithms are shown in Table 12. It
can be seen from the table that the results obtained by the MGTO algorithm were far better
than other comparison algorithms, and the minimum weight obtained was 0.009872, where
d = 0.05, D = 0.37443, and V = 8.546566.

Table 12. Experimental results of the tension/compression spring design problem.

Algorithm d D V Best Weight

MGTO 0.05 0.37443 8.546566 0.009872

SSA [41] 0.051207 0.345215 12.00403 0.012676
ES [9] 0.051989 0.363965 10.89052 0.012681

PSO [13] 0.051728 0.357644 11.24454 0.012675
EROA [32] 0.053799 0.46951 5.811 0.010614
HHO [18] 0.051796 0.359305 11.13886 0.012665

HS [36] 0.051154 0.349871 12.07643 0.012671
AO [42] 0.0502439 0.35262 10.5425 0.011165
DE [12] 0.051609 0.354714 11.41083 0.01267

5.5. Cantilever Beam Design Problem

The goal of the cantilever beam design problem is to minimize the weight of the
cantilever. The decision variable is the height or width of five hollow square blocks with a
constant thickness. The cantilever beam design problem model is shown in Figure 12.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5] (85)

Objective function:

f (x) = 0.0624(x1 + x2 + x3 + x4 + x5) (86)

Subject to:

g(x) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0 (87)
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Variable range:
0.01 ≤ xi ≤ 100(i = 1, 2, · · · 5) (88)

The test results of the cantilever beam design problem can be seen in Table 13. It
can be seen from the table that compared to the WOA, BWO, PSO, GSA, ERHHO, and
SCA algorithms, the weight obtained by the MGTO algorithm was the best weight at
1.33995647611238, which proves the feasibility and effectiveness of the MGTO algorithm in
solving the cantilever beam design problem.

Table 13. Experimental results of the cantilever beam design problem test.

Algorithm
Optimal Values for Variables

Optimum Weight
x1 x2 x3 x4 x5

MGTO 6.0142 5.3107 4.4942 3.5010 2.15338 1.33995647611238

WOA [19] 5.1261 5.6188 5.0952 3.9329 2.3219 1.37873150673956
BWO [43] 6.2094 6.2094 6.2094 6.2094 6.2094 1.93736251728534
PSO [13] 6.0040 5.2950 4.4915 3.5125 2.1710 1.33998298081255
GSA [38] 5.6052 4.9553 5.6619 3.1959 3.2026 1.41155753917296

ERHHO [44] 6.0509 5.2639 4.514 3.4605 2.1878 1.3402
SCA [6] 5.1096 5.9911 5.0150 3.7095 3.2744 1.44143866919587

5.6. Multiple Disc Clutch Brake Problem

The goal of the multiple disc clutch brake problem is to find five variables of the
minimum-mass multi-plate brake. The problem has eight constraints. The five variables
are the inner radius ri, outer radius ro, brake disc thickness t, driving force F, and surface
friction number Z. Its model is shown in Figure 13.
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The mathematical formulation of this problem is shown below:
Consider:

x = [x1 x2 x3 x4 x5] = [ri ro t F Z] (89)

Objective function:

f (x) = II
(

r2
o − r2

i

)
t(Z + 1)ρ (ρ = 0.0000078

)
(90)

Subject to:
g1(x) = ro − ri − ∆r ≥ 0 (91)

g2(x) = lmax − (Z + 1)(t + δ) ≥ 0 (92)

g3(x) = Pmax − Prz ≥ 0 (93)
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g4(x) = Pmaxνsr max − Przυsr ≥ 0 (94)

g5(x) = νsr max − υsr ≥ 0 (95)

g6(x) = Tmax − T ≥ 0 (96)

g7(x) = Mh − sMs ≥ 0 (97)

g8(x) = T ≥ 0 (98)

Variable range:

60 ≤ x1 ≤ 80, 90 ≤ x2 ≤ 110, 1 ≤ x3 ≤ 3,
600 ≤ x4 ≤ 1000, 2 ≤ x5 ≤ 9

(99)

Other parameters:

Mh =
2
3

µFZ
r3

o − r2
i

r2
o − r3

i
, Prz =

F
II
(
r2

o − r2
i
) , (100)

υrz =
2II
(
r3

o − r3
i
)

90
(
r2

o − r2
i
) , T =

IzII n

30
(

Mh + M f

) (101)

∆r = 20 mm, Iz = 55 kgmm2, Pmax = 1 MPa, Fmax = 1000 N, (102)

Tmax = 15 s, µ = 0.5, s = 1.5, Ms = 40 Nm, M f = 3 Nm, (103)

n = 250 rpm, υsr max = 10 m/s, lmax = 30 mm (104)

In Table 14, we can observe that with the decision variables x1 = 70, x2 = 90, x3 = 1,
x4 = 600, and x5 = 2, the MGTO algorithm provided the best weight of 0.235242. Obviously,
the MGTO algorithm is superior to other algorithms in solving this problem.

Table 14. Experimental results of the multiple disc clutch brake problem test.

Algorithm
Optimal Values for Variables

Optimum Weight
x1 x2 x3 x4 x5

MGTO 70 90 1 600 2 0.235242

TLBO [45] 70 90 1 810 3 0.313656611
WCA [46] 70 90 1 910 3 0.313656
SCA [6] 69.516 90 1 1000 2 0.24019

CMVO [47] 70 90 1 910 3 0.313656
MFO [34] 70 90 1 910 3 0.313656

5.7. Car Crashworthiness Design

The car crashworthiness design problem’s goal is to balance a vehicle’s safety per-
formance with the total mass to ensure the vehicle’s safety performance while remaining
lightweight. Its model can be seen in Figure 14. This problem needs to be satisfied with ten
constraints and, at the same time, needs to minimize an objective function with 11 decision
variables. The decision variables are the internal thickness of the B-pillar, the thickness of
the B-pillar reinforcement, the internal thickness of the floor, the thickness of the beam, the
thickness of the door beam, the width of the door safety belt line reinforcement, the internal
materials of the B-pillar, the internal materials of the floor, the height of the obstacle, and
the impact position of the obstacle. The abdominal load, upper viscosity standard, middle
viscosity standard, lower viscosity standard, upper rib deflection, middle rib deflection,
lower rib deflection, pubic symphysis force, B-pillar midpoint velocity, and B-pillar front
door velocity are constraints.
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The mathematical formulation of this problem is shown below:
Minimize:

f (
→
x ) = Weight, (105)

Subject to:
g1(
→
x ) = Fa(load in abdomen) ≤ 1 kN, (106)

g2(
→
x ) = V × Cu(dummy upper chest) ≤ 0.32 m/s, (107)

g3(
→
x ) = V × Cm(dummy middle chest) ≤ 0.32 m/s, (108)

g4(
→
x ) = V × Cl(dummy lower chest) ≤ 0.32 m/s, (109)

g5(
→
x ) = ∆ur(upper rib deflection) ≤ 32 mm, (110)

g6(
→
x ) = ∆mr(middle rib deflection) ≤ 32 mm, (111)

g7(
→
x ) = ∆lr(lower rib deflection) ≤ 32 mm, (112)

g8(
→
x ) = F(Public force)p ≤ 4 kN, (113)

g9(
→
x ) = VMBP(Velocity of V−

Pillar at middle point) ≤ 9.9 mm/ms,
(114)

g10(
→
x ) = VFD(Velocity of front door at V−

Pillar) ≤ 15.7 mm/ms,
(115)

Variable Range:

0.5 ≤ x1 − x7 ≤ 1.5, x8, x9 ∈ (0.192, 0.345),−30 ≤ x10, x11 ≤ 30, (116)

Table 15 shows the test results of all algorithms for vehicle crashworthiness. It can
be seen from the table that the MGTO algorithm obtained the best weight of 23.18916
among all other algorithms; thus, the MGTO algorithm is an effective algorithm to solve
this problem.
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Table 15. Experimental results of the car crashworthiness design problem test.

Algorithm MGTO GTO [21] ROA [16] MPA [48] SOA [17] HHOCM
[49]

MSCSO
[50] MALO [51]

x1 0.5 0.5 0.5 0.5 0.50063 0.500164 0.50011 0.5
x2 1.2292 1.2607 1.22942 1.22823 1.25921 1.248612 1.22826 1.2281
x3 0.5 0.5 0.5 0.5 0.5 0.659558 0.50001 0.5
x4 1.20079 1.1495 1.21197 1.2049 1.26308 1.098515 1.20254 1.2126
x5 0.5 0.6205 0.5 0.5 0.9377 0.757989 0.50019 0.5
x6 1.07605 0.8860 1.37798 1.2393 1.11573 0.767268 1.05280 1.308
x7 0.5 0.5 0.50005 0.5 0.5 0.500055 0.50002 0.5
x8 0.345 0.34485 0.34489 0.34498 0.334889 0.343105 0.34499 0.3449
x9 0.345 0.344608 0.19263 0.192 0.252275 0.192032 0.33595 0.2804
x10 0.62110 6.202292 0.62239 0.44035 4.3435 2.898805 0.46117 0.4242
x11 0.64810 7.3429 - 1.78504 16.2208 - 1.05012 4.6565

Best Weight 23.18916 23.4084 23.23544 23.19982 24.42114 24.48358 23.19085 23.2294

6. Conclusions

This paper proposes three strategies to improve the performance of the traditional
GTO algorithm, and the improved algorithm is called MGTO. First, the shrinkage control
factor fusion strategy improves the algorithm’s search space and reduces search blindness.
Second, the sine cosine interaction fusion strategy based on closeness is proposed to
enhance and stabilize the performance between the silverback gorilla and other gorilla
individuals. Finally, the gorilla individual difference identification strategy is used to
reduce the difference between the silverback gorilla and gorilla individuals to improve the
quality of the optimal solution.

In order to verify the effectiveness of the algorithm, a comprehensive evaluation was
conducted on 23 classical benchmark functions, 30 CEC2014 benchmark functions, and
10 CEC2020 benchmark functions. The proposed MGTO algorithm was compared with
the original GTO algorithm and eight other advanced optimization algorithms. The final
results show that MGTO is a very excellent algorithm and is superior to other optimization
algorithms in terms of exploitation, exploration, convergence speed, etc. At the same
time, in order to further verify the superiority of the algorithm, seven complex, highly
constrained, and challenging practical engineering problems were used for testing, and the
MGTO algorithm’s performance was compared with those of other algorithms. The results
also prove the efficient ability of the MGTO algorithm to solve complex practical problems.

In future work, we hope that the MGTO algorithm can be used for its superior per-
formance in more practical problems, such as image segmentation, feature selection, etc.
Further evaluation of the algorithm’s performance compared to other optimization al-
gorithms should be performed on a wider range of engineering optimization problems,
especially those with complex constraints. Modifying the algorithm to handle multi-
objective optimization problems is becoming increasingly common in engineering. The
sensitivity of the algorithm’s performance to its hyperparameters and optimizing them for
better performance should be investigated. It should also be applied to real-world engineer-
ing optimization problems to demonstrate its practical utility. Finally, the integration of
machine learning techniques should be explored to enhance the algorithm’s performance,
such as incorporating neural networks to improve its global search capability.
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