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Abstract: The mixture of Gaussian process functional regressions (GPFRs) assumes that there is
a batch of time series or sample curves that are generated by independent random processes with
different temporal structures. However, in real situations, these structures are actually transferred
in a random manner from a long time scale. Therefore, the assumption of independent curves is not
true in practice. In order to get rid of this limitation, we propose the hidden-Markov-based GPFR
mixture model (HM-GPFR) by describing these curves with both fine- and coarse-level temporal
structures. Specifically, the temporal structure is described by the Gaussian process model at the
fine level and the hidden Markov process at the coarse level. The whole model can be regarded
as a random process with state switching dynamics. To further enhance the robustness of the model,
we also give a priori parameters to the model and develop a Bayesian-hidden-Markov-based GPFR
mixture model (BHM-GPFR). The experimental results demonstrated that the proposed methods
have both high prediction accuracy and good interpretability.

Keywords: Gaussian processes; functional data analysis; time series forecasting; hidden Markov
model; EM algorithm
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1. Introduction

The time series considered in this paper has a multi-scale structure: the coarse level
and the fine level. We have observations (y1, . . . , yT), where each yt = (yt,1, . . . , yt,L) itself
is a time series of length L. The whole time series is arranged as

y1,1, y1,2, . . . , y1,L , y2,1, y2,2, . . . , y2,L , . . . , yT,1, yT,2, . . . , yT,L. (1)

The subscripts {yt}T
t=1 are called coarse-level indices, while the subscripts {yt,i}L

i=1
are called fine-level indices. Throughout this paper, we took the electricity load dataset
as a concrete example, as illustrated in Figure 1. The electricity load dataset consists
of T = 365 consecutive daily records, and in each day, there are L = 96 samples recorded
every quarter-hour. In this example, the coarse-level indices denote “day”, while the fine-
level indices correspond to the time resolution of 15 min. The aim was to forecast both
short-term and long-term electricity loads based on historical records. There may be partial
observations yT+1,1, . . . , yT+1,M with M < L, so the entire observed time series has the form:

y1,1, y1,2, . . . , y1,L , y2,1, y2,2, . . . , y2,L , . . . , yT,1, yT,2, . . . , yT,L, yT+1,1, . . . , yT+1,M . (2)

The task is to predict future response yt∗ ,i∗ , where t∗ ≥ T + 1, 1 ≤ i∗ ≤ L are posi-
tive integers.
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The coarse level and fine level provide different structural information about the data
generation process. In the coarse level, each yt can be regarded as a time series, and there is
a certain cluster structure [1,2] underlying these time series {yt}T

t=1: we can divide {yt}T
t=1

into groups such that the time series within each group share a similar evolving trend. Back
to the electricity load dataset, such groups correspond to different electricity consumption
patterns. We use zt to denote the cluster label of yt. In the fine level, observations {yt,i}L

i=1
can be regarded as a realization of a stochastic process, and the properties of the stochastic
process are determined by the cluster label zt.
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Figure 1. An illustration of multi-scale time series.

The mixture of Gaussian processes functional regression (mix-GPFR) model [1,3] is
powerful for analyzing functional data or batch data, and it is applicable to the multi-scale
time series forecasting task. Mix-GPFR assumes there are K Gaussian process functional
regression (GPFR) [4] components, and associated with each yt, there is a latent variable zt
indicating which yt is generated by which GPFR component. Since GPFR is good at cap-
turing temporal dependency, this model successfully utilizes the structure information
in the fine level. However, the temporal information in the coarse level is totally ignored
since mix-GPFR assumes {zt}T

t=1 are i.i.d.
In this work, we propose to model the temporal dependency in the coarse level

by the hidden Markov model, which characterizes the switching dynamics of z1, . . . , zT
by the transition probability matrix. We refer to the proposed model as HM-GPFR.
Mix-GPFR is able to effectively predict yT+1,M+1, . . . , yT+1,L when M > 0. To predict
the responses yT+1,i∗ , we must determine the cluster label zT+1 based on observations
yT+1,1, . . . , yT+1,M; otherwise, we do not know which yT+1 is governed by which evolving
pattern. If there is no observation at day T + 1 (i.e., M = 0), then mix-GPFR fails to identify
the stochastic process that generates yT+1. For the same reason, mix-GPFR is not suitable
for long-term forecasting (t∗ > T + 1). On the other hand, HM-GPFR is able to infer
zt∗ for any t∗ based on the transition probabilities of the hidden Markov model even for
M = 0. Therefore, HM-GPFR makes use of coarse-level temporal information and solves
the cold start problem in mix-GPFR. Besides, when a new day’s records yT+1 have been
fully observed, one needs to re-train a mix-GPFR model to utilize yT+1, while HM-GPFR
can adjust the parameters incrementally without retraining the model.

2. Related Works

The Gaussian process [5] is a powerful non-parametric Bayesian model. In [6–8], The
GP was applied for time series forecasting. Shi et al.proposed the GPFR model to process
batch data [4]. To effectively model multi-modal data, the mixture structure was further
introduced to GPFR, and the mix-GPFR model was proposed [1,3]. In [2,9,10], GP-related
methods for electricity load prediction were evaluated thoroughly. However, in these works,
daily records were treated as i.i.d. samples, and the temporal information in the coarse
level was ignored.
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Multi-scale time series were proposed in [11,12], and further developments in this
direction have been achieved in recent years. The time series considered in this work is
different from the multi-scale time series since, at the coarse level, there is no aggregated
observation from the samples at the fine level. In this paper, we mainly emphasize the multi-
scale structure of the time series.

3. Preliminaries
3.1. Hidden Markov Model

For a sequence of observations {yt}T
t=1, the hidden Markov model (HMM) [13,14]

assumes there is a hidden state variable zt associated with yt. The sequence of hidden
states {zt}T

t=1 forms a homogeneous Markov process. Usually, {zt}T
t=1 are categorical

variables taking values in {1, . . . , K}, and the transition dynamics is governed by P(zt =
l|zt−1 = k) = Pkl . There are K groups of parameters {θk}K

k=1, and zt = k indicates that
the observation yt is generated by P(y; θk). The goal of learning is to identify the parameters
and infer the posterior distribution of hidden states {zt}T

t=1. Usually, the Baum–Welch
algorithm [15,16] is utilized to learn the HMM, which can be regarded as a specifically
designed EM algorithm based on the forward–backward algorithm. Once the model has
been trained, we are able to simulate the future behavior of the system.

3.2. Gaussian Process Functional Regressions

The Gaussian process is a stochastic process for which any finite-dimensional dis-
tribution of samples is a multivariate Gaussian distribution. The property of a Gaus-
sian process is determined by the mean function and the covariance function. We write
the mean function as µ(·) and the covariance function as c(·, ·). Suppose that we have
a dataset D = {(xi, yi)}L

i=1. The relationship between the input and output is connected
by a function Y , i.e., Y (xi) = yi. Let x = [x1, x2, . . . , xL]

T, y = [y1, y2, . . . , yL]
T, then

we assume y|x ∼ N (µ, C), where µ = [µ(x1), µ(x2), . . . , µ(xL)]
T and Cij = c(xi, xj). In

machine learning, the mean function and the covariance function are usually parame-
terized. Here, we used the squared exponential covariance function [2,3,5] c(xi, xj; θ) =

θ2
1 exp

(
−θ2

2
(xi−xj)

2

2

)
+ θ2

3δij, where δij is the Kronecker delta function and θ = [θ1, θ2, θ3].

The mean function is modeled as a linear combination of B-spline basis functions [3,4].
Suppose that we have D B-spline basis functions {φd(x)}D

d=1. Let µ(x) = ∑D
d=1 bdφd(x) and

Φ be an L× D matrix with Φid = φd(xi), b = [b1, b2, . . . , bD]
T, then y|x ∼ N (Φb, C). From

the function perspective, this model can be denoted as Y (x) ∼ GPFR(x; b, θ).
We can use the Gaussian process to model the multi-scale time series considered in this

paper, and the key point is transform the multi-scale time series into a batch dataset. For
each coarse-level index t, we can construct a dataset Dt = {(xt,i, yt,i)}L

i=1, where xt,i is
the sampling time of the i-th sample in time series yt. Let Yt be the function underlying
dataset D, i.e., Yt(xt,i) = yt,i, then these {Dt}T

t=1 can be regarded as independent realiza-

tions of a GPFR, which assumes Yt(x) i.i.d.∼ GPFR(x; b, θ). Without loss of generality, we
may assume xt,i = i, and thus, Φid = φd(i), Cij = c(i, j; θ) do not depend on the coarse-level
index t. Therefore, it is equivalent to assume {yt}T

t=1 are independently and identically
distributed asN (Φb, C). To learn the parameters b and θ, we applied the Type-II maximum
likelihood estimation technique [3,5].

As for prediction, given a new record {(xt∗ ,i, yt∗ ,i)}M
i=1 and that we want to predict

the corresponding output yt∗ ,i∗ at xt∗ ,i∗ , where M < i∗ ≤ L, from the definition of the Gaus-
sian process, we immediately know that yt∗ ,i∗ also obeys a Gaussian distribution [5]. Let

x∗ = [xt∗ ,1, . . . , xt∗ ,M]T, y∗ = [yt∗ ,1, . . . , yt∗ ,M]T, (3)

µ∗ = [µ(xt∗ ,1) , . . . , µ(xt∗ ,M)]T, [C∗]ij = c(xt∗ ,i, xt∗ ,j), (4)

then the mean of yt∗ ,i∗ is µ(xt∗ ,i∗) + c(xt∗ ,i∗ , x∗)C−1
∗ (y∗ − µ∗) and the variance of yt∗ ,i∗ is

c(xt∗ ,i∗ , xt∗ ,i∗)− c(xt∗ ,i∗ , x∗)C−1
∗ c(x∗, xt∗ ,i∗). Note that, if M = 0, the prediction is simply



Mathematics 2023, 11, 1259 4 of 24

given by N (µ(xt∗ ,i∗), c(xt∗ ,i∗ , xt∗ ,i∗)), which equals the prior distribution of yt∗ ,i∗ and fails
to utilize the temporal dependency with recent observations. In the electricity load pre-
diction example, this means we can only effectively predict a new day’s electricity loads
when we already have the first few observations of this day. In practice, however, it is very
common to predict a new day’s electricity loads from scratch.

3.3. The Mixture of Gaussian Process Functional Regressions

GPFR implicitly assumes that all {yt}T
t=1 are generated by the same stochastic process,

which is not the case in practice. In real applications, they may be generated from different
signal sources; thus, a single GPFR is not flexible enough to model all the time series,
especially when there are a variety of evolving trends. Take the electricity load dataset
for example: the records corresponding to winter and summer are very likely to have
significantly different trends and shapes. To solve this problem, Shi et al. [1] suggested in-
troducing the mixture structure to GPFR and proposed the mixture of Gaussian process
functional regressions (mix-GPFR). In mix-GPFR, there are K GPFR components with differ-
ent parameters {bk, θk}K

k=1, and the mixing proportion of the k-th GPFR component is πk.
Intuitively, there are K different signal sources or evolving patterns in mix-GPFR to describe
temporal data with different temporal properties. For each yt, there is an associated latent
indicator variable zt ∈ {1, 2, . . . , K}, and zt = k indicates that yt is generated by the k-th
GPFR component. The generation process of mix-GPFR is

zt
i.i.d.∼ Categorical(π1, π2, . . . , πK) ,

Yt(x)|zt = k ∼ GPFR(x; bk, θk) .
(5)

Let Ck ∈ L× L be the covariance matrix calculated by θk, i.e., [Ck]ij = c(i, j; θk), then
the above equation is equivalent to yt ∼ N (Φbk, Ck).

Due to the existence of latent variables, the parameter learning of mix-GPFR involves
the EM algorithm [1,17]. As for prediction, K GPFR components of mix-GPFR first make
predictions individually, then we weight these predictions based on the posterior prob-
ability P(zt∗ = k|yt∗ ; bk, θk). Note that if M = 0, then P(zt∗ = k|yt∗ ; bk, θk) = πk, which
equals the mixing proportions and also fails to utilize recent observations. Therefore,
mix-GPFR also suffers from the cold start problem.

4. Hidden-Markov-Based Gaussian Process Functional Regression Mixture Model
4.1. Model Specification

Similar to mix-GPFR, the hidden-Markov-based Gaussian process functional regres-
sion mixture model also assumes the time series is generated by K signal sources. The key
difference is that the signal source may switch between consecutive observations in the time
resolution of the coarse level. The temporal structure in the coarse level is characterized
by the transition dynamics of {zt}T

t=1, and the temporal dependency in the fine level is
captured by Gaussian processes. Precisely,

z1 ∼ Categorical(π1, π2, . . . , πK),

P(zt = l|zt−1 = k) = Pkl , t = 2, 3, . . . , T

Yt(x)|zt = k ∼ GPFR(x; bk, θk) , t = 1, 2, . . . , T.

(6)

Here, π = [π1, π2, . . . , πK] is the initial state distribution, and P = [Pkl ]K×K is the tran-
sition probability matrix. We refer to this model as HM-GPFR, and the probabilistic
graphical model is shown in Figure 2. In GPFR and mix-GPFR, the observations {yt}T

t=1
are modeled as independent and exchangeable realizations of stochastic processes; thus,
the temporal structure in the coarse level is destroyed. However, in HM-GPFR, consecutive
yt−1, yt are connected by the transition dynamics of their corresponding latent variables
zt−1, zt, which is more suitable for time series data. For example, if today’s electricity loads
are very high, then it is unlikely that tomorrow’s electricity loads are extremely low.
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y1 y2 . . . yN

z1 z2 . . . zN

θk, γk, bk

Pklπ

k = 1, 2 . . . ,K

k, l = 1, 2, . . . ,K

(a)

y1 y2 . . . yN

z1 z2 . . . zN

θk, γk bk mb,Σb

Pkl a0
π

k = 1, 2 . . . ,K

k, l = 1, 2, . . . ,K

(b)

Figure 2. Probabilistic graphical models of HM-GPFR (a) and BHM-GPFR (b).

4.2. Learning Algorithm

Due to the existence of latent variables {zt}T
t=1, we applied the EM algorithm to learn

the HM-GPFR model. We write T = {Dt}T
t=1 to denote observations, Θ = {Pkl}K

k,l=1 ∪
{πk, bk, θk}K

k=1 to denote all parameters, and Ω = {zt}T
t=1 to denote all latent variables.

First, the complete data log-likelihood is

L(Θ; T , Ω) =
K

∑
k=1

I(z1 = k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

I(zt+1 = l, zt = k) log Pkl

+
T

∑
t=1

K

∑
k=1

I(zt = k) logP(yt; bk, θk).

(7)

In the E-step of the EM algorithm, we need to calculate the expectation of Equation (7)
with respect to the posterior distribution of latent variables Ω to obtain the Q-function.
However, it is not necessary to explicitly calculate P(Ω|T ; Θ), which is a categorical
distribution with KN possible values, and it suffices to obtain P(zt+1 = l, zt = k|T ; Θ) and
P(zt = k|T ; Θ). We first introduce some notations as follows:

αt(k) = P(y1, y2, . . . , yt, zt = k; Θ),

βt(k) = P(yt+1, yt+2, . . . , yT |zt = k; Θ),

γt(k) = P(zt = k|T ; Θ),

ξt(k, l) = P(zt = k, zt+1 = l|T ; Θ) .

(8)

The key point is to calculate γt(k) and ξt(k, l). Note that

γt(k) = P(zt = k|T ; Θ) ∝ P(zt = k, T ; Θ) = αt(k)βt(k),

ξt(k, l) = αt(k)PklN (yt+1; Φbl , Cl)βt+1(l).
(9)

Therefore, the problem boils down to calculating αt(k) and βt(k). We can derive them
recursively based on the forward–backward algorithm [16,18]. According to the definition
of αt(k), we have

α1(k) = πkN (y1; Φbk, Ck) , αt(k) =

(
K

∑
l=1

αt−1(l)Plk

)
N (yt; Φbk, Ck). (10)
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Similarly, according to the definition of βt(k), we have

βT(k) = 1 , βt(k) =
K

∑
l=1

PklN (yt+1; Φbl , Cl)βt+1(l). (11)

To summary, in the E-step, we first use Equations (10) and (11) to calculate αt(k), βt(k)
recursively based on the current parameters, then calculate γt(k), ξt(k, l) according to
Equation (9). The Q-function is given by

Q(Θ) =
K

∑
k=1

γ1(k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

ξt(k, l) log Pkl +
T

∑
t=1

K

∑
k=1

γt(k) logN (yt; Φbk, Ck). (12)

In the M-step, we need to maximizeQ with respect to the parameters. The parameters
{πk}K

k=1 and {Pkl}K
k,l=1 can be optimized in closed-form:

πk =
γ1(k)

∑K
l=1 γ1(l)

, Pkl =
∑T−1

t=1 ξt(k, l)

∑T−1
t=1 ∑K

m=1 ξt(k, m)
. (13)

The parameters {bk, θk}K
k=1 cannot be solved in closed-form, and we applied the gra-

dient ascent algorithm to optimize Q(Θ) with gradients

∂Q(Θ)

∂θk
=

1
2

T

∑
t=1

γt(k)tr
((

C−1
k (yt −Φbk)(yt −Φbk)

TC−1
k − C−1

k

)∂Ck
∂θk

)
,

∂Q(Θ)

∂bk
=

T

∑
t=1

γt(k)ΦTC−1
k (yt −Φbk) .

(14)

The complete algorithm is summarized in Algorithm 1. When the partial observations
yT+1,1, . . . , yT+1,M become complete as we collect more data, we can adjust the parameters
incrementally without retraining the model. This is achieved by continuing EM iterations
with current parameters until the iteration converges again.

4.3. Prediction Strategy

After the parameters have been learned, we assign the latent variable ẑt =
arg maxk=1,...,K γt(k) and regard {ẑt}T

t=1 as deterministic. For the prediction, we considered
two cases: t∗ = T + 1 and t∗ > T + 1. When t∗ = T + 1, the latent variable zT+1 is deter-
mined by both the conditional transition probability zT+1|ẑT and partial observations yT+1.
More precisely, suppose ẑT = l, then

ωk = P(zT+1 = k|T , yT+1, ẑT = l; Θ̂) ∝ P̂lkN (yT+1; Φ[1 : M, :]b̂k, C[1 : M, 1 : M]) , (15)

where the square brackets denote slicing operation. If M = 0, then ωk = P̂lk is determined
by the last hidden state and transition dynamics, which is more accurate than mix-GPFR.
Suppose the prediction of the k-th component is y(k)∗ , then the final prediction is given
by ∑K

k=1 ωky(k)∗ .
We next considered the case t∗ > T + 1, the main difference being the posterior

distribution of zt∗ . In this case, we need to use the transition probability matrix recursively.
First, we calculated the distribution of zT+1 according to Equation (15). Then, by the Markov
property, we know

ωk = P(zt∗ = k|T , yT+1, zT = l; Θ̂) ∝
K

∑
m=1

P(zT+1 = m|T , yT+1, ẑT = l; Θ)[P̂t∗−T−1]mk . (16)

The final prediction is also given by ∑K
k=1 ωky(k)∗ = ∑K

k=1 ωkΦ[i∗, :]bk.
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Algorithm 1: The EM algorithm for learning HM-GPFR.

Initialize parameters Θ;
while not converged do

// E-step
1 α1(k) = πkN (y1; Φbk, Ck);
2 for t = 2, . . . , T do
3 for k = 1, 2, . . . , K do
4 αt(k) =

(
∑K

l=1 αt−1(l)Plk

)
N (yt; Φbk, Ck);

5 end
6 end
7 βT = 1;
8 for t = T − 1, . . . , 1 do
9 for k = 1, 2, . . . , K do

10 βt(k) = ∑K
l=1 PklN (yt+1; Φbl , Cl)βt+1(l);

11 end
12 end
13 for t = 1, . . . , T do
14 for k = 1, 2, . . . , K do
15 γt(k) ∝ αt(k)βt(k);
16 for l = 1, 2, . . . , K do
17 ξt(k, l) ∝ αt(k)PklN (yt+1; Φbl , Cl)βt+1(l);
18 end
19 Normalize {ξt(k, l)}K

l=1;
20 end
21 Normalize {γt(k)}K

k=1;
22 end

// M-step
23 for k = 1, 2, . . . , K do
24 πk =

γ1(k)
∑K

l=1 γ1(l)
;

25 for l = 1, 2, . . . , K do

26 Pkl =
∑T−1

t=1 ξt(k,l)

∑T−1
t=1 ∑K

m=1 ξt(k,m)
;

27 end
28 Using gradient ascent algorithm to optimize Q(Θ) with respect to θk and

bk according to Equation (14);
29 Update Ck with new parameters θk;
30 end

end

5. Bayesian-Hidden-Markov-Based Gaussian Process Functional Regression
Mixture Model
5.1. Model Specification

One drawback of HM-GPFR is that there are too many parameters, and thus, it has
the risk of overfitting. In this section, we further developed a fully Bayesian treatment
of HM-GPFR. We placed a Gaussian prior N (mb, Σb) on the coefficients of B-spline func-
tions {bk}K

k=1. For the transition probabilities, let pk = [Pk1, Pk2, . . . , PkK]
T be the probabili-
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ties from state k to other states, then we assumed pk obeys a Dirichlet prior Dir(a0, . . . , a0).
The generation process of Bayesian HM-GPFR is

bk ∼ N (mb, Σb) , k = 1, 2, . . . , K

pk ∼ Dir(a0, . . . , a0) , k = 1, 2, . . . , K

z1 ∼ Categorical(π1, π2, . . . , πK),

P(zt = l|zt−1 = k) = Pkl , t = 2, 3, . . . , T

Yt(x)|zt = k ∼ GPFR(x; bk, θk) , t = 1, 2, . . . , T.

(17)

The probabilistic graphical model of Bayesian HM-GPFR is shown in Figure 2.

5.2. Learning Algorithm

We still used the EM algorithm to learn the parameters of the BHM-GPFR model.
However, this case is more complicated since there are more latent variables. The complete
data log-likelihood is

L(Θ; T , Ω) =
K

∑
k=1

logN (bk; mb, Σb) +
K

∑
k=1

K

∑
l=1

(a0 − 1) log Pkl

+
K

∑
k=1

I(z1 = k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

I(zt+1 = l, zt = k) log Pkl

+
T

∑
t=1

K

∑
k=1

I(zt = k) logN (yt; Φbk, Ck) .

(18)

Compared with Equation (7), the first two terms are extra due to the prior distributions.
In the E-step of the EM algorithm, we need to take the expectation of Equation (18) with
respect to the posterior distribution of the latent variables. However, the posterior of Ω

is intractable since {bk}K
k=1, {pk}K

k=1, and {zt}T
t=1 are correlated. We used the variational

inference method and tried to find an optimal approximation of P(Ω|T ; Θ) with a sim-
ple form. We adopted the mean-field family approximation, which factorizes the joint
distribution of Ω to a product of several independent distributions:

Q(Ω) =
K

∏
k=1

Q(bk)
K

∏
k=1

Q(pk)Q(z). (19)

Similar to the HM-GPFR case, Q(z) is a categorical distribution with KT possible values, but
we do not need to calculate Q(z) explicitly and only need to calculate γt(k) = Q(zt = k)
and ξt(k, l) = Q(zt+1 = l, zt = k). According to the variational inference theory, we iterated
Q(bk), Q(pk), and Q(z) alternately until convergence.

For Q(bk),

Q(bk) ∝ expE∏K
k=1 Q(pk)Q(z)[L(Θ; T , Ω)]

= expEQ(z)

[
logN (bk; mb, Σb) +

T

∑
t=1

I(zt = k) logN (yt; Φbk, Ck)

]

∝ exp
(
−1

2
log |Σb| −

1
2
(bk −mb)

TΣ−1
b (bk −mb)

+
T

∑
t=1

γt(k)
(
−1

2
log |Ck| −

1
2
(yt −Φbk)

TC−1
k (yt −Φbk)

))
(20)
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By completing the square, we obtained the approximate posterior of bk asN (mk, Σk) with

Σk =

(
Σb +

T

∑
t=1

γt(k)ΦTC−1
k Φ

)−1

, mk = Σk

(
Σ−1

b mb +
T

∑
t=1

γt(k)ΦTC−1
k yt

)
. (21)

For Q(pk),

Q(pk) ∝ expE∏K
k=1 Q(bk)Q(z)[L(Θ; T , Ω)]

= expEQ(z)

[
K

∑
l=1

(a0 − 1) log Pkl +
T−1

∑
t=1

K

∑
l=1

I(zt+1 = l, zt = k) log Pkl

]

= exp

(
K

∑
l=1

(a0 − 1) log Pkl +
T−1

∑
t=1

K

∑
l=1

ξt(k, l) log Pkl

)

=
K

∏
l=1

P
a0+∑T−1

t=1 ξt(k,l)−1
kl

(22)

Therefore, the approximate posterior of pk is Dir(ak1, . . . , akK)with akl = a0 +∑T−1
t=1 ξt(k, l).

For Q(z),

Q(z) ∝ expE∏K
k=1 Q(bk)∏K

k=1 Q(pk)
[L(Θ; T , Ω)]

= expE∏K
k=1 Q(bk)∏K

k=1 Q(pk)

[
K

∑
k=1

I(z1 = k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

I(zt+1 = l, zt = k) log Pkl

+
T

∑
t=1

K

∑
k=1

I(zt = k) logN (yt; Φbk, Ck)

]

= exp

(
K

∑
k=1

I(z1 = k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

I(zt+1 = l, zt = k)EQ(pk)
[log Pkl ]

+
T

∑
t=1

K

∑
k=1

I(zt = k)EQ(bk)
[logN (yt; Φbk, Ck)]

)
.

(23)

Note that this equation has exactly the same form as Equation (7); thus, we can use
the forward–backward algorithm to obtain γt(k) and ξt(k, l). To see this, let

P̃kl = expEQ(pk)
[log Pkl ] = exp

(
ψ(akl)− ψ(

K

∑
l=1

akl)

)
,

P̃(yt; mk, Σk, θk) = expEQ(bk)
[logN (yt; Φbk, Ck)] = N (yt; Φmk, Ck) exp

(
−1

2
tr(ΣkΦC−1

k ΦT)

)
,

(24)

then Equation (23) can be rewritten as

logQ(z) =
K

∑
k=1

I(z1 = k) log πk +
T−1

∑
t=1

K

∑
k=1

K

∑
l=1

I(zt+1 = l, zt = k) log P̃kl

+
T

∑
t=1

K

∑
k=1

I(zt = k) log P̃(yt; mk, Σk, θk) .

(25)

To obtain γt(k) and ξt(k, l), we ran the Baum–Welch algorithm with sufficient statistics
πk, P̃kl , P̃(yt; mk, Σk, θ).

Taking expectation of Equation (18) with respect to the approximate posterior Q(Ω),
the Q function is
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Q(Θ) =
K

∑
k=1

EQ(bk)
[logN (bk; mb, Σb)] +

K

∑
k=1

γ1(k) log πk +
T

∑
t=1

K

∑
k=1

γt(k)EQ(bk)
[logN (yt; Φbk, Ck)]

=
K

∑
k=1

(logN (mk; mb, Σb)−
1
2

tr(ΣkΣ−1
b )) +

K

∑
k=1

γ1(k) log πk

+
T

∑
t=1

K

∑
k=1

γt(k)(logN (yt; Φmk, Ck)−
1
2

tr(ΣkΦC−1
i ΦT))] .

(26)

Maximizing Q(Θ) with respect to πk, mb, and Σb, we obtain

πk =
γ1(k)

∑K
l=1 γ1(l)

, Σb =
1
K

K

∑
k=1

(
Σk + (mk −mb)(mk −mb)

T
)

, mb =
1
K

K

∑
k=1

mk . (27)

The parameters {θk}K
k=1 cannot be solved in closed-form, and we applied the gradient

ascent algorithm to optimize Q(Θ). The gradient of Q(Θ) with respect to θk is

∂Q(Θ)

∂θk
=

T

∑
t=1

1
2

γt(k)tr
(

C−1
k St,kC−1

k
∂Ck
∂θk

)
, St,k = (yt −Φmk)(yt −Φmk)

T + ΦTΣkΦ− Ck . (28)

The complete algorithm is summarized in Algorithm 2.
We point out that the EM algorithm is not guaranteed to converge to local minima

under mild conditions; thus, Algorithms 1 and 2 are aimed at practical applications rather
than theoretical analysis. Besides, applying the forward–backward learning algorithm
to the Bayesian HMM with unnormalized parameters P̃kl , P̃(yt; mk, Σk, θ) was justified
in [19].

5.3. Prediction Strategy

After learning, we set the latent variables to their maximum a posteriori (MAP)
estimates Ω̂. Specifically, b̂k = mk, P̂kl = akl

∑K
m=1 akm

, ẑt = arg maxk=1,2,...,K γt(k). The rest

of the prediction was the same as HM-GPFR.
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Algorithm 2: The variational EM algorithm for learning BHM-GPFR.

Initialize parameters Θ;
while not converged do

// Variational E-step
1 Initialize variational parameters {mk, Σk, ak1, ak2, . . . , akK}K

k=1. while not converged do
// Calculate surrogate parameters.

2 for k = 1, 2, . . . , K do
3 P̃(yt; mk, Σk, θk) = N (yt; Φmk, Ck) exp

(
− 1

2 tr(ΣkΦC−1
k ΦT)

)
;

4 for l = 1, 2, . . . , K do
5 P̃kl = exp

(
ψ(akl)− ψ(∑K

l=1 akl)
)

;

6 end
7 end

// Forward–backward algorithm
8 α1(k) = πkP̃(y1; bk, θk);
9 for t = 2, . . . , T do

10 for k = 1, 2, . . . , K do
11 αt(k) =

(
∑K

l=1 αt−1(l)P̃lk

)
P̃(yt; mk, Σk, θk);

12 end
13 end
14 βT = 1;
15 for t = T − 1, . . . , 1 do
16 for k = 1, 2, . . . , K do
17 βt(k) = ∑K

l=1 P̃klP̃(yt+1; ml , Σl , θl)βt+1(l);
18 end
19 end
20 for t = 1, . . . , T do
21 for k = 1, 2, . . . , K do
22 γt(k) ∝ αt(k)βt(k);
23 for l = 1, 2, . . . , K do
24 ξt(k, l) ∝ αt(k)P̃klP̃(yt+1; ml , Σl , θl)βt+1(l);
25 end
26 Normalize {ξt(k, l)}K

l=1;
27 end
28 Normalize {γt(k)}K

k=1;
29 end

// Update posterior Q(bk) and Q(pk).
30 for k = 1, 2, . . . , K do

31 Σk =
(

Σb + ∑T
t=1 γt(k)ΦTC−1

k Φ
)−1

;

32 mk = Σk

(
Σ−1

b mb + ∑T
t=1 γt(k)ΦTC−1

k yt

)
;

33 for l = 1, 2, . . . , K do
34 akl = a0 + ∑T−1

t=1 ξt(k, l);
35 end
36 end
37 end

// M-step
38 Σb = 1

K ∑K
k=1
(
Σk + (mk −mb)(mk −mb)

T) , mb = 1
K ∑K

k=1 mk;
39 for k = 1, 2, . . . , K do
40 πk = γ1(k)

∑K
l=1 γ1(l)

;

41 Using gradient ascent algorithm to optimize Q(Θ) with respect to θk according
to Equation (28);

42 Update Ck with new parameters θk;
43 end

end
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6. Experimental Results
6.1. Experiment Settings

In this section, we used the electricity load dataset issued by the State Grid of China
for a city in northwest China. The dataset records electricity loads every 15 min; thus,
there are 96 records per day. Using the electricity load records of 2010 for training, we
predicted the subsequent S-step electricity loads in a time series prediction fashion, where
S = 1, 2, 3, 4, 5, 10, 20, 30, 50, 80, 100, 200, 500, 1000. This setting allowed both short-term and
long-term predictions to be evaluated. For a more comprehensive and accurate assessment
of the performance, we rolled the time series by 100 rounds. Based on the electricity
loads of 2010, the r-th round also puts the first (r − 1) records of 2011 into the training
set. In each round, we predicted the subsequent S-step electricity loads. In the r-th round,
suppose the ground-truths are y1, y2, . . . , yS and the predictions are ŷ1, ŷ2, . . . , ŷS; we used
the mean absolute percentage errors (MAPEs) to evaluate the prediction results. Specifically,
MAPEr =

1
S ∑S

s=1
|ys−ŷs |
|ys | . For the overall evaluation, we report the average of 100 MAPEs

to obtain MAPE = 1
100 ∑100

r=1 MAPEr. Since the algorithms are influenced by randomness,
we repeated the algorithms for 10 runs and report the average results.

We implemented HM-GPFR and BHM-GPFR in MATLAB and compared them with
other time series forecasting methods. Specifically:

• Classical time series forecasting methods: auto-regressive (AR), moving average (MA),
auto-regressive moving average (ARMA), auto-regressive integrated moving average
(ARIMA), seasonal auto-regressive moving average (SARMA).

• Machine learning methods: long short-term memory (LSTM), feedforward neural
network (FNN), support vector regression (SVR), enhanced Gaussian process mixture
model (EGPM).

• GPFR-related methods: the mixture of Gaussian process functional regressions (mix-
GPFR), the mixture of Gaussian processes with nonparametric mean functions (mix-
GPNM), Dirichlet-process-based mixture of Gaussian process functional regressions
(DPM-GPFR).

For AR, MA, ARMA, ARIMA, and SARMA, we set the model order L in {4, 8, 12}.
For SARMA, the seasonal length was set to be 96 since there are 96 records per day, which
implicitly assumes that the overall time series exhibits periodicity in days. LSTM, NN,
SVR, and EGPM transform the time series prediction problem into a regression problem,
i.e., they use the latest L observations to predict the output at the next point and then use
the regression method to train and predict. In the experiment, we set L in {4, 12, 24, 48}.
The neural network in the FNN has two hidden layers with 10 and 5 neurons, respectively.
The kernel function in SVR is the Gaussian kernel, whose scale parameters were adaptively
selected by cross-validation. The number of components for EGPM was set in {3, 5, 10}. In
addition, we used the recursive method [20] for multi-step prediction. For the comparison
algorithms implemented using the MATLAB toolbox (including AR, MA, ARMA, ARIMA,
ARIMA, SARMA, LSTM, FNN, and SVR), the settings of the hyper-parameters were
adaptively tuned by the toolboxes. For other comparison algorithms (EGPM, mix-GPFR,
mix-GPNM), the parameters were set according to the original papers. For mix-GPFR,
mix-GPNM, and DPM-GPFR, we first converted the time series data into curve datasets
and then used these methods to make the predictions. The number of components K
in mix-GPFR and mix-GPNM was set to 5, and the number of B-spline basis functions
D in mix-GPFR and DPM-GPFR was set to 30. The setting of K and D will be further
discussed in Section 6.6.

6.2. Performance Evaluation and Model Explanation

The prediction results of various methods on the electricity load dataset are shown
in Table 1. From the table, we can see that the prediction accuracy of the classical time
series forecast methods decreased significantly as we increased the prediction step. Among
them, SARMA outperformed AR, MA, ARMA, and ARIMA, because SARMA takes the pe-
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riodicity of data into consideration and can fit the data more effectively. The results
of machine learning methods LSTM, NN, SVR, and EGPM also had similar phenom-
ena, that is, when S was small, the prediction accuracy was high, and when S was large,
the prediction accuracy was low. This observation indicates that these methods are not
suitable for long-term prediction. In addition, machine learning methods are also sensitive
to the settings of the parameters. For example, the results of FNN and SVR were better
when L = 4, which was close to SARMA, while the long-term prediction accuracy of EGPM
decreased significantly when L was relatively large. It is challenging to appropriately set
the hyper-parameters in practice. When making a long-term prediction, classical time series
prediction methods and machine learning methods need to recursively predict the sub-
sequent values based on the estimated values, which will cause the accumulation and
amplification of errors. On the other hand, GPFR-related methods first make predictions ac-
cording to the mean function, then finely correct these predictions based on observed data.
The mean function part can better describe the evolution law of the data, which enables
the use of historical information and structural information in the data more effectively.
Mix-GPFR, mix-GPNM, and DPM-GPFR obtained similar results in long-term prediction
compared with SARMA and could even achieve the best results in short-term prediction.
This observation demonstrates the effectiveness of GPFR-related methods. However, these
methods cannot deal with long-term prediction tasks well due to the “cold start” prob-
lem. Overall, the performances of the proposed HM-GPFR and BHM-GPFR were more
comprehensive. For medium-term and short-term prediction, the results of HM-GPFR and
BHM-GPFR were slightly worse than those of mix-GPFR, mix-GPNM, and DPM-GPFR,
but they still enjoyed significant advantages compared with the other comparison methods.
In terms of long-term forecasting, HM-GPFR and BHM-GPFR outperformed mix-GPFR,
mix-GPNM, and DPM-GPFR, which shows that considering the multi-scale temporal struc-
ture between daily electricity load time series can effectively improve the accuracy of long-
term forecasting. In addition, BHM-GPFR was generally better than HM-GPFR, which
shows that giving prior distributions to the parameters and learning in a fully Bayesian
way can further increase the robustness of the model and improve the prediction accuracy.

HM-GPFR and BHM-GPFR have strong interpretability. Specifically, the estimated
values of the hidden variables obtained after training {ẑi}n

i=1 divided the daily electricity
load records into K categories according to the evolution law. Each evolution pattern
can be represented by the mean function of the GPFR component, and these evolution
patterns transfer to each other with certain probabilities. The transfer law is characterized
by the transfer probability matrix in the model. In Figure 3, we visualize the evolution
patterns and transfer laws learned by HM-GPFR and BHM-GPFR. We call the evolution law
corresponding to the mean function represented by the orange curve (at the top of the fig-
ure) Mode 1, and we call the five evolution modes as Mode 1 to Mode 5, respectively,
in clockwise order. Combined with the practical application background, some meaningful
laws can be found according to the results of the learned models. Examples are as follows:

• The electricity load of Mode 1 was the lowest. Besides, Mode 1 was relatively sta-
ble: when the system was in this evolution pattern, then it would stay in this state
in the next step with a probability of about 0.5. In the case of state transition, the prob-
ability of transferring to the mode with the second-lowest load (Mode 2 in Figure 3a
and Mode 3 in Figure 3b) was high, while the probability of transferring to the mode
with the highest load (Mode 5 in Figure 3a and Mode 2 and Mode 5 in Figure 3b) was
relatively low;

• The evolution laws of Mode 2 and Mode 5 in Figure 3b are very similar, but the prob-
abilities of transferring to other modes are different. From the perspective of elec-
tricity load alone, both of them can be regarded as the mode with the highest load.
When the system was in the mode with the highest load (Mode 5 in Figure 3a and
Mode 2 and Mode 5 in Figure 3b), the probability of remaining in this state in the next
step was the same as that of transferring to the mode with the lowest (Mode 1);
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Table 1. MAPE of various methods on the electricity loads dataset under different step lengths and parameter settings.

Method Parameter
Step Length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

AR
L = 4 1.02% 1.36% 1.75% 2.13% 2.53% 4.37% 6.95% 8.88% 11.79% 13.92% 15.0% 18.06% 17.82% 16.94% 16.46%
L = 8 1.01% 1.36% 1.75% 2.14% 2.55% 4.47% 7.0% 8.7% 11.28% 13.36% 14.5% 17.8% 17.64% 16.83% 16.4%
L = 12 1.01% 1.35% 1.74% 2.13% 2.54% 4.46% 6.96% 8.63% 11.17% 13.23% 14.38% 17.74% 17.6% 16.81% 16.39%

MA
L = 4 3.39% 5.74% 8.03% 9.94% 11.35% 14.08% 15.13% 15.2% 15.66% 16.39% 16.97% 19.05% 18.48% 17.33% 16.65%
L = 8 2.23% 3.5% 4.74% 5.81% 6.83% 11.11% 13.65% 14.21% 15.07% 16.01% 16.67% 18.9% 18.38% 17.27% 16.62%
L = 12 1.83% 2.76% 3.66% 4.46% 5.21% 8.61% 12.32% 13.33% 14.54% 15.68% 16.41% 18.77% 18.29% 17.22% 16.59%

ARMA
L = 4 1.01% 1.34% 1.73% 2.12% 2.52% 4.42% 6.93% 8.6% 11.22% 13.18% 14.31% 17.64% 17.54% 16.77% 16.38%
L = 8 1.01% 1.34% 1.72% 2.09% 2.48% 4.34% 6.87% 8.52% 11.12% 13.05% 14.13% 17.5% 17.44% 16.71% 16.34%
L = 12 1.02% 1.36% 1.76% 2.14% 2.55% 4.39% 6.8% 8.4% 10.99% 12.89% 13.93% 17.31% 17.3% 16.62% 16.3%

ARIMA
L = 4 0.98% 1.34% 1.74% 2.14% 2.57% 4.58% 7.27% 9.08% 11.99% 14.43% 15.34% 18.65% 18.67% 17.95% 17.65%
L = 8 1.01% 1.36% 1.75% 2.14% 2.57% 4.56% 7.24% 9.2% 12.48% 14.53% 15.09% 18.67% 18.79% 18.2% 18.37%
L = 12 1.01% 1.4% 1.82% 2.24% 2.68% 4.93% 8.64% 11.92% 18.41% 22.65% 21.83% 24.05% 24.24% 24.2% 29.52%

SARMA
L = 4 0.83% 1.08% 1.33% 1.55% 1.76% 2.66% 4.06% 5.15% 6.38% 7.57% 8.67% 10.69% 9.96% 7.62% 7.62%
L = 8 0.83% 1.08% 1.32% 1.55% 1.76% 2.67% 4.04% 5.12% 6.35% 7.54% 8.64% 10.67% 9.93% 7.58% 7.58%
L = 12 0.82% 1.07% 1.3% 1.52% 1.72% 2.62% 4.06% 5.16% 6.31% 7.17% 8.11% 10.55% 10.09% 7.86% 7.83%

LSTM

L = 4 12.89% 12.9% 12.91% 12.97% 13.04% 13.55% 14.56% 15.16% 16.24% 16.99% 17.25% 19.48% 19.01% 17.88% 17.28%
L = 12 12.39% 12.32% 12.32% 12.35% 12.39% 12.78% 13.9% 14.83% 16.38% 17.38% 17.42% 19.77% 19.39% 18.27% 17.73%
L = 24 11.48% 11.43% 11.43% 11.46% 11.5% 11.81% 12.69% 13.49% 14.73% 15.72% 16.28% 18.97% 18.8% 17.83% 17.44%
L = 48 10.1% 10.11% 10.11% 10.15% 10.2% 10.49% 11.22% 11.96% 12.94% 13.09% 13.56% 16.53% 17.52% 17.98% 18.57%

FNN

L = 4 0.96% 1.29% 1.64% 1.94% 2.27% 3.99% 6.21% 8.13% 11.56% 14.4% 15.49% 18.71% 18.71% 17.87% 17.61%
L = 12 0.85% 1.1% 1.37% 1.62% 1.88% 3.13% 5.38% 7.25% 9.94% 13.24% 14.87% 20.44% 20.72% 19.91% 19.81%
L = 24 0.85% 1.07% 1.27% 1.43% 1.6% 2.39% 3.94% 5.38% 7.43% 10.1% 11.54% 14.57% 15.27% 15.62% 17.87%
L = 48 0.85% 1.0% 1.15% 1.28% 1.39% 1.99% 3.21% 4.12% 5.49% 7.62% 8.93% 10.26% 9.42% 7.72% 8.34%

SVR

L = 4 0.98% 1.33% 1.71% 2.05% 2.43% 4.16% 5.85% 7.81% 10.82% 14.1% 15.07% 18.94% 19.84% 19.41% 19.5%
L = 12 1.05% 1.33% 1.62% 1.91% 2.17% 3.6% 6.59% 9.09% 13.5% 17.89% 19.2% 24.47% 27.77% 28.52% 29.88%
L = 24 1.06% 1.29% 1.5% 1.68% 1.85% 2.73% 4.82% 6.85% 9.56% 12.47% 13.85% 17.34% 17.83% 17.56% 18.33%
L = 48 1.25% 1.46% 1.64% 1.8% 1.95% 2.66% 4.1% 5.27% 7.9% 11.33% 13.05% 12.39% 9.87% 8.45% 8.07%
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Table 1. Cont.

Method Parameter
Step Length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

EGPM

L = 4, K =
3 0.97% 1.29% 1.65% 1.98% 2.33% 4.05% 6.42% 7.54% 10.22% 13.49% 15.06% 18.17% 17.97% 17.15% 16.81%

L = 4, K =
5 0.97% 1.28% 1.64% 1.97% 2.32% 4.03% 6.38% 7.53% 10.18% 13.45% 15.04% 18.18% 17.97% 17.16% 16.83%

L = 4, K =
10 0.97% 1.29% 1.65% 1.98% 2.33% 4.04% 6.42% 7.57% 10.23% 13.5% 15.07% 18.19% 17.98% 17.16% 16.82%

L =
12, K = 3 0.93% 1.19% 1.49% 1.77% 2.08% 3.65% 5.92% 8.16% 11.44% 14.12% 15.35% 18.99% 19.32% 18.78% 18.44%

L =
12, K = 5 0.92% 1.18% 1.47% 1.76% 2.06% 3.63% 5.89% 8.17% 11.45% 14.13% 15.35% 19.02% 19.32% 18.79% 18.47%

L =
12, K = 10 0.95% 1.21% 1.51% 1.79% 2.1% 3.67% 5.92% 8.13% 11.4% 14.15% 15.39% 19.05% 19.32% 18.77% 18.42%

L =
24, K = 3 0.94% 1.19% 1.41% 1.6% 1.81% 2.95% 5.09% 7.09% 9.79% 13.34% 15.26% 19.03% 19.66% 20.47% 21.91%

L =
24, K = 5 0.97% 1.22% 1.43% 1.62% 1.83% 2.97% 5.01% 6.96% 9.51% 12.62% 14.39% 17.57% 17.85% 18.66% 20.4%

L =
24, K = 10 0.95% 1.2% 1.42% 1.62% 1.82% 2.91% 4.89% 6.84% 9.19% 12.32% 14.18% 17.67% 18.28% 19.14% 20.78%

L =
48, K = 3 1.02% 1.29% 1.52% 1.74% 1.93% 2.83% 5.42% 7.03% 9.0% 11.88% 13.93% 23.48% 32.01% 38.54% 45.35%

L =
48, K = 5 1.02% 1.28% 1.52% 1.74% 1.93% 2.92% 5.68% 7.44% 9.46% 12.35% 14.42% 24.12% 32.28% 38.92% 45.36%

L =
48, K = 10 1.02% 1.29% 1.53% 1.76% 1.95% 2.94% 5.7% 7.43% 9.38% 12.29% 14.38% 23.61% 32.3% 38.86% 45.69%

Mix-GPFR P =
30, K = 5 0.82% 0.97% 1.12% 1.25% 1.39% 2.09% 3.37% 4.24% 5.75% 7.94% 9.19% 10.67% 9.65% 7.19% 7.24%

Mix-GPNM K = 5 0.78% 0.94% 1.11% 1.26% 1.4% 2.16% 3.47% 4.34% 5.85% 8.02% 9.27% 10.71% 9.67% 7.2% 7.25%
DPM-
GPFR P = 30 0.83% 0.91% 0.97% 1.03% 1.09% 1.4% 2.09% 2.61% 3.38% 4.14% 4.8% 10.15% 12.35% 12.26% 12.81%

HM-GPFR P =
30, K = 5 0.93% 1.12% 1.3% 1.48% 1.66% 2.51% 4.07% 5.18% 6.79% 8.8% 9.83% 10.76% 9.49% 6.82% 6.77%

BHM-
GPFR

P =
30, K = 5 0.77% 0.92% 1.07% 1.18% 1.3% 1.89% 2.88% 3.59% 4.89% 6.88% 8.04% 9.85% 9.21% 6.94% 7.15%
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• When the system was in the mode with the second-highest load (Mode 3 in Figure 3a
and Mode 4 in Figure 3b), the probability of remaining in this state in the next step
was low, while the probabilities of transferring to the modes with the lowest load and
the highest load were high.
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Figure 3. Evolving law of electricity loads and transition dynamics learned by HM-GPFR (a) and
BHM-GPFR (b).
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These laws are helpful for us to understand the algorithm, have a certain guiding
significance for production practice, and can also be further analyzed in combination with
expert knowledge.

The case of S = 1 in Table 1 is the most common in practical applications, that is a one-
step-ahead rolling forecast. As discussed in Section 4, when making a rolling prediction,
HM-GPFR and BHM-GPFR can dynamically adjust the model incrementally after collecting
new data without retraining the model. The results of the one-step-ahead rolling prediction
of HM-GPFR and BHM-GPFR on the electricity load dataset are shown in Figure 4. It can be
seen that the predicted values of HM-GPFR and BHM-GPFR were very close to the ground-
truths, indicating that they are effective for rolling prediction. In the figure, the color
of each point is the weighted average of the colors corresponding to each mode in Figure 3
according to the weight ωK. Note that there are color changes in some electricity load
curves in Figure 4a,b. Taking the time series in Figure 4a in the range of about 1100–1200
as an example, when there are few observation data on that day, HM-GPFR believes
that the electricity load evolution pattern of that day is more likely to belong to Mode 3.
With the gradual increase of observation data, the model tends to think that the electricity
load evolution pattern of that day belongs to Mode 5 and then tends to Mode 3 again.
This shows that HM-GPFR and BHM-GPFR can adjust the value of zi∗ in a timely manner
according to the latest information during the rolling prediction.
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Figure 4. One-step-ahead rolling prediction results of HM-GPFR (a) and BHM-GPFR (b).

6.3. Clustering Structure

The estimated values of latent variable ẑi also indicate the evolution mode corresponding
to the data of the i-th day. Figure 5 visualizes some training data with different colors indicating
different evolution modes, so we can intuitively see the multi-scale structure in the electricity
load time series. According to the learned transition probability, we can obtain the stationary dis-
tribution of the Markov chain (z1, z2, . . . , zN), which is [0.4825, 0.2026, 0.0513, 0.1124, 0.1513]T

in HM-GPFR and [0.4501, 0.0427, 0.2992, 0.1381, 0.0700]T in BHM-GPFR. The proportion
of each mode in Figure 5 is roughly consistent with the stationary distribution.
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Figure 5. Training time series are divided into different evolving laws based on the learning results
of HM-GPFR (a) and BHM-GPFR (b).

6.4. Ablation Study

In this section, we mainly compared HM-GPFR, BHM-GPFR with mix-GPFR, mix-
GPNM, and DPM-GPFR to explore the impact of introducing coarse-grained tempo-
ral structure on the prediction performance. The MAPEs reported in Table 2 are av-
eraged with respect to r = 1, . . . , 100, while in this section, we paid special attention
to the case of r = 1. In this case, the observed data are the electricity load records in 2010,
and there are no partial observations on January 1, 2011 (i.e., M = 0 in Equation (2)).
Therefore, mix-GPFR, mix-GPNM, and DPM-GPFR will encounter the cold start problem.
Table 2 reports the MAPE of these methods at different prediction steps when r = 1. It
can be seen from the table that the prediction accuracy of HM-GPFR and BHM-GPFR
was higher than that of mix-GPFR, mix-GPNM, and DPM-GPFR at almost every step,
which shows that coarse-grained temporal information is helpful to improve the prediction
performance, and the use of the Markov chain to model the transfer law of electricity load
evolution patterns can make effective use of coarse-grained temporal information.

Table 2. MAPE of GP-related methods under the cold start setting (r = 1).

Method
Step Length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

Mix-GPFR 6.72% 6.76% 6.98% 7.02% 7.21% 7.12% 7.18% 7.07% 8.98% 8.69% 8.49% 11.66% 10.85% 7.93% 7.4%
Mix-GPNM 6.72% 6.76% 6.98% 7.03% 7.2% 7.11% 7.18% 7.07% 8.98% 8.69% 8.48% 11.66% 10.85% 7.93% 7.4%
DPM-GPFR 11.79% 11.81% 12.05% 12.14% 12.35% 12.41% 12.66% 12.53% 13.75% 12.97% 12.68% 15.35% 11.93% 8.4% 6.41%

HM-GPFR 6.47% 6.43% 6.61% 6.62% 6.78% 6.6% 6.71% 6.58% 8.41% 8.14% 7.92% 11.52% 10.48% 7.44% 6.77%
BHM-GPFR 4.58% 4.61% 4.84% 4.88% 5.07% 4.98% 5.15% 5.32% 7.3% 7.04% 6.76% 10.67% 10.23% 7.58% 7.24%

Figure 6 further shows the results of the multi-step prediction of these methods
on the electricity load dataset. Here is also the case of “cold start” (r = 1), and we
predicted the electricity loads in the next 10 days (960 time points in total). It can be seen
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from the figure that these methods can effectively utilize the periodic structure in the time
series; the prediction results showed periodicity, but the prediction results of HM-GPFR
and BHM-GPFR were slightly different from the other methods. Due to the problem of the
“cold start”, the predictions of mix-GPFR, mix-GPNM, and DPM-GPFR for each day were
the same, i.e., ŷN+1 = ŷN+2 = · · · = ŷN+10, while HM-GPFR and BHM-GPFR use coarse-
grained temporal information when making predictions and then adjust the predicted
values of each day. Based on the predicted values of the other methods, it can be seen
from the figure that the predicted values of HM-GPFR and BHM-GPFR on the first day were
higher, and with the increase in step size, the predicted values will tend to the weighted
average value of the mean function of each GPFR component.
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Figure 6. Multi-step prediction results of mix-GPFR, mix-GPNM, DPM-GPFR, HM-GPFR, and BHM-
GPFR.

6.5. Multi-Step Prediction under Cold Start Setting

In order to more clearly see the role of the Markov chain structure of hidden variables
in the cold start setting, in Figures 7 and 8, we show the predicted values of HM-GPFR and
BHM-GFPR for electricity load in the next five days ŷN+1, . . . , ŷN+5 and the distributions of
the latent variables zN+1, . . . , zN+5 conditioned on ẑN = k. It can be seen from the figure that
HM-GPFR and BHM-GPFR have different predictions for each day’s electricity load, which
will be adjusted according to the transition probability of the evolution law. For example,
in Figure 7, when ẑN = 1, the power load on that day is low, and the predicted value of HM-
GPFR on the (N + 1)-th day is also low. When hatzN = 5, the electricity load on that
day is higher, and the predicted value of HM-GPFR on the (N + 1)-th day is also higher.
Figure 8 has a similar phenomenon. In addition, it can be seen that, with the increase of i∗,
P(zi∗) quickly converged to the stable distribution of the Markov chain, and the predicted
value ŷi∗ also tended to be the weighted average of the mean function in each GPFR
component. In conclusion, these phenomena demonstrated that HM-GPFR and BHM-
GPFR can effectively use the coarse-grained temporal structure to adjust the prediction
of each day.
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ẑN Mean function of N-th day Predicted values of i∗ = N + 1, . . . , N + 5P(zN),P(zN+1),P(zN+2),P(zN+3),P(zN+4),P(zN+5)

1


1.00 0.54 0.49 0.48 0.48 0.48
0.00 0.17 0.20 0.20 0.20 0.20
0.00 0.04 0.05 0.05 0.05 0.05
0.00 0.13 0.11 0.11 0.11 0.11
0.00 0.12 0.15 0.15 0.15 0.15



2


0.00 0.55 0.49 0.48 0.48 0.48
1.00 0.10 0.20 0.20 0.20 0.20
0.00 0.15 0.04 0.05 0.05 0.05
0.00 0.05 0.11 0.11 0.11 0.11
0.00 0.15 0.15 0.15 0.15 0.15



3


0.00 0.59 0.48 0.48 0.48 0.48
0.00 0.20 0.19 0.20 0.20 0.20
1.00 0.00 0.06 0.05 0.05 0.05
0.00 0.02 0.13 0.11 0.11 0.11
0.00 0.20 0.15 0.15 0.15 0.15



4


0.00 0.42 0.48 0.48 0.48 0.48
0.00 0.33 0.19 0.20 0.20 0.20
0.00 0.00 0.07 0.05 0.05 0.05
1.00 0.08 0.11 0.11 0.11 0.11
0.00 0.17 0.15 0.15 0.15 0.15



5


0.00 0.22 0.45 0.48 0.48 0.48
0.00 0.36 0.22 0.20 0.20 0.20
0.00 0.00 0.06 0.05 0.05 0.05
0.00 0.21 0.11 0.11 0.11 0.11
1.00 0.22 0.16 0.15 0.15 0.15



Figure 7. Estimated values ŷN+1, . . . , ŷN+5 and distributions of zN , . . . , zN+5 of HM-GPFR under
ẑ = k, where k = 1, 2, 3, 4, 5.
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ẑN Mean function of N-th day Predicted values of i∗ = N + 1, . . . , N + 5P(zN),P(zN+1),P(zN+2),P(zN+3),P(zN+4),P(zN+5)

1


1.00 0.52 0.47 0.45 0.45 0.45
0.00 0.05 0.04 0.04 0.04 0.04
0.00 0.29 0.29 0.30 0.30 0.30
0.00 0.11 0.14 0.14 0.14 0.14
0.00 0.03 0.06 0.07 0.07 0.07



2


0.00 0.12 0.39 0.44 0.45 0.45
1.00 0.12 0.04 0.04 0.04 0.04
0.00 0.53 0.32 0.30 0.30 0.30
0.00 0.12 0.17 0.14 0.14 0.14
0.00 0.12 0.08 0.08 0.07 0.07



3


0.00 0.48 0.47 0.45 0.45 0.45
0.00 0.02 0.04 0.04 0.04 0.04
1.00 0.25 0.28 0.30 0.30 0.30
0.00 0.22 0.12 0.14 0.14 0.14
0.00 0.04 0.08 0.07 0.07 0.07



4


0.00 0.44 0.39 0.45 0.45 0.45
0.00 0.04 0.05 0.04 0.04 0.04
0.00 0.24 0.36 0.29 0.30 0.30
1.00 0.04 0.15 0.14 0.14 0.14
0.00 0.24 0.06 0.07 0.07 0.07



5


0.00 0.07 0.42 0.44 0.45 0.45
0.00 0.07 0.03 0.04 0.04 0.04
0.00 0.58 0.29 0.30 0.30 0.30
0.00 0.20 0.17 0.14 0.14 0.14
1.00 0.07 0.09 0.08 0.07 0.07



Figure 8. Estimated values ŷN+1, . . . , ŷN+5 and distributions of zN , . . . , zN+5 of BHM-GPFR under
ẑ = k, where k = 1, 2, 3, 4, 5.

6.6. Sensitivity of Hyper-Parameters

There are two main hyper-parameters in HM-GPFR and BHM-GPFR: the number of B-
spline basis functions D and the number of GPFR components K. Here, we mainly focused
on the selection of K. We varied K in {3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 30, 50}, trained HM-GPFR
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and BHM-GPFR, respectively, and report the results in Table 3. For HM-GPFR, its predic-
tion performance tended to deteriorate with the increase of K. In short-term prediction,
the MAPE increased significantly, while the MAPE changed less in long-term prediction.
With the increase of K, the number of parameters in the model also increased, and the model
tended to suffer from overfitting. For BHM-GPFR, with the increase of K, its long-term
prediction performance decreased significantly, while the medium-term and short-term
prediction results did not change much. This showed that BHM-GPFR can prevent over-
fitting to a certain extent after introducing the prior distributions to the parameters. In
addition, we also note that, when K ≤ 10, the difference between the results corresponding
to different K was not significant, which is a more reasonable choice. From the perspective
of applications, we set K = 5 in the experiment, which can take both the expression ability
and interpretability of the model into consideration.

Table 3. Sensitivity of HM-GPFR and BHM-GPFR with respect to the number of components K.

Method K
Step Length S

1 2 3 4 5 10 20 30 50 80 100 200 300 500 1000

HM-GPFR

3 0.84% 1.01% 1.19% 1.35% 1.52% 2.35% 3.85% 4.82% 6.36% 8.48% 9.63% 10.71% 9.43% 6.78% 6.75%
4 0.9% 1.09% 1.27% 1.44% 1.61% 2.46% 4.02% 5.09% 6.6% 8.57% 9.68% 10.71% 9.43% 6.78% 6.75%
5 0.93% 1.12% 1.3% 1.48% 1.66% 2.51% 4.07% 5.18% 6.79% 8.8% 9.83% 10.76% 9.49% 6.82% 6.77%
6 1.09% 1.32% 1.57% 1.81% 2.04% 3.13% 4.77% 5.83% 7.3% 9.04% 10.03% 10.9% 9.59% 6.88% 6.8%
7 1.06% 1.27% 1.49% 1.7% 1.91% 2.87% 4.5% 5.66% 7.28% 9.17% 10.13% 10.88% 9.58% 6.87% 6.79%
8 0.97% 1.16% 1.36% 1.54% 1.73% 2.57% 4.14% 5.32% 6.99% 8.95% 9.92% 10.81% 9.57% 6.88% 6.79%
9 1.1% 1.33% 1.56% 1.79% 2.01% 3.06% 4.77% 5.93% 7.49% 9.3% 10.29% 10.99% 9.6% 6.88% 6.8%
10 1.18% 1.41% 1.65% 1.88% 2.11% 3.22% 4.97% 6.05% 7.53% 9.39% 10.45% 11.17% 9.71% 6.95% 6.83%
15 1.25% 1.48% 1.72% 1.94% 2.17% 3.29% 5.03% 6.12% 7.63% 9.42% 10.5% 11.22% 9.71% 6.94% 6.82%
20 1.31% 1.54% 1.77% 2.0% 2.22% 3.33% 5.07% 6.14% 7.65% 9.57% 10.78% 11.52% 9.85% 7.01% 6.86%
30 1.37% 1.62% 1.87% 2.12% 2.38% 3.62% 5.45% 6.5% 7.98% 9.76% 10.92% 11.57% 9.86% 7.01% 6.86%
50 1.47% 1.72% 1.99% 2.25% 2.5% 3.7% 5.5% 6.62% 8.29% 10.35% 11.66% 12.01% 10.06% 7.12% 6.91%

BHM-GPFR

3 0.85% 1.02% 1.19% 1.36% 1.52% 2.35% 3.87% 4.85% 6.37% 8.46% 9.6% 10.7% 9.47% 6.84% 6.82%
4 0.78% 0.93% 1.07% 1.18% 1.29% 1.86% 2.82% 3.49% 4.8% 6.96% 8.23% 9.91% 9.04% 6.68% 6.85%
5 0.77% 0.92% 1.07% 1.18% 1.3% 1.89% 2.88% 3.59% 4.89% 6.88% 8.04% 9.85% 9.21% 6.94% 7.15%
6 0.8% 0.96% 1.1% 1.23% 1.36% 2.02% 3.17% 3.97% 5.32% 7.22% 8.32% 9.91% 9.3% 7.01% 7.18%
7 0.79% 0.95% 1.1% 1.22% 1.33% 1.94% 3.01% 3.79% 5.12% 6.89% 7.99% 9.76% 9.34% 7.18% 7.39%
8 0.78% 0.94% 1.08% 1.19% 1.31% 1.89% 2.94% 3.71% 5.03% 6.74% 7.79% 9.7% 9.49% 7.46% 7.7%
9 0.78% 0.93% 1.07% 1.18% 1.29% 1.86% 2.86% 3.61% 4.92% 6.69% 7.77% 9.73% 9.52% 7.53% 7.8%
10 0.82% 0.98% 1.13% 1.26% 1.4% 2.11% 3.29% 4.09% 5.37% 7.01% 8.04% 9.94% 9.8% 7.86% 8.12%
15 0.79% 0.94% 1.07% 1.18% 1.29% 1.84% 2.86% 3.64% 4.95% 6.66% 7.7% 9.89% 9.96% 8.25% 8.6%
20 0.79% 0.94% 1.07% 1.17% 1.28% 1.83% 2.83% 3.6% 4.88% 6.51% 7.5% 9.95% 10.32% 8.88% 9.31%
30 0.8% 0.95% 1.07% 1.18% 1.29% 1.83% 2.82% 3.58% 4.86% 6.52% 7.53% 10.04% 10.46% 9.07% 9.52%
50 0.83% 0.98% 1.11% 1.22% 1.33% 1.88% 2.9% 3.68% 4.96% 6.5% 7.46% 10.14% 10.71% 9.45% 9.9%

7. Conclusions and Discussions

In this paper, we proposed the concept of multi-scale time series. Multi-scale time
series have two granularity temporal structures. We established the HM-GPFR model
for multi-scale time series forecasting and designed an effective learning algorithm. In
addition, we also gave a priori parameters to the model and obtained a more robust BHM-
GPFR model. Compared with conventional GPFR-related methods (mix-GPFR, mix-GPNM,
DPM-GPFR), the proposed method can effectively use the temporal information of both the
fine level and coarse level, alleviates the “cold start” problem, and has good performance
in short-term prediction and long-term prediction. HM-GPFR and BHM-GPFR not only
achieved high prediction accuracy; they also had good interpretability. Combined with
the actual problem background and domain knowledge, we can explain the state transition
law learned by the model.

In practice, the number of hidden states K in HM-GPFR/BHM-GPFR can be set by expert
knowledge. However, how to set K in a data-driven way is an interesting direction, and this is
usually referred to as the model selection problem. The model selection problem is both important
and challenging. One can run the algorithms with different K and use certain criteria (such as AIC,
BIC) to choose the best one; however, this procedure is time-consuming, and the obtained result is
generally unstable. For mix-GPFR, the Dirichlet process is utilized to tackle the model selection
problem [21]. We suggest hierarchical-Dirichlet-process-based hidden Markov models [22–24]
as a promising method for the model selection of HM-GPFR/BHM-GPFR. It is also promising
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to reduce the computational cost by introducing inducing points [25–27] to our proposed models,
but how to balance the trade-off between performance and computational cost generally depends
on the particular application scenario.
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