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Abstract: Data collected from sensor-rich systems may reveal user-related patterns that represent
private information. Sensitive patterns from time-series data can be protected using diverse per-
turbation methods; however, choosing the method that provides the desired privacy and utility
level is challenging. This paper proposes a new procedure for evaluating the utility and privacy of
perturbation techniques and an algorithm for comparing perturbation methods. The contribution
is significant for those involved in protecting time-series data collected from various sensors as the
approach is sensor-type-independent, algorithm-independent, and data-independent. The analysis
of the impact of data integrity attacks on the perturbed data follows the methodology. Experimental
results obtained using actual data collected from a VW Passat vehicle via the OBD-II port demonstrate
the applicability of the approach to measuring the utility and privacy of perturbation algorithms.
Moreover, important benefits have been identified: the proposed approach measures both privacy
and utility, various distortion and perturbation methods can be compared (no matter how different),
and an evaluation of the impact of data integrity attacks on perturbed data is possible.

Keywords: data privacy; data perturbation; time-series perturbation; data mining; automotive
systems

MSC: 68P27

1. Introduction

Time-series data collected from various sensor-rich systems (e.g., auto vehicles, wear-
able devices, industrial equipment) may not reveal tangible personal identifying infor-
mation, such as name, physical address, or email addresses. However, such data may
still reveal essential user-related information (e.g., geolocation, biometrics). For exam-
ple, time-series data collected from automotive systems, wearable devices, or smart grids
contain information that may lead to identifying the end-user [1–3]. Thus, sensitive infor-
mation should be hidden before leaving the sensor-based device and reaching external data
processing and analysis systems.

The state-of-the-art research proposes several time-series data perturbation algorithms
capable of protecting sensitive data, while exposing useful data for aggregation and analysis
purposes [3–10]. Furthermore, these algorithms aim to eliminate sensitive patterns that may
lead to user identification, while introducing a minor utility loss for third-party processing
systems. However, additional research is necessary to establish a proper (or desired)
balance between data privacy and data utility.

This paper proposes a novel methodology for assessing the privacy and utility of
time-series perturbation algorithms. It documents a systematic methodology to assess
and compare existing data perturbation techniques from the perspective of data privacy
and data utility.

The proposed technique is inspired by the cyber attack impact assessment (CAIA)
methodology [11], an approach based on system dynamics research [12]. CAIA studies
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the behavior of complex physical processes in the presence and absence of deliberate or
accidental interventions to evaluate cyber-assets’ significance in large-scale, hierarchical,
and heterogeneous installations. The impact of the interventions on the system is measured,
and decisions involving response adjustments are taken.

Our proposed approach considers a data protection system (from sensors to the
perturbation method) similar to a physical process. It measures the impact of various user
behavior (normal and sensitive) and data interventions on the time-series perturbation
system, and evaluates the utility and privacy of the resulting perturbed data. Furthermore,
the computed impact compares various perturbation algorithms and additionally identifies
perturbation methods that preserve information on data interventions (e.g., from data
integrity attacks). The approach is validated using real data captured from a VW Passat
vehicle via the on board diagnostics 2 (OBD-II) port.

We consider the present work to be complementary to previous studies on measuring
the utility and privacy of perturbation methods. Previous studies on time-series data
perturbation techniques [3,8,9,13,14] focused on demonstrating their performance using
specific datasets and conveniently selected parameters. However, more general approaches
are necessary for enabling data perturbation on a large scale and for miscellaneous sensor-
based data-collection scenarios.

The objectives of the current research were to: (i) define a testing procedure for
measuring the data privacy and data utility provided by time series perturbation methods
in the case of normal and sensitive behavior, as well as in the case of data interventions
(attacks); (ii) describe an algorithm to compare two perturbation mechanisms; and (iii)
propose a procedure to identify the types of attacks that can be detected after applying a
specific perturbation mechanism.

Our main contributions are the following:

• A systematic procedure for evaluating the utility and privacy of perturbation algorithms.
The approach is sensor-type-independent, algorithm-independent, and data-independent.

• A methodology for comparing data perturbation methods.
• We demonstrate applicability by assessing the impact of data integrity attacks on

perturbed data.
• We analyze the approach on actual driving data and build the dataset following the

stated requirements.

The remainder of the paper is organized as follows: Section 2 provides an overview of
perturbation techniques of interest, explains our choices for the privacy and utility metrics,
and briefly presents the CAIA methodology that inspired our research. The proposed
approach is presented in Section 3. The experimental results are documented in Section 4,
discussed in Section 5, and the conclusions are formulated in Section 6.

2. Background and Related Work
2.1. Time-Series Data Privacy Techniques

Time-series data collected continuously from selected data sources (e.g., sensors) are
often regarded as time-domain signals. The signal characteristics (amplitude, average, peak
and trough, trend, and periodicity) may reveal user-related patterns, and, as they represent
private information, they should be subject to protection. Moreover, time-series data
protection must consider both time and frequency domains.

Various techniques have been proposed to protect the privacy of potentially sensitive
sensor data streams when transmitted over the Internet to third-party processing systems.
The protection of private information from time-series sensor data is mainly achieved using
encryption, de-identification, and perturbation [15]. Encryption is a standard privacy approach
for protecting data from unauthorized access [16]. However, due to processing power
constraints, encryption may be challenging to implement in sensor-based systems. Addi-
tionally, encryption methods assume that the entities that handle the personal information
are trustworthy [17]. Anonymization (also called sanitation [18] or de-identification) consists
of deleting, replacing, or hashing all the personally identifiable information (PII) within
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a dataset. This process does not reduce the data quality, and anonymized data can be
safely transported over the Internet. Popular approaches for data anonymization include
k-anonymity [19], l-diversity [20], and t-closeness [21]. However, anonymization is difficult to
enforce on time-series data that do not contain explicit personal information.

Perturbation or random perturbation, the method of interest for the paper at hand, is a
well-known approach for protecting time-series private data. It partially hides information,
while maintaining the possibility of information extraction through data-mining techniques.
The main advantage of perturbation is that it does not require additional knowledge of the
data to be protected. Moreover, the computational complexity of the perturbation is low [18].
Data perturbation techniques include randomization-based methods (additive perturbation [4],
multiplicative perturbation [5,6], geometric perturbation [6], nonlinear perturbation [22],
differential privacy (DP) [23]) and transformation-based methods [3,7–10] (collected values
are first translated from the original feature space into a lower-dimensional feature space
where noise is added). Whether the perturbation preserves the essential characteristics
of the data depends on (i) how much perturbation is added (i.e., ε in differential privacy)
and (ii) how the perturbation is added. Generally, the perturbation amount is predefined
by the user.

Differential privacy (DP) or ε-differential privacy [24] is a widely accepted technique for im-
plementing perturbation-based privacy protection, including for deep learning approaches [25].
Classical techniques (such as anonymization or aggregation) have been the subject of various
privacy attacks, and even more so , modern techniques (such as k-anonymity [19]) have failed
to protect data from certain types of attacks. Differential privacy protects data by adding a se-
lected amount of noise to the original data using various mathematical algorithms (e.g., Laplace,
Gaussian). Differential privacy, initially proposed to protect database queries, guarantees that
changing the value of a single record has minimal effect on the statistical output of results [13].
However, obtaining the desired trade-off between privacy and accuracy may be challenging for
time series, and it may reduce data utility [15,26].

2.2. Privacy and Utility Metrics for Data Perturbation

Data perturbation involves adding noise to data. The more noise is added, the more
data privacy is achieved, and consequently, the more data is hidden, thus also reducing
data utility. Many perturbation mechanisms, and, more precisely, those that use data trans-
formation, do not only add noise, but also use other parameters for implementing privacy.
Consequently, finding the proper perturbation is not only a matter of increasing or decreas-
ing noise. Several methods for computing these parameters have been proposed [3,9,13],
with limited success. In a recent survey, Dwork et al. [27], while referring to finding the
optimum privacy budget for differential privacy-based algorithms, stated that there is no
clear consensus on choosing privacy parameters for a practical scenario. Thus, to the best
of our knowledge, this issue remains an open question.

After applying a perturbation mechanism, the usefulness of the resulting data needs to
be measured to ensure that sufficient information is preserved for data analysis and other
types of data processing (e.g., anomaly or tampering detection [14,28–30]). Utility metrics
are essential to data analysts and data-processing applications. There is no universally
accepted definition for data utility related to privacy mechanisms (i.e., differential privacy
approach). However, generally speaking, data utility or usefulness is measured by the extent
to which the chosen data privacy approach preserves aggregate statistical information [18].

Two main aspects are considered when measuring privacy and utility [6]: the privacy loss (PL)
and the information loss (IL). Privacy loss measures the capacity of an attacker to extract relevant
information about the original data from the perturbed data. In contrast, information loss measures
the reduction in the statistical utility of the perturbed data compared to the original data. Therefore,
the ideal approaches minimize privacy loss (maximize perturbation) and the loss of information
(maximize utility).

The state-of-the-art literature lists several common metrics for measuring information
loss (utility), such as variance [31,32], mean relative error (MRE) [33,34], mean squared
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error (MSE) [35] and mean absolute error (MAE) [13,36]. For all, a lower value implies
better utility. To validate the proposed approach, we chose to compute the mean absolute
error (MAE) to measure the utility (Equation (1)), a metric often utilized for comparing
time-series perturbation methods [13,37]:

MAE =
1
N ∑

i∈N
|Xi − X′i |, (1)

where N is the length of the time series, X is the original data vector, and X′ is the perturbed data.
For quantifying privacy loss, three main approaches have been proposed in the literature [7]:

measuring how closely the original values of a perturbed attribute can be estimated [4,13], using
information theory [38], or, using the notion of privacy breach [39]. For our research, we calculate
the probability density function (PDF) of queries executed on perturbed data and compute
the probability of obtaining the original value (computed from the unperturbed data) from
perturbed data. The lower the probability, the better the data privacy.

As previously shown, the scientific literature provides a rich palette of perturbation
algorithms for time-series data and many metrics for measuring their performance. Despite
the extensive research, currently, there needs to be a standardized approach for compar-
ing these perturbation methods. The approach outlined in this paper stands out from
previous works in the following ways: First, to the best of our knowledge, the presented
procedure is the first approach to simultaneously measure both the privacy provided by
the perturbation and the utility of the resulting data. Second, the comparison framework
(including data generation) can be applied to diverse perturbation techniques without
prior knowledge of the implemented algorithms. We note, however, that the methodology
presented in this paper may be perceived as supplementary to the prevailing data privacy
and utility metrics.

2.3. Cyber Attack Impact Assessment (CAIA) Methodology

The cyber attack impact assessment (CAIA) [11] builds on the behavioral analysis of
physical processes proposed by Ford [12]. Additionally, the sensitivity assessment approach
of Huang et al. [40] computes the relative variance between model behavior in the activated
and deactivated control loop cases. Control loops rely on observed variables and cause
changes to the physical process state via control variables. The objective of the sensitivity
assessment is to quantify the contribution of the control loop to the behavior of a certain
variable of interest.

The CAIA methodology computes the covariance of the observed variables before and
after the execution of a specific intervention involving the control variables. Metrics quan-
tify the impact of deliberate interventions on the control variables. The cross-covariance
values, comprising the impact matrix, are computed between the observed variable with no
intervention and the observed variable with intervention on the control variable. The im-
pact matrix provides useful information on (i) the impact of cyber attacks on the studied
system, (ii) the propagation of disturbances to remote assets, and (iii) equally significant
observed variables.

3. Proposed Approach

The proposed methodology is inspired by research in system dynamics, sensitivity
analysis, and the CAIA framework. The perturbation method is modeled as a dynamic
system, and the perturbation is first analyzed in the absence and the presence of sensitive
user behavior. The main symbols used throughout this research are described in Table 1.
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Table 1. Symbols and their description.

Symbol Description

R Set of collected regular (typical) user behavior data
S Set of collected sensitive user behavior data
B Set of collected user behavior data (regular and sensitive),

B = R ∪ S and R ∩ S = ∅
A Set of intervention data (integrity attacks), A ∩ B = ∅

σ Standard deviation
σrmin Minimum standard deviation of regular user behavior data, ∀r ∈ R
σrmax Maximum standard deviation of regular user behavior data, ∀r ∈ R

σr Standard deviation of a regular user behavior data, r ∈ R
σs Standard deviation of a sensitive user behavior data, s ∈ S
σa Standard deviation of an intervention data (integrity attacks), a ∈ A

Xr Regular user behavior data, r ∈ R
X0 Landmark regular user behavior data
Xs Sensitive user behavior data, s ∈ S
Xb Regular or sensitive user behavior data, b ∈ B
Xa Intervention (attack) data, a ∈ A
M Perturbation method

Yr, Y0, Ys, Yb, Ya Perturbed data, Yr =M(Xr), Y0 =M(X0), Ys =M(Xs),
Yb =M(Xb), Ya =M(Xa)

C Cross-covariance
C Relative impact of a behavior data on the observed variable (attribute)
C̄ Mean relative impact of a behavior data on the observed

variable (attribute)
αp Behavior-privacy parameter
αu Behavior-utility parameter

3.1. Perturbation System Architecture and Design Consideration

Sensor data can either be protected by performing the perturbation locally, on the
system that gathers the data, or to a remote system by securely transferring the data from
the data source to the third-party processing systems. However, due to recent regulations,
which explicitly stipulate that “wherever possible, use processes that do not involve per-
sonal data or transferring personal data outside of the vehicle (i.e., the data is processed
internally)” [41], the local perturbation is preferred (see Figure 1).

Implementing a protection system for time-series data involves choosing the perturba-
tion method, taking into account data and equipment restrictions, such as:

• the type of data leaving the system and the potentially sensitive information they carry;
• the amount of information to be hidden considering possible sensitive information or

other external factors;
• utility restrictions (how much information about the data should still be available

after perturbation);
• the processing power of the equipment.

Because many data protection mechanisms have been proposed and implemented
during the last decade, choosing the most suitable one is challenging. Consequently,
the main purpose of this research is to make such decisions simpler.
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Figure 1. Multi-sensor equipment with perturbation module.

3.2. Formal Description

Consider time-series data X, collected from a sensor at time instants T = {1, 2, . . . , t, . . . }
for one observed variable (time series attribute), Xr a vector containing measurements corre-
sponding to regular (typical) user behavior (r ∈ R), Xs corresponding to sensitive behavior
(s ∈ S), Xb corresponding to any type of regular or sensitive behavior (b ∈ B, B = R ∪U
and R ∩ S = ∅), Xa corresponding to data intervention (a ∈ A). Moreover, consider σ
the standard deviation of X, [σmin, σmax] the feasible interval of minimum and maximum
standard deviations (available from the sensor specifications), σr the standard deviation of a
regular (typical) user behavior, [σrmin , σrmax ] the standard deviation interval corresponding
to regular behavior, σs the standard deviation of a sensitive behavior, and σa the standard
deviation of a data intervention.

Definition 1. Time-series data X, collected by a sensor, contains information associated with regu-
lar behavior if its standard deviation σr is in the interval of regular operation, σr ∈ [σrmin , σrmax ].

The interval of regular operation [σrmin , σrmax ] is obtained by computing the standard
deviation for several time-series data collected during what is subjectively considered the
typical operation of the device or equipment.

Definition 2. Time-series data X, collected by a sensor, contains information associated with
sensitive behavior (user-specific information) of the system user if the standard deviation of X,
σs, is outside the regular operation interval, σs ∈ [σmin, σrmin) or σs ∈ (σrmax , σmax].

From the privacy point of view, sensitive behavior corresponds to patterns that may
lead to user identification or the identification of specific user behavior (e.g., aggressive
driver behavior, nervous tics). Thus, such patterns should be recognized and protected by
the perturbation system.

Data interventions are conducted either by altering the sensor or injecting erroneous
data before the perturbation process occurs (see Figure 1) and, in this research, we associate
them with integrity data attacks (e.g., pulse attacks, scaling attacks, random attacks).
From the utility point of view, the information that may lead to an attack or anomaly
detection should be maintained after data perturbation. The working hypotheses are that
the impact of intervention data is more significant than the impact of the sensitive behavior
data and that the impact of sensitive behavior data is higher, but reasonably close to, the
regular behavior.

Definition 3. An intervention is an intentional modification of the collected time-series data X,
such that the standard deviation of X during the attack (σa) is greater than the standard deviation
of all collected sensitive behavior data, σa > σs or it is smaller than the standard variation of all
collected sensitive behavior data, σa < σs.
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Consider M a perturbation mechanism that protects information from Xb, b ∈ B,
while maintaining the possibility of partial information extraction through data-mining
techniques such that:

Yb =M(Xb), ∀b ∈ B. (2)

Let X0 denote the reference data of regular operation, called landmark regular behavior,
Xbt the tth measurement of the observed variable for the b behavior data, and Ybt the
perturbation of Xbt.

The mean of the observed values for the behavior b is defined by:

Ȳb =
1
|T| ∑

t∈T
Ybt, ∀b ∈ B. (3)

Further, let C(Yb) be the impact that behavior b has on the observed variable of the
perturbation system, computed as the cross-covariance between the perturbed landmark
regular behavior Y0 =M(X0) and the collected behavior data b:

C(Yb) =
1
|T| ∑

t∈T

(Ybt − Ȳb)(Y0t − Ȳ0)

Ȳ0Ȳb
, ∀b ∈ B. (4)

The impact (Equation (4)) is a measure of how much the output of the system deviates
from regular behavior.

The relative impact C of a behavior b on the observed variable is defined as:

C(Yb, Xb) =
C(Yb)

C(Xb)
=

∑t∈T
(Ybt−Ȳb)(Y0t−Ȳ0)

Ȳ0Ȳb

∑t∈T
(Xbt−X̄b)(X0t−X̄0)

X̄0X̄b

, ∀b ∈ B. (5)

As any perturbation method introduces a certain degree of uncertainty due to the
added noise, the mean relative impact is used to quantify the impact of interventions
under uncertainty:

C̄(Yb, Xb) =
1
P

P

∑
p=1
C(Yb, Xb), ∀b ∈ B, (6)

where P is the number of times perturbation is performed, i.e., Y0 and Yb are computed.
The larger the P, the more accurate the relative impact.

Definition 4. LetM be a perturbation mechanism that takes as input time-series data Xb, b ∈ B,
corresponding to a regular or sensitive behavior, such that Yb = M(Xb), and let αp be a real
positive number.M satisfies α-behavior-privacy for the observed variable if it holds that:

C̄(Yb, Xb) ≤ αp, ∀b ∈ B. (7)

where αp is the behavior-privacy parameter. Definition 4 imposes that the relative impact on the
perturbed data of any behavior should be less than a pre-defined value, αp, for the observed variable.
The behavior-privacy parameter αp in Equation (7) defines the desired level of privacy and it should
be as small as possible for high data protection. In the case when the mean relative impact C̄(Yb, Xb)
of a behavior data value b is higher than αp, we conclude that the perturbation methodM does not
provide sufficient protection, meaning that it does not hide enough information (sensitive patterns
can be detected).

Definition 5. LetM be a perturbation mechanism that takes as input time-series data Xb, b ∈ B,
corresponding to a regular or sensitive behavior, such that Yb = M(Xb), and let αu be a real
positive number.M satisfies α-behavior-utility for the observed variable if it holds that:

C̄(Yb, Xb) ≥ αu, ∀b ∈ B. (8)
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where αu is the behavior-utility parameter. Definition 5 states the condition to be met by the
perturbation mechanism on any behavior data such that the perturbed result is useful. The behavior-
utility parameter αu in Equation (8) defines the desired level of utility, and it should be as large as
possible for high data utility. When the mean relative impact C̄(Yb, Xb) of a behavior data value b
is lower than αu, we conclude that the perturbation methodM does not provide sufficient utility,
meaning that it hides too much information.

An ideal perturbation mechanism for the observed variable satisfies both α-behavior-
privacy and α-behavior utility conditions, such that the mean relative impact C̄(Yb, Xb) of
any behavior b is in the interval [αu, αp], αu ≤ αp.

3.3. Comparing Perturbation Methods

ConsiderM1 andM2, two perturbation mechanisms that satisfy α-behavior-privacy
and α-behavior-utility with the targeted αu and αp, the behavior-utility parameter and
behavior-privacy parameter, respectively.

Definition 6. For the perturbation methodsM1 andM2 we define the following privacy-utility operators:

• M1 >M2: ifM1 provides higher utility thanM2;
• M1 �M2: ifM1 provides higher privacy thanM2;
• M1 ≫M2: ifM1 provides higher utility thanM2 andM1 provides higher privacy thanM2.

Next, consider X0 the landmark regular operation data, Xs, a sensitive behavior data
s ∈ S, Y1

0 = M1(X0), Y1
s = M1(Xs), Y2

0 = M2(X0), Y2
s = M2(Xs). Then, the mean

relative impact is defined in Equations (9) and (10) as:

C̄1(Ys, Xs) =
1
P

P

∑
p=1

C(Y1
s )

C(Xs)
=

∑t∈T
(Y1

st−Ȳ1
s )(Y1

0t−Ȳ1
0 )

Ȳ1
0 Ȳ1

s

∑t∈T
(Xst−X̄s)(X0t−X̄0)

X̄0X̄s

, ∀s ∈ S. (9)

and

C̄2(Ys, Xs) =
1
P

P

∑
p=1

C(Y2
s )

C(Xs)
=

∑t∈T
(Y2

st−Ȳ2
s )(Y2

0t−Ȳ2
0 )

Ȳ2
0 Ȳ2

s

∑t∈T
(Xst−X̄s)(X0t−X̄0)

X̄0X̄s

, ∀s ∈ S. (10)

Let us denote C̄1
s = C̄1(Ys, Xs) and C̄2

s = C̄2(Ys, Xs).

Proposition 1. If min(C̄1
s ) > min(C̄2

s ), for any sensitive behavior s, thenM1 >M2.

Proof. For s ∈ S, S ⊂ B ⇒ s ∈ B. As M1 and M2 satisfy α-behavior-privacy and
α-behavior-utility, C̄1

s , C̄2
s ∈ [αu, αp]. If min(C̄1

s ) > min(C̄2
s ) then αu < min(C̄2

s ) < min(C̄1
s ) <

αp. Consequently, the impact that any sensitive behavior s has on data perturbed with
M1 is higher than the impact of at least one sensitive behavior s on data perturbed with
M2; thus, more information about the sensitive behavior is maintained in the data per-
turbed with M1 for all s ∈ S, providing higher overall data utility. Then, according
to Definition 6,M1 >M2.

Proposition 2. If max(C̄1
s ) < max(C̄2

s ), for any sensitive behavior s, thenM1 �M2.

Proof. For s ∈ S, S ⊂ B⇒ s ∈ B.M1 andM2 satisfy α-behavior-privacy and α-behavior-
utility; thus, C̄1

s , C̄2
s ∈ [αu, αp]. If max(C̄1

s ) < max(C̄2
s ) then αu < max(C̄1

s ) < max(C̄2
s ) < αp.

The impact that any sensitive behavior s has on perturbed data withM1 is smaller than the
impact of at least one sensitive behavior s on data perturbed withM2. Consequently, less
information about the sensitive behavior is held in the data perturbed withM1 for all s ∈ S,
providing higher overall data privacy. Then, according to Definition 6,M1 �M2.
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Proposition 3. If min(C̄1
s ) > min(C̄2

s ) and max(C̄1
s ) < max(C̄2

s ), for any sensitive behavior s,
thenM1 ≫M2.

Proof. According to Proposition 1, if min(C̄1
s ) > min(C̄2

s ) then M1 > M2, meaning
that M1 provides higher utility than M2. If max(C̄1

s ) < max(C̄2
s ) then M1 � M2

(from Proposition 2), meaning thatM1 provides higher privacy thanM2. Then, according
to Definition 6,M1 ≫M2.

Taking into account Propositions 1–3, we propose the methodology described in Algorithm 1
for comparing two perturbation methodsM1 andM2.

Before applying Algorithm 1, data preparation is required. Firstly, we describe the
regular user behavior for the tested system, collect regular behavior data, compute standard
deviations for all data, and find the interval of regular operation [σrmin , σrmax ]. Then, we
choose the landmark regular behavior, X0, selected from the collected regular behavior
data such that the standard deviation σ is the closest to (σrmax − σrmin)/2. Thirdly, we collect
sensitive behavior data, Xs. The constituent steps are also illustrated in Figure 2.

Algorithm 1: Comparison of Perturbation Methods
Input: X0 (landmark regular behavior), Xs (vector of sensitive behavior data,

s ∈ S),M1 andM2 (perturbation methods);
Output: The comparison result
Function ComparePerturbationMethods(X0, Xs,M1,M2):

Y1
0 ←−M1(X0); // compute the perturbed data

Y2
0 ←−M2(X0); // for the landmark regular behavior

for i← 1 to size(S) do
Y1

s [i]←−M1(Xs[i]); // compute the perturbed data
Y2

s [i]←−M2(Xs[i]); // for the sensitive behavior
C̄1

s [i]←− C̄(Y1
s [i], Xs[i]); // compute the mean relative impact

C̄2
s [i]←− C̄(Y2

s [i], Xs[i]); // for both perturbations
end
min1 ←− min(C̄1

s ); max1 ←− max(C̄1
s );

min2 ←− min(C̄2
s ); max2 ←− max(C̄2

s );
if (min1 > min2 and max1 < max2) then

returnM1 ≫M2;
else if max1 < max2 then

returnM1 �M2;
else if min1 > min2 then

returnM1 >M2;
return null;

End Function

Figure 2. Methodology for comparing two perturbation methods.

3.4. Evaluation of the Utility of a Perturbation Method in Case of Data Interventions

External entities can alter sensor data, for instance, by modifying the sensor or chang-
ing the data after it is collected. Therefore, monitoring data interventions is essential for
maintaining data integrity and detecting anomalies or attacks. We evaluate the impact data
interventions have on the perturbed data and estimate the resulting data’s utility. Maintain-
ing enough information after perturbation to detect anomalies/attacks is expected from the
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utility point of view. Our research focuses on a type of data intervention called an integrity
attack, which consists of modifying data after it is collected using predefined patterns.

Consider A the set of possible data interventions. Let an intervention (attack) data
Xa, a ∈ A, be the input of a perturbation method M. Let Ya be the perturbed values,
Ya =M(Xa), and compute the mean relative impact of Xa on the perturbed data Ya for an
observed variable as:

C̄(Ya, Xa) =
1
P

P

∑
p=1

C(Ya)

C(Xa)
=

∑t∈T
(Yat−Ȳa)(Y0t−Ȳ0)

Ȳ0Ȳa

∑t∈T
(Xat−X̄a)(Y0t−X̄0)

X̄0X̄a

. (11)

Denote C̄a = C̄(Ya, Xa) and C̄s = C̄(Ys, Xs), ∀s ∈ S.

Proposition 4. IfM satisfies the condition:

C̄a > max(C̄s), ∀s ∈ S, (12)

thenM preserves the intervention information such that the perturbed data Ya is useful for detecting
data intervention a, a ∈ A.

Proof. For ∀s ∈ S and ∀b ∈ B, max(C̄s) ≥ C̄b. If C̄a > max(C̄s) ⇒ C̄a > max(C̄s), ∀b ∈ B.
Then, the mean relative impact C̄a of a data intervention a, a ∈ A, is higher than the mean
relative impact of any behavior b (regular or sensitive). Thus, the perturbed data resulted
from applyingM on a preserves information about the intervention/attack, maintaining
data utility.

The consequence of Proposition 4 is that, if the impact of an intervention (attack) is
higher than the impact of all defined sensitive behavior data, then the perturbed data is
useful from the point of view of the attack or anomaly detection.

The proposed approach for evaluating the utility of a perturbation method in case
of interventions is described in Algorithm 2. The same data preparation is necessary as
in the case of Algorithm 1. Additionally, data intervention Xa, a ∈ A, is collected. If the
result of the evaluation is positive, then the perturbation method provides utility for the
considered intervention data. Otherwise, the usefulness of the perturbation method is low
or uncertain.

Algorithm 2: Intervention Impact on Perturbed Data Algorithm
Input: X0 (landmark regular behavior), Xs (vector of sensitive behavior data,

s ∈ S), Xa (intervention data, a ∈ A),M (perturbation method);
Output: The evaluation result
Function EvaluateInterventionImpactOnPerturbedData(X0, Xs, Xa,M):

Y0 ←−M(X0); // compute the perturbed data for the landmark
// regular behavior
for i← 1 to size(S) do

Ys[i]←−M(Xs[i]); // compute the perturbed data for each
// sensitive behavior
C̄s[i]←− C̄(Ys[i], Xs[i]); // compute the mean relative impact

end
Ya ←−M(Xa); // compute the perturbed data for data interventions
C̄a ←− C̄(Ya, Xa); // compute the mean relative impact for intervention data
if C̄a > max(C̄s) then

return true; // the information about the attack is maintained in
// the perturbed data

else
return false;

End Function
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4. Experimental Results

The proposed framework is evaluated from several perspectives. Beforehand, the ap-
proach to collecting and generating the necessary data is described. Next, several standard
perturbation methods are compared using the impact coefficients and the proposed al-
gorithm for univariate time series. Finally, the method’s applicability is showcased for
identifying the possibility of perturbation methods to detect specific types of integrity
attacks. We consider the ability of the perturbation method to maintain information about
the intervention as a measure of its utility.

The proposed framework is evaluated in the context of three time series distor-
tion algorithms that leverage the discrete Fourier transform (DFT) as the transformation
method: (i) a primary distortion method that consists of transforming the data in the fre-
quency domain and filtering the first k coefficients (method denoted within this article
as filtered FFT) and that does not introduce any noise perturbation (we use it for empha-
sizing the validity of the proposed method), (ii) the compressible perturbation algorithm
(CPA) [8], based on the Fourier representation of the time series, it adds noise to a fraction
of the frequencies, and (iii) the Fourier perturbation algorithm (FPA) [9], the first differ-
entially private (DP) approach that offers practical utility for time-series data. The CPA
and FPA algorithms are widely accepted as classical perturbation methods with many
applications and variants. Thus, by demonstrating the validity of the proposed approach
to these algorithms, we expect to have the framework’s utility applied to other similar
perturbation techniques.

4.1. Data Collection and Intervention Generation

The first step in using the proposed framework is collecting data for both regular and
sensitive behavior. Further, interventions are generated by simulating various integrity
attacks based on regular behavior data.

This research uses data extracted from in-vehicle CAN data. Data was collected via the
on board diagnostics 2 (OBD-II) port on a VW Passat vehicle using the OBD Fusion mobile
app. Data were recorded every 1 second during driving, and 136 features were extracted
through the OBD-II port. All driving data (regular behavior and sensitive behavior) were
collected on the same route in similar traffic conditions.

The dataset preparation consists of the following steps:

• Step 1: Collect several normal behavior time-series data, compute the standard devia-
tion σ for each one, and identify [σrmin , σrmax ], the interval of minimum and maximum
standard deviation possible for normal behavior.

• Step 2: Choose the landmark normal behavior (X0), the data further used for computing
impact coefficients and for attack generation. For instance, choose the normal behavior
that has the standard deviation closest to the middle of the [σrmin , σrmax ] interval.

• Step 3: Identify possible sensitive behaviors and collect the corresponding data.
The collected data qualifies as sensitive behavior if its standard deviation is outside
the interval [σrmin , σrmax ], according to Definition 2.

Intervention data is generated from the landmark regular behavior by simulating four
integrity attacks commonly utilized in the literature for security studies [42,43], plus the
step attack that can be associated with a defective sensor. The list of interventions is not
aimed to be exhaustive, but is provided to showcase the methodology in the context of
possible attack scenarios. Given the attack interval [Tstart, Tstop], the following types of
attacks on time-series data are considered:

• Pulse attack: In this case the altered value X∗j (t) is obtained by dividing the value of
the attribute j at time t, Xj(t), by an attack parameter ap: X∗j (t) = Xj(t)/ap with t in
the attack interval [Tstart, Tstop];

• Scaling attack: The value Xj(t) is scaled by attack parameter ap: X∗j (t) = ap · Xj(t),
for t ∈ [Tstart, Tstop];
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• Ramp attack: This type of attack adds values from a ramp function X∗j (t) = Xj(t) +
ramp(t), for t ∈ [Tstart, Tstop], where ramp(t) = ap · t;

• Random attack: Here, a random value selected from a uniform distribution interval
(−ap, ap) is added: X∗j (t) = Xj(t) + random(−ap, ap), for t ∈ [Tstart, Tstop];

• Step attack: This attack involves setting values to the attack parameter ap is added:
X∗j (t) = ap, for t ∈ [Tstart, Tstop].

Figure 3 displays a sample of the collected data, and the generated intervention data
are illustrated in Figure 4. Interventions fulfill Definition 3 that states that the standard
deviation of intervention data a is higher than the standard deviation of all defined sensitive
behavior data s. Table 2 explains how sensitive behavior and attacks are generated and lists
their corresponding standard deviations (σ).

(a) (b)

(c) (d)

(e) (f)

Figure 3. Regular and sensitive user behavior normalized data (Vehicle speed): (a) regular behavior;
(b) sensitive behavior s1 (break pressed every 30 s); (c) sensitive behavior s2 (stop and go every 60 s);
(d) sensitive behavior s3 (sharp acceleration every 60 s); (e) sensitive behavior s4 (break and acceleration
alternatively every 60 s); (f) sensitive behavior s5 (stop and go and acceleration alternatively every 60 s).
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(a) (b)

(c) (d)

(e) (f) Intervention/attack (a5)

Figure 4. Generated interventions from Vehicle speed normalized data: (a) landmark regular behavior;
(b) Intervention/attack a1 (pulse attack); (c) Intervention/attack a2 (scaling attack); (d) Interven-
tion/attack a3 (ramp attack); (e) Intervention/attack a4 (random attack); (f) Intervention/attack a5

(step attack).

4.2. Experiments
4.2.1. Compare Perturbation Methods

Auto vehicles, as well as many devices or industrial equipment, are enhanced with a
large number of sensors. Only a fraction of the observed variable data collected from those
sensors is sent to third-party processors. One or more collected or computed values are
transmitted and must be protected.

To demonstrate the usage of the proposed approach, firstly consider a univariate
time series consisting of the vehicle speed observed variable. According to the procedure
described in Section 3.3, the regular and sensitive behavior time series are perturbed by
applying selected distortion methods described in Table 3. Figure 5 presents a sample of
the perturbed data.
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Table 2. Standard deviation for Vehicle speed collected data values and generated interven-
tions/attacks.

Time-Series Data Description Standard
Deviation (σ)

Regular behavior (r1) Vehicle usage under regular driving 0.0539
Regular behavior (r2) Vehicle usage under regular driving 0.0474
Regular behavior (r3) Vehicle usage under regular driving 0.0463
Regular behavior (r4) Vehicle usage under regular driving 0.0495
Regular behavior (r5)
—landmark (X0) Vehicle usage under regular driving 0.0500

Sensitive behavior (s1) Break pressed with a random intensity 0.0376
every 30 s

Sensitive behavior (s2) Stop and go every 60 s 0.0598
Sensitive behavior (s3) Accelerate with a random intensity every 60 s 0.0557
Sensitive behavior (s4) Break and accelerate alternatively every 60 s 0.0678
Sensitive behavior (s5) Stop and go and accelerate alternatively every 60 s 0.0569

Intervention/attack (a1) Pulse attack 0.0701
(attack window size = 7, ap = 20)

Intervention/attack (a2) Scaling attack 0.0816
(attack window size = 7, ap = 2)

Intervention/attack (a3) Ramp attack 0.0860
(attack window size = 35, ap = 0.8)

Intervention/attack (a4) Random attack 0.0762
(attack window size = 7, ap = 50)

Intervention/attack (a5) Step attack 0.0906
(attack window size = 10, ap = 70)

Table 3. Distortion /perturbation methods and parameters.

Distortion/Perturbation Method Notation Number of Fourier Noise Size/
Coefficients Privacy Budget

No distortion/perturbation M0 - -
Filtered FFT M1 k = 10 -
Filtered FFT M2 k = 30 -
CPA Algorithm M3 k = 50 discord = 1.5
CPA Algorithm M4 k = 65 discord = 2
FPA Algorithm M5 k = 50 ε = 0.9
FPA Algorithm M6 k = 65 ε = 0.5

The perturbation is applied for all tested algorithms for each behavior data value, and the
relative impact (Equation (5)) is computed. Finally, the process is repeated a significant number
of times (e.g., larger than 100), and the mean relative impact is obtained (Equation (6)). Table 4
summarizes the computed impact selected sensitive behavior has on various perturbation
systems, and Figure 6a illustrates the minimum and maximum impact coefficients for all
perturbation methods (highlighted in Table 4).

Furthermore, we investigate the proposed approach’s utility in the case of multi-
ple observed variables data. We selected more data attributes (instant fuel consumption,
CO2 flow, and magnetometer X) from the collected dataset, besides the already presented
vehicle speed observed variable, and computed their mean relative impact coefficients
(illustrated in Figure 7).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Perturbation of time series (vehicle speed) normalized data using various perturbation methods:
(a) regular/normal behavior; (b) sensitive behavior (s3); (c) sensitive behavior (s4); (d) regular behavior
perturbed with M1; (e) sensitive behavior (s3) perturbed with M1; (f) sensitive behavior (s4) perturbed
with M1; (g) regular behavior perturbed with M3; (h) sensitive behavior (s3) perturbed with M3; (i)
sensitive behavior (s4) perturbed with M3; (j) regular behavior (s4) perturbed with M5; (k) sensitive
behavior (s3) perturbed with M5; (l) sensitive behavior (s4) perturbed with M5.

4.2.2. Evaluate the Utility of a Perturbation Module for Detecting Data
Interventions/Attacks

Section 3.4 describes the procedure to evaluate the utility provided by data resulting
from the considered perturbation methods in case of data intervention. Consider the
integrity attacks presented in Table 2 and apply the proposed approach for computing the
impact of attacks on normal behavior data. Table 5 lists the mean relative impact coefficients
(Equation (11)) for all integrity attacks and all tested perturbation methods. For all methods,
min(C̄s) and max(C̄s) are extracted from Table 4.
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(a) Mean relative impact C̄ (b) Mean absolute error (MAE) (c) Real query probability

Figure 6. Sensitive behavior data (vehicle speed): (a) Minimum and maximum impact coefficients
for all tested perturbation methods; (b) Maximum and mean MAE (information loss) for all tested
perturbation methods; (c) The maximum probability of the real query result for all tested perturba-
tion methods.

Table 4. Mean relative impact coefficients C̄b for tested perturbation methods applied on sensitive
behavior data.

Sensitive Behavior M0 M1 M2 M3 M4 M5 M6

Break/30 s (s1) 1.0 0.205 0.217 0.194 0.255 0.236 0.228
Stop/60 s (s2) 1.0 0.266 0.205 0.353 0.202 0.235 0.259
Acceleration/60 s (s3) 1.0 0.251 0.238 0.208 0.232 0.239 0.243
Break and acceleration
(alternatively)/60 s (s4) 1.0 0.184 0.218 0.364 0.105 0.228 0.240
Stop and go and acceleration
(alternatively)/60 s (s5) 1.0 0.257 0.256 0.334 0.216 0.245 0.249

(a) CO2 flow (g/s) (b) Instant fuel economy (c) Magnetometer X (µT)

Figure 7. Minimum and maximum impact coefficients for all tested perturbation methods for (a) CO2

flow (g/s) values; (b) instant fuel economy (l/100 km) values; (c) magnetometer X (µT) values.

Table 5. Mean relative impact coefficients C̄a for tested perturbation methods applied on intervention
data (vehicle speed observed variable).

Intervention/Attack M0 M1 M2 M3 M4 M5 M6

Intervention/attack (a1) 1.0 0.157 0.222 0.249 0.254 0.244 0.240
Intervention/attack (a2) 1.0 0.140 0.214 0.233 0.253 0.235 0.243
Intervention/attack (a3) 1.0 0.134 0.209 0.231 0.254 0.231 0.237
Intervention/attack (a4) 1.0 0.138 0.213 0.244 0.263 0.237 0.242
Intervention/attack (a5) 1.0 0.132 0.208 0.229 0.261 0.230 0.237

min(C̄s) 1.0 0.184 0.205 0.194 0.105 0.228 0.228
max(C̄s) 1.0 0.266 0.256 0.364 0.255 0.245 0.259
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5. Discussion

This paper proposes a comparison approach that identifies the minimum and maxi-
mum relative mean impact for each perturbation method. A suitable perturbation method
is identified if it simultaneously holds the highest minimum and lowest maximum im-
pact coefficients.

For one observed variable (vehicle speed), the computed minimum and maximum im-
pact coefficients C̄, for all tested perturbation methods, are listed in Table 4 and illustrated in
Figure 6a. As observed, the perturbation methodM5 holds both the highest minimum im-
pact (C̄ = 0.228) and the smallest maximum impact (C̄ = 0.245). Based on Propositions 1–3,
we conclude that M5 provides the best privacy and utility from the tested algorithms,
for the considered dataset, and the proposed sensitive behaviors. PerturbationM6 also
provides good privacy and utility with impact coefficients close to those computed forM5

and it may be considered an alternative forM5.
The result is validated from the utility point of view by computing the mean absolute

error (MAE) utility metric between the not perturbed sensitive behavior data and the
perturbed version for each perturbation method (Table 6). Figure 6b highlights perturbation
methodsM5 andM6 as the ones that provide the smallest information loss.

Table 6. Mean absolute error (MAE) for tested perturbation methods (×10−2) applied on sensitive
behavior data.

Sensitive Behavior M0 M1 M2 M3 M4 M5 M6

Break/30 s (s1) 0.0 1.977 1.601 1.518 1.775 1.486 1.486
Stop/60 s (s2) 0.0 3.977 2.832 2.668 2.650 2.568 2.577
Acceleration/60 s (s3) 0.0 2.744 2.359 2.266 2.519 2.162 2.176
Break and acceleration
(alternatively)/60 s (s4) 0.0 3.541 3.027 3.072 3.028 2.849 2.796
Stop and go and acceleration
(alternatively)/60 s (s5) 0.0 3.218 2.454 2.197 2.276 2.273 2.248

For measuring the privacy provided by the tested perturbation methods, we calculated
the probability distribution function (PDF) of queries executed on perturbed data and
computed the probability to obtain the actual query result from the original data (Table 7).
Figure 6c shows the mean probability for all sensitive behaviors computed from PDFs
generated from 1000 queries. The smaller the probability, the higher the privacy, as more
information is hidden. Again, the computed probabilities emphasize the perturbation
methodsM5 andM6 as the ones providing the best privacy protection.

Table 7. Probability of the real query result applied on sensitive behavior data.

Sensitive Behavior M3 M4 M5 M6

Break/30 s (s1) 4.67× 10−11 1.18× 10−8 1.31× 10−112 4.45× 10−64

Stop/60 s (s2) 2.05× 10−6 3.83× 10−5 3.03× 10−39 4.91× 10−18

Acceleration/60 s (s3) 2.98× 10−10 8.15× 10−9 1.53× 10−122 5.10× 10−57

Break and acceleration
(alternatively)/60 s (s4) 2.06× 10−9 1.64× 10−8 9.18× 10−78 9.19× 10−37

Stop and go and
acceleration/60 s (s5) 2.83× 10−7 8.87× 10−7 4.43× 10−38 4.30× 10−29

In addition, we tested the proposed framework for more observed variables with the ob-
jective of finding the best perturbation method that can be applied to all variables. Figure 7
illustrates the computed mean relative impact coefficients for attributes instant fuel consump-
tion, CO2 flow, and magnetometer X. According to the stated requirements, the perturbation
methodM6 holds the highest minimum and lowest maximum impact coefficients for all



Mathematics 2023, 11, 1260 18 of 21

variables, thus providing the best utility and privacy for the described scenario. Moreover,
the result is confirmed from the utility and privacy points of view. Figure 8 shows thatM6

has the minimum information loss (MAE) from all tested perturbation methods, and, more-
over, the lowest maximum probability of the real query result (lower probability is better).

(a) Mean absolute error (MAE) (b) Real query probability

Figure 8. (a) Maximum MAE (information loss) for all tested perturbation methods; (b) Maximum
probability of the real query result for all tested perturbation methods.

Further, we investigated the possibility of using the mean relative impact coefficients
(Equation (11)) for detecting data integrity attacks. Based on Proposition 4, data from Table 5
indicate that all data protection methods hide important information about the attacks.
Attack detection may be possible but challenging for most perturbation methods, as the
impact is similar to those of sensitive behaviors. As the impact coefficients for methodM1

are all smaller than the corresponding impact coefficients calculated for sensitive behavior,
we conclude thatM1 hides essential information about the attacks. Thus,M1 cannot be
regarded as a suitable privacy protection method when attack or anomaly detection is an
objective. In the case ofM4, several attacks (a4 and a5) may be detected according to the
proposed criteria, and the impact of the other attacks (a1, a2, and a3) is also significant.

We demonstrated that the proposed methodology could be used to measure the
utility and privacy of various perturbation algorithms, and the following advantages
have been identified:

• Compared to the other mechanisms, the proposed approach measures both privacy
and utility;

• Various distortion and perturbation methods can be compared, no matter how differ-
ent they are;

• An evaluation of the impact of various data integrity attacks on perturbed data is possible.

However, a few observations on its limitations are necessary. Firstly, the accuracy
of the evaluation depends on the set of collected normal behavior time series and the
set of defined sensitive behaviors. The more accurately they cover the possible sensitive
behaviors, the more accurate the comparison is.

Secondly, the experiments have shown that the proposed approach may only be able to
identify a suitable perturbation method for some observed variables. For example, certain
algorithms provide high privacy for some variables but lack utility or vice versa.

Additionally, when more observed variables are evaluated, it is possible to identify
desired perturbation methods depending on the variable. This can be anticipated as the
impact of sensitive behavior or intervention may not be the same on all variables. In this
case, we propose an improvement to the perturbation system illustrated in Figure 1: Instead
of using a perturbation method for all observed variables, add several perturbation methods
and assign variables to the ones implementing the best privacy and utility (see Figure 9).
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Figure 9. Multi-sensor equipment with several perturbation modules.

The approach proposed for comparing various perturbation methods on time-series
data can be expanded to evaluate the utility of the perturbed data in the case of data
interventions (e.g., integrity attacks). The computed impact coefficients show how much
information about the intervention is hidden or preserved after perturbation. However,
more research is necessary to test various attacks and anomaly detection techniques and
assess their performance on perturbed data.

6. Conclusions

This paper addressed a new approach for measuring the privacy and utility provided
by time-series perturbation algorithms. The main novelty and contribution to the state of the
art is the exposed procedure for comparing various perturbation methods. The framework
involved collecting data corresponding to sensitive behavior and measuring the impact this
behavior had on the perturbation system. As shown, the presented metrics were helpful
for simultaneously measuring the privacy and utility of the perturbed data. The research
contribution is meaningful for those protecting time-series data collected from various
sensors, as the approach is sensor-type-independent, algorithm-independent, and data-
independent.

The experiments demonstrated that the approach had significant benefits. It could be
applied to diverse perturbation algorithms and on various data, under the condition that
sensitive behavior could be defined and corresponding data could be collected. Moreover,
the research suggested evaluating the impact of integrity data attacks on perturbed data.
Data was collected via the OBD-II port on a VW Passat auto vehicle for both regular/typical
and sensitive behavior. The experiments showed that the approach was also promising
in measuring the impact of sensitive behavior on the perturbed data regarding privacy
and utility. Furthermore, by exemplifying the approach on two classical perturbation
algorithms, we expect our method to be applied to other perturbation techniques.

In future work, we intend to test the proposed method on publicly available datasets
and on more diverse perturbation algorithms. A key challenge will be the detection of
sensitive user behavior on such data. As a result, further adjustments to the presented
approach may be required. Lastly, additional evaluation of the impact of integrity attacks
on perturbed data and, consequently, the impact on the accuracy of the anomaly and attack
detection algorithms will be included in future research work.
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