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Abstract: We show a method to construct binary multi de Bruijn sequences using the cross-join
method. We extend the proof given by Alhakim for ordinary de Bruijn sequences to the case of multi
de Bruijn sequences. In particular, we establish that all multi de Bruijn sequences can be obtained by
cross-joining an ordinary de Bruijn sequence concatenated with itself an appropriate number of times.
We implemented the generation of all multi de Bruijn sequences of type C(2, 2, 2) and C(3, 2, 2). We
experimentally confirm that some multi de Bruijn sequences can be generated by Galois Nonlinear
Feedback Shift Registers (NLFSRs). It is supposed that all multi de Bruijn sequences can be generated
using Galois NLFSRs.
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1. Introduction

De Bruijn sequences have been investigated for decades [1–4]. They have many
applications: in combinatorial problems, in cryptography to generate pseudo-random
sequences, and in biology to investigate genome sequences [5]. It is known that binary
de Bruijn sequences can be generated by Nonlinear Feedback Shift Registers (NLFSRs) [6].
NLFSRs are the main components in constructing stream ciphers. Knowing a de Bruijn
sequence, one can apply the cross-join method to construct new de Bruijn sequences [3,7–9].
In papers [10,11] It was proved first that the cross-join method generates all de Bruijn se-
quences of given order. In [10], an algorithm was explicitly given that begins with an
arbitrary de Bruijn sequence from a finite alphabet and outputs a Hamiltonian path in the
corresponding cross-join graph.

Paper [9] generalizes the notion of de Bruijn sequences to multi de Bruijn sequences,
where patterns of fixed length appear m times (m = 1 for ordinary de Bruijn sequences), that
paper presents formulas for the total number of possible multi de Bruijn sequences with a
specified set of parameters. However, it does not provide a method to generate any such
sequence. Although the notion of multi de Bruijn sequences appears to be more complex
than ordinary ones and may cater to more applications (they appear in some biological
sequences investigations [5],) one important consequence of the results of this paper is that
all multi de Bruijn sequences stem, simply, from any ordinary de Bruijn sequence.

Following the proof given by Alhakim [10], we prove that all multi de Bruijn se-
quences can be generated starting from one such sequence by using the cross-join method.
The proof is non-constructive in the sense that one has to start with a particular multi
de Bruijn sequence in order to apply the cross-join method. On the positive side, it is
sufficient to form a trivial multi de Bruijn sequence by concatenating an ordinary de Bruijn
sequence m times with itself. Ordinary de Bruijn sequences can be constructed using vari-
ous methods [7,12–14] (see also, [3] and references therein). We implemented this method
for the case of multi de Bruijn sequences of the type C(2, 2, 2) and C(2, 2, 3) (binary multi
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de Bruijn sequences of order 2 and 3 with multiplicity 2 and patterns of length 2 and 3,
see below for a formal definition). The drawback of the cross-join method is that to find
a cross-join pair, we potentially have to run over the whole sequence. This can still be
reasonably done for sequences up to the order of 40.

Galois NLFSRs were considered in papers [15,16]. We confirmed experimentally that
some sequences of type C(2, 2, 3) can be generated by Galois NLFSRs listed in [16]. In fact,
they are modified sequences where one of the patterns has a lower multiplicity. It is an
open problem whether all binary multi de Bruijn sequences can be generated using suitable
Galois NLFSRs.

2. Multi de Bruijn Sequences

We introduce multi de Bruijn sequences following Tesler’s paper [9]. Let Ω be a totally
ordered alphabet of size q ≥ 1. A linear sequence is an ordinary sequence of elements of Ω
denoted a1a2 . . . an. Define the cyclic shift of a linear sequence by ρ(a1a2 . . . an) = ana1 . . . an−1.
In a cyclic sequence, we treat all rotations of a given linear sequence as equivalent. A k-mer is
a sequence of length k over Ω. The set of all k-mers over Ω is Ωk. A de Bruijn sequence is a
cyclic sequence over alphabet Ω in which all k-mers occur exactly once. The length of such a
sequence is N = qk.

Definition 1. A multi de Bruijn sequence is a cyclic sequence over an alphabet Ω of size q in which
each k-mer occurs exactly m-times with m, q, k ≥ 1. k is the order of the sequence.

Let C(m, q, k) denote the set of all such sequences. The length of such a sequence is
N = mqk, since each of the qk k-mers accounts for m starting positions. Tesler [9] derived
the formula for the cardinality of C(m, q, k). In the following, we consider multi de Bruijn
sequences over an alphabet Ω with q symbols {0, 1 . . . , q− 1}, addition modulo q is used.

Definition 2. Let a sequence (xi) ∈ C(m, q, k) be represented as a sequence of its states (Si), where
each state is a k-mer Si = (xi, xi+1, . . . , xi+k−1). It is conjugate to a state Sj = (xj, xj+1, . . . , xj+k−1)

if xi = xj + 1 and (xi+1, . . . , xi+k−1) = (xj+1, . . . , xj+k−1). We denote this Si = Ŝj. The state Si
is a companion of the state Sj if xi+k−1 = xj+k−1 + 1 and (xi, xi+1, . . . , xi+k−2) = (xj, xj+1, . . . ,
xj+k−2).

Definition 3. Two pairs of vertices that allow the transformation of a de Bruijn cycle to another
de Bruijn cycle are called cross-join pairs. Let a multi de Bruijn sequence (xi) be considered a
cyclic sequence and represented as a sequence of states (Si). Then the four states (Si, Sj, Ŝi, Ŝj),
form a cross-join pair for the sequence (xi) if they occur in the sequence in the listed order.

Definition 4. Let (xi) ∈ C(m, q, k) and (Si, Sj, Ŝi, Ŝj) be a cross-join pair. We construct a new
multi de Bruijn sequence (yi) by swapping the successors of Si and Ŝi and the successors of Sj and
Ŝj. That is, by going from Si to the successor of Ŝi, then from Ŝj to the successor of Sj and so on
until closing the cycle. This construction is called the cross-join method.

To be more precise, let us denote Ŝi = Sp and Ŝj = Sq. Then the original sequence has
states that proceed as:

Si, Si+1, . . . , Sj, Sj+1, . . . , Sp, Sp+1, . . . , Sl , Sq+1, . . . , Si−1.

After the cross-join operation, the modified sequence has states that proceed as:

Si, Sp+1, . . . , Sq, Sj+1, . . . , Sp, Si+1, . . . , Sj, Sq+1, . . . , Si−1.

The conjugate pair of states Si, Ŝi splits the full cycle into two shorter cycles after
interchanging their successors. Then the states Sj, Ŝj are on different cycles, and after
interchanging their successors, we obtain a new de Bruijn cycle (see Figure 1).
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Figure 1. A geometric representation of the cross-join method.

3. The Main Theorem

Definition 5. Let (xi), (yi) be two sequences from C(m, q, k). The length of the sequences is
N = mqk. We take the least lexicographical representatives of both sequences and consider the
length L of the longest common initial path of these sequences

(x1, x2, · · · , xL, · · · , xN), (x1, x2, · · · , xL, yL+1, · · · , yN).

We define the function (pseudo-distance) of the sequences as d(x, y) = N − L.

Proposition 1. The function d(x, y) has the properties:

• For all x, y in C(m, q, k), d(x, y) = 0 if and only if x = y.
• d(x, y) = d(y, x) for all x, y ∈ C(m, q, k).

One can find examples of three multi de Bruijn sequences, which are concatenations
of de Bruijn sequences of lower order for which the triangle inequality is not satisfied. It
turns out that the pseudo-distance suffices to get our connectedness result. Unlike the case
of ordinary de Bruijn cycles, the absence of the triangle inequality does not allow for the
construction of a Hamiltonian path of multi de Bruijn cycles.

Definition 6. Let x and y be two distinct multi de Bruijn sequences. We say that y is a neighbor of
x if y can be obtained from x by applying a sequence of cross-join operations.

We adapt the following proposition and its proof from the paper [10].

Proposition 2. Let x = (xi) and y = (yi) be two distinct multi de Bruijn sequences from the set
C(m, q, k). Then there exists a multi de Bruijn sequence u ∈ C(m, q, k), which is a neighbor of x in
C(m, q, k) such that d(u, y) < d(x, y).

Proposition 2 is crucial in the proof of following.
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Theorem 1. Any two distinct multi de Bruijn sequences in C(m, q, k) can be connected by applying
a sequence of the cross-join operations.

Proof. Let x and y be two distinct sequences in C(m, q, k). By Proposition 2, x has a neighbor
u1 such that d(u1, y) < d(x, y). If u1 = y, then we are done; otherwise, the same argument
can be iterated to get a sequence u2, which is a neighbor of u1, with d(u2, y) < d(u1, y).
Due to the strict inequality, and since the number of sequences in C(m, q, k) is finite, it is
evident that this iterative process must end at y after a finite number of steps l, leading to
the desired path u0 = x, u1, . . . , ul = y.

Proof of Proposition 2. Let x and y be state sequences of multi de Bruijn sequences. We
take the least lexicographical representatives of the sequences x = (Xi) and y = (Yi), where
Xi and Yi are successive states of the multi de Bruijn sequences. Let M0 be the maximal
common initial sequence of x and y. Suppose that the sequence

M0 : 0 = X1 → X2 → · · · → XL0

is common to x and y and L0 is maximal, where 0 is the state of zeros (0, . . . , 0). Since
x 6= y, L0 < N and for the successors of XL0 in x and y at least one is distinct from the
state 0. Let us refer to these successors as X(1) and YL0+1. Since x is a multi de Bruijn
sequence, it contains every state m times, so it must contain YL0+1. The latter is at least
one of the states in M̃0, the complement of M0 in x; that is, the subsequence of x that starts
with X(1) and extends till the end of the sequence, just before cycling back to M0. Let
∗X0 be the predecessor of the first occurrence of YL0+1 in x. Since YL0+1 belongs to M̃0,
the state ∗X0 is either in M̃0 or it is XL0 itself. However, the latter would make the common
initial sub-sequence of x, and y would extend to YL0+1, which contradicts the maximality
of M0. Now XL0 and ∗X0 are predecessors of the same state so they form a conjugate pair.
Swapping their successors, we split x into two cycles, a cycle C1 that includes the initial
subsequence M0, and another cycle C̃1 that includes the edge ∗X0 → X(1).

The cycle C1 aligned to start with the initial subsequence M0 and the multi de Bruijn
cycle y have a maximal common initial sequence of states

M1 : 0 = X1 → X2 → · · · → XL0 → · · · → XL1

where L1 ≥ L0 + 1. Let M̃1 be a complement of M1 in C1. The rest of the proof depends on
establishing the following.

Claim 1. It is possible to join C1 and C̃1 by using a state in M̃1 and a conjugate state in C̃1,
i.e., there is a state in M̃1 that has a conjugate in C̃1.

To show this, suppose we cannot. Then let the successors of XL1 in y and C1 be YL1+1

and X(2), respectively. Obviously, since M1 is common to y and C1 and since YL1+1 is not on
the path M1 of y, there is at least one occurrence of the word YL1+1 in M̃1, the complement
of M1 in C1, as it cannot be on C̃1, by our assumption. Let ∗X1 be the predecessor of YL1+1

in C1. As before, we can argue that ∗X1 is in M̃1.
Interchanging the successors of XL1 and ∗X1, we further split the cycle C1 into two

cycles C2 and C̃2 with the former being the cycle that includes the initial subsequence M0
and that shares a larger still initial path with y:

M2 : 0 = X1 → X2 → · · · → XL2 , L2 > L1.

In essence, this process can be iterated, arranging and re-arranging vertices on the
initial cycle C1 but without using vertices C̃1, only a finite number of times. Let k be
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the maximal number of iterations and let Ck be the resulting cycle that includes M0 with
maximal initial path

Mk : 0 = X1 → X2 → · · · → XLk Lk > Lk−1

that is common with the multi de Bruijn sequence y. Under the assumption that the above
claim is not valid, we prove the following: the sub-path of the cycle Ck that begins with XLk
and ends with 0 is simply an edge (XLk , 0). That is, XLk is the last vertex before rounding
back to Mk.

To see this, suppose that X(k+1) 6= 0 is the successor of XLk in Ck. Let YLk+1 be the
successor of XLk in y, so that YLk+1 and X(k+1) are companion vertices. We then see that
XLk is not the last vertex in y for otherwise, the multi de Bruijn sequence y would be shorter
than Ck. Hence, YLk+1 is not the initial 0 of Mk. Consequently, one occurrence of YLk+1 is
either in C̃1 or in the part M̃1 of C1. If the first case is true, swapping the predecessor of
YLk+1 in C̃1 with the predecessor of X(k+1) (which is evidently one of the vertices of M̃1)
shows that C1 and C̃1 can be joined into multi de Bruijn sequence using a vertex outside
M1, contradicting the original assumption of the Claim.

If the second case is true, that is, if YLk+1 belongs to M̃k or any of the cycles made by
the previous iteration and that are at most C2, . . . , Ck−1, C̃2, . . . , C̃k−1 (equivalently, it is one
of the vertices of M̃1), then we can swap the predecessors of X(k+1) and YLk+1 to get yet
another cycle Ck+1 that shares a longer initial segment with y, contradicting the maximality
of Ck. It follows that XLk is the last vertex in Ck.

We now prove the following: Ck includes all predecessors of 0. We prove this in a way
similar to the proof of the previous statement. In effect, suppose that U is a predecessor of
0 that is not on Ck. If U belongs to C̃1, we get a contradiction because we could have joined
C1 and C̃1 by swapping, for example, the successors of U and the last vertex in C1 before
the initial subsequence M1, which is, of course, in M̃1. Likewise, the presence of U on any
of the intermediate cycles C2, . . . , Ck−1, C̃2, . . . , C̃k−1 contradicts the maximality of k.

The validity of this last means that the sequence Mk cannot be continued into a multi
de Bruijn sequence as it cannot cycle back to 0 without using one of the predecessors of
zero. This, of course, is not true because Mk is already the initial path of the multi de Bruijn
sequence y. This contradiction means that the Claim must be true.

We have thus proven that C1 and C̃1 can be joined by swapping the successors of
a vertex in M̃1 with that of a conjugate vertex in C̃1. This makes a new multi de Bruijn
sequence z which is a neighbor of x. Since L0 < L1, N − L1 < N − L0 and z satisfies
the inequality

d(z, y) < d(x, y)

as desired.

Proposition 3. Starting with a multi de Bruijn sequence in C(m, q, k) and applying the cross-join
method generates all sequences in C(m, q, k).

We present now the formula for the number of elements of C(m, q, k) [9].

|C(m, q, k)| = 1
mqk ∑

r|m
φ(m/r) ·W(r, q, k)

where φ is the Euler totient function and

W(r, q, k) =
(
(rq)!
r!q

)qk−1

=

(
mq

m, · · · , m︸ ︷︷ ︸
)qk−1

,
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where m is repeated m times. We calculate

|C(2, 2, 2)| = 1
2 · 2 ∑

r|2
φ(2/r)

(
2r
r, r

)21

=
1
8

(
φ(1)

(
2 · 2
2, 2

)2
+ φ(2)

(
2 · 1
1, 1

))2

=
1
8

(
1 ·
(

4
1, 1

)2
+ 1 ·

(
2

1, 1

)2
)

=
1
8
(62 + 2) =

40
8

= 5.

Next we calculate

|C(2, 2, 3)| = 1
2 · 23 ∑

r|2
φ(2/r)W(r, 2, 3) =

1
16

(φ(2)W(1, 2, 3) + W(2, 2, 3))

=
1

16

((
2 · 2
2, 2

)22

+

(
2 · 2
2, 2

)22)
=

1
16

(24 + 64) =
1

16
(16 + 1292) =

1312
16

= 82.

We have implemented the cross-join method for the multi de Bruijn sequences of the
type C(2, 2, 2) and C(2, 2, 3). The implementation has been done in SAGE [17]. For each
sequence, the succeeded states are represented as decimals, and the sequence representative
is the least lexicographical one. We have started from the first sequences in the list in Table 1
and generated all sequences. First, we find the cross-join pairs from the chosen sequence
and generate the corresponding sequences. Then we choose a new de Bruijn sequence and
repeat the process. We then check whether all the sequences are different and throw away
the repeated ones. After a few steps of this process, we find all sequences of a given type.

Table 1. The sequences C(2, 2, 3), |C(2, 2, 3)| = 82. (Tesler [9]). The green and the red sequences
are the concatenation of de Bruijn sequences of C(1, 2, 3). Changing from decimal representation to
binary representation is descibed after Table 2.

(0425210463567731) (0425635210467731) (0425631042567731)
(0421042563567731) (0042521463567731) (0042563521467731)
(0042563142567731) (0042563567731421) (0046314252567731)
(0046314252567731) (0046352521467731) (0046352142567731)
(0046356773521421) (0046773142563521) (0046773563521421)
(0046735214256731) (0046773521425631) (0042525631467731)
(0042567735631421) (0042567314256731) (0042567731425631)
(0042146352567731) (0042146356773521) (0042146773563521)
(0042146735256731) (0042146773525631) (0042142567356731)
(0042142567735631) (0046352567731421) (0046773146352521)
(0046735256731421) (0046773525631421) (0046773142525631)
(0042567731463521) (0042567356731421) (0042525677314631)
(0042567314673521) (0042563146773521) (0421046352567731)
(0421046356773521) (0463521046773521) (0463525210467731)
(0467310467352521) (0463104677352521) (0425677310463521)
(0425673521046731) (0425677352104631) (0425256310467731)
(0425256731046731) (0425256773104631) (0425210467356731)
(0425210467735631) (0421046773563521) (0421046735256731)
(0421046773525631) (0425673104673521) (0425631046773521)
(0421042567735631) (0421042567356731) (0425673104256731)
(0046735252146731) (0046773525214631) (0042567352146731)
(0042567735214631) (0042525673146731) (0042521467356731)
(0042521467735631) (0046352146773521) (0046314256773521)
(0046773563142521) (0046731425256731) (0046735673142521)
(0046314677352521) (0046731425673521) (0046731467352521)
(0046735214673521) (0046773521463521) (0046735673521421)
(0042146735673521) (0042142563567731) (0467352104673521)

(0421046735673521)
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The List. The feedback functions of NLFSRs generated the sequences shown in Table 2.
+ is understood as modulo 2 addition. This table is a part of the Table 3 of Dubrova et al. [16].

# f3 f2 f1 f0

1 x0 1 + x0 + x1 + x3 + x0x1 1 + x1 + x2 + x3 1 + x0 + x1 + x2 + x0x2
2 x0 x3 + x0x2 x2 + x3 + x1 x1 + x0 + x0x2
3 x0 x3 + x0x2 x2 + 1 + x3 + x0x3 x1 + 1 + x2 + x0 + x2x0
4 x0 x3 + x0x2 x2 + 1 + x0 + x1x0 x1 + 1 + x2 + x0x2
5 x0 x3 + 1 + x1 + x2 + x1x2 x2 + x1 + x0x1 x1 + 1 + x0 + x0x2
6 x0 x3 + x1x2 x2 + x1 + x1x0 x1 + x2x0
7 x0 x3 + x1x2 x2 + 1 + x0 x1 + 1 + x2 + x3 + x2x3
8 x0 x3 + x1 + x0x1 x2 + 1 + x3 + x1 x1 + x2 + x0x2
9 x0 x3 + x2 + x0x2 x2 + 1 + x0 + x1 + x0x1 x1 + 1 + x0 + x0x2
10 x0 x3 + x2 + x1x2 x2 + x3x1 x1 + x2 + x3 + x2x3
11 x0 x3 + x2 + x1x2 x2 + x0x1 x1 + x2 + x0x2
12 x0 x3 + x2 + x1x2 x2 + x0 x1 + x2 + x0x2
13 x0 x3 + x2 + x2x0 x2 x1 + x2x0
14 x0 x3 + 1 + x1 + x2 + x1x2 x2 + 1 + x0 + x1x0 x1 + 1 + x0 + x2 + x2x0
15 x0 + x1x2 x3 + x0x2 x2 x1 + 1 + x0 + x2 + x2x0
16 x0 + 1 + x1 + x2 + x1x2 x3 + 1 + x1 + x2 + x1x2 x2 x1 + x2
17 x0 + 1 + x1 + x3 + x1x3 x3 + x0x1 x2 + 1 + x0 x1 + 1 + x2 + x0
18 x0 + x2x3 x3 + x1 + x2 + x1x2 x2 + x1 + x1x3 x1 + x0

Table 2. The sequences generated by Galois NLFSRs from the List above.

Decimal Binary

1 (046773525214631) (000111101010011)
2 (042525631467731) (000101011001111)
3 (046773563521421) (000111101101001)
4 (042146773563521) (000100111101101)
5 (046773146352521) (000111100110101)
6 (046314677352521) (000110011110101)
7 (042142567735631) (000100101111011)
8 (042142563567731) (000100101101111)
9 (046352521467731) (000110101001111)
10 (042563567731421) (000101101111001)
11 (042146356773521) (000100110111101)
12 (042525677314631) (000101011110011)
13 (042567735631421) (000101111011001)
14 (046356773521421) (000110111101001)
15 (004252567314631) (000010101110011)
16 (042563142567731) (000101100101111)
17 (042567731425631) (000101111001011)
18 (046352146773521) (000110100111101)

Table 3. The sequences C(2, 2, 2), |C(2, 2, 2)| = 5. (Tesler [9]).

Decimal Binary

1 (04256731) (00010111)
2 (04635631) (00011011)
3 (04673521) (00011101)
4 (42146731) (00100111)
5 (46314631) (00110011)

4. Galois NLFSRs

Following Dubrova et al. [16] and Dubrova [15], we introduce Galois NLFSRs. A Galois
NLFSR is described by the set f0, f1, . . . , fn−1 of Boolean functions of n binary variables
and n cells which keep bits (Figure 2). The state of an NLFSR consists of the content of n
cells at a given time. After the next clock, each bit i in the state of Galois NLFSR is updated
to its next-state function, which is a Boolean function of state variables.
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Figure 2. (Dubrova [16]). A scheme of Galois NLFSRs of order n.

We considered Galois NLFSRs of order 4 given by Dubrova ([16], Table 1) which
have period 15. We checked experimentally that some of them generate modified multi
de Bruijn sequences of type C(2, 2, 3). In Table 2 at all sequences, state 000 appears once,
and other states appear twice beyond line 15, where state 000 appears twice, and state 111
appears once.

Conjecture: All binary multi de Bruijn sequences can be generated by some Galois NLFSRs.
The digital numbers in Table 2 are the states of NLFSRs regarded as generating

sequences from C(2, 2, 3). Each d ∈ {0, 1, . . . , 7} can be represented as d = c0 + c1 · 2+ c3 · 4.
We explain the representation in the example. Let us take the first line in Table 2. The digit
0 from the left-hand side of the Decimal column is represented as the binary 000, and they
are the first digitals in Binary. Then we take the decimal 4 and represent it as 001, and we
add 1 to the sequence 000. Then we take 6 and represent it as 011 and add 1 to the sequence
0001. This way, each triple of binary digits from Binary, taking it from Decimal and going
with one position from left to right, is a representation of a decimal digit from Decimal.
The binary representation is treated as a cycle. The same representation can be done in
Tables 1 and 3.

5. Conclusions

We have extended the Alhakim proof [10] to the case of multi de Bruijn sequences.
Specifically, we have shown that any multi de Bruijn sequence can be obtained using
a sequence of cross-joins of an ordinary de Bruijn sequence concatenated m times with
itself. Additionally, we have generated the C(2, 2, 2) and C(2, , 2, 3) sequences. We have
experimentally found that some Galois NLFSRs generate the multi de Bruijn sequences of
type C(2, 2, 3).
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