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Abstract: This paper focuses mainly on the problem of computing the γth, γ > 0, moment of
a random variable Yn := ∑n

i=1 αiXi in which the αi’s are positive real numbers and the Xi’s are
independent and distributed according to noncentral chi-square distributions. Finding an analytical
approach for solving such a problem has remained a challenge due to the lack of understanding of the
probability distribution of Yn, especially when not all αi’s are equal. We analytically solve this problem
by showing that the γth moment of Yn can be expressed in terms of generalized hypergeometric
functions. Additionally, we extend our result to computing the γth moment of Yn when Xi is a
combination of statistically independent Z2

i and Gi in which the Zi’s are distributed according to
normal or Maxwell–Boltzmann distributions and the Gi’s are distributed according to gamma, Erlang,
or exponential distributions. Our paper has an immediate application in interest rate modeling,
where we can explicitly provide the exact transition probability density function of the extended
Cox–Ingersoll–Ross (ECIR) process with time-varying dimension as well as the corresponding γth

conditional moment. Finally, we conduct Monte Carlo simulations to demonstrate the accuracy and
efficiency of our explicit formulas through several numerical tests.

Keywords: moments; noncentral chi-square random variables; conic combinations; independent;
extended Cox–Ingersoll–Ross process; time-varying dimension

MSC: 60E05; 60G50; 91G20

1. Introduction

Consider a random variable Yn driven on a probability space (Ω,F ,P) defined by

Yn :=
n

∑
i=1

αiXi (1)

for an integer n ≥ 2, where αi > 0, and each Xi is distributed according to a noncentral
chi-square distribution with νi > 0 degrees of freedom and a noncentrality parameter
δi ≥ 0, i.e., Xi ∼ χ2

νi
(δi), for all i = 1, . . . , n. We assume that the Xi’s are independent with

respect to the σ-field F and probability measure P.
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This paper focuses mainly on the problem of computing the γth moment, γ ∈ R+,
of Yn given by

E[Yγ
n ] =

∫ ∞

0
yγ fYn(y)dy (2)

where fYn(y) is the probability density function (PDF) of Yn, and E[X] denotes the expected
value of a random variable X with respect to the probability measure P. Utilizing the
property of the noncentral chi-square random variables [1], we have that E[Xm

i ] is finite for
all non-negative integer m and i = 1, . . . , n. This result and the independence of the Xi’s
ensure the integral on the RHS of (2) is always finite for all γ ∈ R+.

The random variable Yn is found in many statistical applications. In hypothesis testing,
several test statistics converge in distribution toward a conic combination of independent
noncentral chi-square random variables (see, e.g., [2–5]). Moreover, fYn(y) and E[Yγ

n ]
play an interesting role in financial applications; see, e.g., [6–11]. Very recently, Rujivan
and Rakwongwan [11], Chumpong et al. [6], and Rujivan [10] showed that the log-return
realized variance when the underlying asset follows the extended Black–Scholes model can
be expressed in terms of a conic combination of independent noncentral chi-square random
variables. As a result, they derived the exact PDF of the log-return realized variance as well
as an explicit formula for the γth moment of the log-return realized variance for γ = 1

2 , 1,
yielding the first explicit pricing formulas for volatility swaps, volatility options, variance
swaps, and variance options, respectively. Furthermore, Rujivan and Rakwongwan [11]
utilized the approach proposed in Rujivan [12] for constructing an approximate formula
for pricing volatility swaps for the Heston stochastic volatility model. On the other hand,
Rujivan [10] proposed an approximate formula for pricing volatility swaps when the
underlying asset evolves according to the constant elasticity of variance model.

We now return to the problem of computing the desired moments. Computing (2) is
trivial when the values of the αi’s are equal and γ = m is a non-negative integer. In other
words, Yn reduces to a scaled noncentral chi-square random variable, the PDF of which
is known, which in turn implies that E[Ym

n ] can be obtained in an explicit form since
calculating the integral on the RHS of (2) can be worked out when γ is a non-negative
integer (see, e.g., [1,13]). On the other hand, it has been repeatedly shown in literature
for several decades, see for example in [13–26], that finding an analytical approach for
solving the nonlinear problem (2) is significantly more intricate since the PDF of Yn is
not well-known, when the values of some αi’s are unequal, and it is not clear which
existing representations of the PDF lend themselves to the calculation of the moments. This
underlines the importance of our study.

Based on the above discussion, our paper has three aims which we now describe.
The principal aim is to provide practitioners an accurate and efficient formula for computing
E[Yγ

n ] for any integer n ≥ 2 and γ ∈ R+, including both integers and nonintegers. The next
aim is to illustrate further applications of Yn in interest rate modeling by adopting a
Laguerre expansion for the PDF of Yn which is proposed in this paper to explicitly derive
the transition probability density function (TPDF) of the extended Cox–Ingersoll–Ross
(ECIR) process with time-varying dimension and which, to our knowledge, has never been
found in explicit form until now. In addition, the ECIR process with time-varying dimension
was intensively studied by Maghsoodi [27], where its TPDF was given in explicit form and
used for pricing bond options for the case where the dimension is constant. The final aim
is to utilize the explicit formula for E[Yγ

n ] obtained in this paper to find a novel formula
for computing the γth conditional moment of the ECIR process which is accurate and
more efficient in terms of computational complexity than existing methods, such as those
in [12,28].

The rest of the paper is structured as follows. In Section 2, we derive a Laguerre
expansion for the PDF of Yn. In Section 3, by utilizing the Laguerre expansion, we write
E[Yγ

n ], n ∈ N, γ ∈ R+, in terms of generalized hypergeometric functions and analytically
estimate its truncation errors. In that section, we also extend our result to computing
E[Yγ

n ] when Xi is a conic combination of Z2
i and Gi in which the Zi’s are distributed
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according to normal or Maxwell–Boltzmann distributions while the Gi’s are distributed
according to gamma, Erlang, or exponential distributions, assuming that the Zi’s and
Gi’s are independent. Section 4 illustrates a usage of our result in analyzing the ECIR
processes. This includes the first explicit formula for the TPDF of the ECIR process with
time-varying dimension and novel explicit formula for the γth conditional moment of the
ECIR process. In Section 5, all the explicit formulas proposed in this paper are validated
with either Monte Carlo (MC) simulations or other formulas proposed in the literature
through several numerical tests. The paper is concluded in Section 6. All proofs are
provided in the appendices.

2. The PDF of Yn

The PDF of Yn defined in (1) has been studied by many authors for several decades
with various representations (see, for instance, in [16,17,21,24–26]). In this paper, we use
the approach proposed in [16] to obtain a Laguerre expansion for the PDF of Yn.

Theorem 1. The PDF of Yn given in (1) can be expressed as

fYn(y) = f (β)
Yn

(y) :=
e−

y
2β y

ν
2−1

(2β)
ν
2

∞

∑
k=0

k!
Γ( ν

2 + k)
ckL(

ν
2−1)

k

(
y

2β

)
∀y > 0 (3)

where ν := ∑n
i=1 νi, β > 0 can be arbitrarily chosen, Γ(x) is the gamma function, and L(η)

k (x) is the
generalized Laguerre function (see [29]). In addition, ck, k = 0, 1, 2, . . . , satisfy the recurrent relations:

c0 = 1 (4)

and

ck =
1
k

k−1

∑
j=0

cjdk−j ∀k ≥ 1, (5)

where

d1 = − 1
2β

n

∑
i=1

δiαi +
1
2

n

∑
i=1

νi

(
1− αi

β

)
(6)

and

dj = −
j
2

(
1
β

)j n

∑
i=1

δiαi(β− αi)
j−1 +

1
2

n

∑
i=1

νi

(
1− αi

β

)j
∀j ≥ 2. (7)

Proof. The proof is provided in Appendix A.

A couple of remarks should be made about the free parameter β. First, we note that
the impact of β goes beyond Equation (3) as it also influences the ck coefficients through the
recurrence relations (4)–(7). Second, the value of β can also influence the convergence rate
of (3). Indeed, if the ck coefficients diverge, then it would be more challenging to reliably
approximate the infinite sum on the right-hand side of (3) by its truncated version. As a
result of this, we follow the procedures of [16] to study and promote appropriate choices of
β in Section 3.

3. The γth Moment of Yn

Computing E[Yγ
n ] as given in (2) can be achieved with any desired level of accuracy

when the PDF of Yn is explicitly known. In this section, we use the Laguerre expansion (3)
to obtain an explicit formula for E[Yγ

n ] as well as to showcase some interesting applications
of the Laguerre expansion (3) in the following subsections.
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3.1. Our Explicit Formula for E[Yγ
n ]

From the Laguerre expansion (3) together with some properties of the generalized
hypergeometric function

2F1(a1, a2; b1; z) =
∞

∑
k=0

(a1)k(a2)k
(b1)k

zk

k!
,

where (·)k denotes the usual Pochhammer symbol, known from [30], and we derive a
simple explicit formula for the γth moment of Yn for any γ ∈ R+.

Theorem 2. For any γ ∈ R+, we have

E[Yγ
n ] = (2β)γ

∞

∑
k=0

(−1)k Γ
(
γ + k + ν

2
)

Γ
(
k + ν

2
) 2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
− γ; 1

)
ck (8)

where the coefficients ck, k = 0, 1, . . ., are chosen according to (4)–(7), and the parameters ν = ∑ n
i=1νi

and β > 0 can be arbitrarily chosen.

Proof. The proof is provided in Appendix B.

Theorem 2 essentially expresses E[Yγ
n ] in terms of generalized hypergeometric func-

tions. We remark that computing E[Yγ
n ] relies on the ck coefficients which can be obtained

from the recursive Formulas (4)–(7), and we demonstrate later in our numerical study in
Section 5 that implementing our Formula (8) for computing E[Yγ

n ] consumes significantly
less time and effort than employing MC simulations.

In terms of applications, the result presented in the following corollary can be, for in-
stance, applied to obtain an analytical formula for pricing volatility swaps in the discrete
observation case based on the Black–Scholes model with time-varying risk-free interest rate
and time-varying volatility as proposed in Theorem 3.1 of Rujivan [10].

Corollary 1. We have

E[
√

Yn] =
√

2β
Γ
(

ν+1
2

)
Γ
(

ν
2
) ∞

∑
k=0

2F1

(
−k,

ν + 1
2

;
ν

2
; 1
)

ck (9)

where the coefficients ck, k = 0, 1, . . ., are chosen according to (4)–(7) and the parameters ν = ∑ n
i=1νi

and β > 0 can be arbitrarily chosen.

Proof. The proof is provided in Appendix B.

Another interesting special case of Theorem 1 is when n = 1, that is, there is only
one summand, say X. In this case, we can leverage Theorem 1 to compute a noninteger
moment of any chi-square random variable as follows.

Corollary 2. For any X ∼ χ2
ν(δ) and γ ∈ R+, we have

E[Xγ] = 2γ
∞

∑
k=0

Γ
(
γ + k + ν

2
)

Γ
(
k + ν

2
) 2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
− γ; 1

) 1
k!

(
δ

2

)k
. (10)

Proof. The proof is provided in Appendix B.

3.2. Estimates for Truncation Errors of E[Yγ
n ]

To implement E[Yγ
n ] on a computer, it is necessary to investigate truncation errors,

that is, to quantify a loss due to replacing an infinite sum with a finite sum. This subsection
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derives an estimate for the truncation errors of E[Yγ
n ] by applying the results proposed

in [16] as follows.
To begin with, based on the formula of E[Yγ

n ] in (8), we define

E(γ)
k1,k2

:= (2β)γ
k2

∑
k=k1+1

(−1)k Γ
(
γ + k + ν

2
)

Γ
(
k + ν

2
) 2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
− γ; 1

)
ck (11)

for any k1, k2 ∈ N∪ {0, ∞} such that k1 + 1 < k2. Therefore, E(γ)
K,∞ represents a truncation

error of order K of E[Yγ
n ]. To estimate this truncation error, we first derive valid bounds for

ck for k = 1, 2, . . . , defined in (5)–(7).

Lemma 1. The coefficient ck, k ∈ N, satisfies

|ck| ≤ e
δ

2ζ

(
2k + ν

2k

)k(2k + ν

ν

) ν
2
ζk, (12)

where δ = ∑n
i=1 δi and ζ = 1

β maxi∈{1,...,n}|β− αi|. Moreover, if β > 1
2 maxi∈{1,...,n} αi, then

0 < ζ < 1.

Proof. The proof is provided in Appendix B.

From Lemma 1 above, we further define

B(γ)
k1,k2

(ζ) := (2β)γe
δ

2ζ

k2

∑
k=k1+1

bk(γ, ν, ζ) (13)

for all k1, k2 ∈ N∪ {0, ∞} such that k1 + 1 < k2 and ζ > 0, where

bk(γ, ν, ζ) =
Γ
(
γ + k + ν

2
)

Γ
(
k + ν

2
) ∣∣∣2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
− γ; 1

)∣∣∣(2k + ν

2k

)k(2k + ν

ν

) ν
2

ζk. (14)

Utilizing Lemma 1, we obtain the following upper bound of a truncation error.

Theorem 3. Supposing that β > 1
2 maxi∈{1,...,n} αi, then we have∣∣∣E(γ)

K,∞

∣∣∣ ≤ B(γ)
K,∞(ζ) ∀γ ∈ R+, k ∈ N, (15)

where ζ = 1
β maxi∈{1,...,n}|β− αi|. Furthermore,

lim
K→∞

E(γ)
K,∞ = 0. (16)

Proof. The proof is provided in Appendix B.

It should be mentioned from Theorem 3 that the inequality β > 1
2 maxi∈{1,...,n} αi ought

to hold when we implement the Formula (8) for computing E[Yγ
n ] to ensure that the

truncation occurring tends to zero when K approaches infinity.
Finally, we use Euler’s transformation [31] in order to show that (8) terminates when

γ = m is a non-negative integer.

Theorem 4. For any m ∈ N, we have

E[Ym
n ] = (2β)m

m

∑
k=0

(−1)k Γ
(
m + k + ν

2
)

Γ
(
k + ν

2
) 2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
−m; 1

)
ck (17)
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where the coefficients ck, k = 0, 1, . . ., are chosen according to (4)–(7) and the parameters ν = ∑ n
i=1νi

and β > 0 can be arbitrarily chosen.

Proof. The proof is provided in Appendix B.

Applying Corollary 2 and Theorem 4, an explicit formula for the mth moment of
noncentral chi-square random variables can be obtained as follows.

Corollary 3. For any X ∼ χ2
ν(δ) and m ∈ N, we have

E[Xm] = m!2mΓ
(

m +
ν

2

) m

∑
k=0

(
δ
2

)k

k!(m− k)!Γ
(
k + ν

2
) . (18)

Proof. The proof is provided in Appendix B.

3.3. Analytical Formulas for Other Conic Combinations of Independent Random Variables

In this subsection, we extend our previous results to various other types of random
variables. First, instead of assuming that each component Xi is a chi-square random vari-
able, we assume instead that it is normally distributed with varying means and variances.
Second, motivated by its application in queuing theory, we focus on the case where each
component follows a gamma distribution with varying shape parameters. Note that gamma
distributions are often used in queuing theory for modeling the distribution of certain types
of waiting times, e.g., the excess water flow of a dam as explained in Mathai [32] and other
problems in communication theory with respect to the performance of certain wireless
transmission systems as described in Alouini et al. [33]. Third, we focus on the sum of
independent Erlang distributed random variables, which lie at the core of many fields such
as telecommunications, statistics, reliability theory, and risk analysis [34]. Last but not least,
we focus on the sum of exponential random variables, which are often used in stochastic
modeling thanks to its memoryless property, and the sum of squared Maxwell–Boltzmann
random variables, which can be used to explain the molecular speed distribution of ideal
gases [35], etc.

Theorem 5. Consider a random variable Y(1,n) := ∑n
i=1 a(1,i)Z2

i , where each a(1,i) > 0 and each
Zi is a normal random variable with mean µ(1,i) ∈ R and variance σ2

(1,i) for σ(1,i) > 0. Assuming

that all summands are independent, then the PDF of Y(1,n), E[Y
γ
(1,n)], and E[Ym

(1,n)] can be computed

using (3), (8), and (17), respectively, for all γ ∈ R+ and integer m ∈ N, by setting αi = a(1,i)σ
2
(1,i),

νi = 1, and δi =
(

µ(1,i)
σ(1,i)

)2
for all i = 1, . . . , n.

Proof. The proof is provided in Appendix B.

Theorem 6. Consider a random variable Y(2,n) := ∑n
i=1 a(2,i)Gi, where each a(2,i) > 0 and each

Gi is distributed according to a gamma distribution with shape parameter κ(2,i) > 0 and scale
parameter θ(2,i) > 0. Assuming all summands are independent, then the PDF of Y(2,n), E[Y

γ
(2,n)],

and E[Ym
(2,n)] can be computed using (3), (8), and (17), respectively, for all γ ∈ R+ and integer

m ∈ N, by setting αi =
1
2 a(2,i)θ(2,i), νi = 2κ(2,i), and δi = 0 for all i = 1, . . . , n.

Proof. The proof is provided in Appendix B.

Theorem 7. Consider a random variable Y(3,n) := ∑n
i=1 a(3,i)Li, where each a(3,i) > 0 and each

Li is distributed according to an Erlang distribution with shape parameter κ(3,i) ∈ {1, 2, . . . } and
rate parameter λ(3,i) > 0. Assuming that all summands Li are independent, then the PDF of Y(3,n),
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E[Yγ
(3,n)], and E[Ym

(3,n)] can be computed using (3), (8), and (17), respectively, for all γ ∈ R+ and

integer m ∈ N, by setting αi =
a(3,i)

2λ(3,i)
, νi = 2κ(3,i), and δi = 0 for all i = 1, . . . , n.

Proof. The proof is provided in Appendix B.

Theorem 8. Consider a random variable Y(4,n) := ∑n
i=1 a(4,i)Pi, where each a(4,i) > 0 and each Pi

is distributed according to an exponential distribution with rate parameter λ(4,i) > 0. Assuming
that all summands are independent, then the PDF of Y(4,n), E[Y

γ
(4,n)], and E[Ym

(4,n)] can be computed

using (3), (8), and (17), respectively, for all γ ∈ R+ and integer m ∈ N, by setting αi =
a(4,i)

2λ(4,i)
,

νi = 2, and δi = 0 for all i = 1, . . . , n.

Proof. The proof is provided in Appendix B.

Theorem 9. Consider a random variable Y(5,n) := ∑n
i=1 a(5,i)W2

i , where each a(5,i) > 0 and
each Wi is distributed according to a Maxwell–Boltzmann distribution with parameter φ(5,i) > 0.
Assuming that all Wi’s are independent, then the PDF of Y(5,n), E[Y

γ
(5,n)], and E[Ym

(5,n)] can be
computed using (3), (8), and (17), respectively, for all γ ∈ R+ and integer m ∈ N, by setting
αi = a(5,i)φ

2
(5,i), νi = 3, and δi = 0 for all i = 1, . . . , n.

Proof. The proof is provided in Appendix B.

4. Extensions to the ECIR Process with Time-Varying Dimension

The ECIR process is one of the most widely used processes to model interest rates and
to price financial products such as zero-coupon bond, ex-coupon, moment swaps, options,
and interest rate swaps. With time-dependent parameters, the ECIR process is capable
of accounting for side information from potential political or economic events. Formally,
according to Maghsoodi [27], the ECIR process, denoted by Vt, satisfies

dVt = κ(t)(θ(t)−Vt)dt + σ(t)
√

VtdWt (19)

for t ∈ (0, T] and T > 0 with an initial value V0 = v0 > 0, where the parameter functions
θ(t) > 0, κ(t) > 0, and σ(t) > 0 are continuous on [0, T], and Wt is a standard Brownian
motion under a probability space (Ω,F ,P) with a filtration (Ft)0≤t≤T . Note that Vt reduces
to a plain-vanilla Cox–Ingersoll–Ross process (CIR process) [36] provided that the relevant
parameter functions are constants.

Focusing on the ECIR process (19), we define the dimension of Vt as

d(t) :=
4κ(t)θ(t)

σ2(t)
(20)

for t ∈ [0, T], and this quantity plays an important role for deriving an expression for the
distribution of Vt. Maghsoodi [27] discovered that when d(t) = d ≥ 2 for all t ∈ [0, T]
that included the CIR process, Vt never hit zero almost surely and was in fact a scaled
time-changed squared Bessel process; as a result, the TPDF of Vt was explicitly given.

Moreover, Maghsoodi [27] showed that Vt could be represented as a lognormal process
through a stochastic time-change when d(t) ≥ 2 for all t ∈ [0, T], but the TPDF of Vt was not
analytically derived. Consequently, it has been an open question until now how the TPDF
of Vt can be obtained in explicit form when d(t) is time-varying, based on the stochastic
time-varying lognormal process representation.

To demonstrate our contribution in the current paper for solving this problem, we
apply our previous results in Sections 2 and 3 to explicitly derive the TPDF of Vt as well
as its γth conditional moment when d(t) is time-varying, provided that the following two
assumptions hold:
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Assumption 1. d(t) ≥ 2 for all t ∈ [0, T].

Assumption 2. The derivative d(1)(t) of d(t) with respect to t satisfies 0 ≤ d(1)(t) < ∞ for all
t ∈ [0, T].

4.1. The Exact TPDF of the ECIR Process with Time-Varying Dimension

To realize our objective, we firstly define a parameter function as follows:

τ(t, s) :=
1
4

∫ t

s
σ2(ζ)e−

∫ t
ζ κ(u)dudζ (21)

for 0 ≤ s ≤ t ≤ T.
Peng and Schellhorn [37] showed that the ECIR process Vt described by (19) could be

represented as that of a convergent series of weighted independent noncentral chi-square
and chi-square random variables. For the sake of completeness, we summarize their results
in the following theorem.

Theorem 10. Supposing that Assumptions 1 and 2 hold, then the ECIR process Vt described by
(19) with an initial value v0 > 0 can be expressed as

Vt
law
= lim

n→∞

n

∑
i=1

α̂iX̂i (22)

for any t ∈ (0, T], where the random variables X̂i are independent and distributed according to
noncentral chi-square and chi-square distributions as

X̂i ∼ χ2
ν̂i

(
δ̂i
)
, (23)

with the coefficients and parameters in (22) and (23) given by

α̂i = τ

(
t, (i− 1)

t
n

)
∀i ∈ {1, . . . , n}, (24)

ν̂1 = d(0), (25)

δ̂1 =
v0

τ(t, 0)
e−
∫ t

0 κ(u)du, (26)

and

ν̂i = d(1)
(
(i− 1)

t
n

)
t
n
∀i ∈ {2, . . . , n}, (27)

δ̂i = 0 ∀i ∈ {2, . . . , n}. (28)

In particular, if d(s) = d ≥ 2 for all s ∈ [0, t], then

Vt ∼ τ(t, 0) · χ2
d

(
v0

τ(t, 0)
e−
∫ t

0 κ(u)du
)

(29)

Proof. See Theorem 3.1 in Peng and Schellhorn [37].

Peng and Schellhorn [37] also represented the TPDF of Vt in terms of a limit of a
sequence of convolutions of the PDFs of scaled noncentral chi-square and chi-square
random variables.

Instead of utilizing the convolution property for independent random variables as
shown by Peng and Schellhorn [37], we apply Theorem 1 to obtain the first explicit formula
for the TPDF of Vt with time-varying dimension d(t).
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Theorem 11. The TPDF of Vt defined by

fVt(v, t|v0) := P(Vt = v|V0 = v0) (30)

for v, v0 > 0 and t ∈ (0, T] can be expressed as

fVt(v, t|v0) =
e−

v
2τ(t,0) v

d(t)
2 −1

(2τ(t, 0))
d(t)

2

∞

∑
k=0

k!

Γ( d(t)
2 + k)

ĉk(t, v0)L

(
d(t)

2 −1
)

k

(
v

2τ(t, 0)

)
(31)

where
ĉ0(t, v0) = 1, (32)

ĉk(t, v0) =
1
k

k−1

∑
j=0

ĉj(t, v0)d̂k−j(t, v0) ∀k ∈ N, (33)

and

d̂1(t, v0) = −
1

2τ(t, 0)
v0e−

∫ t
0 κ(u)du +

1
2

∫ t

0
d(1)(s)

(
1− τ(t, s)

τ(t, 0)

)
ds, (34)

d̂j(t, v0) =
1
2

∫ t

0
d(1)(s)

(
1− τ(t, s)

τ(t, 0)

)j
ds ∀j ∈ N \ {1}. (35)

In particular, if d(s) = d ≥ 2 for all s ∈ [0, t], then

ĉk(t, v0) =

(
− e−

∫ t
0 κ(u)du

2τ(t, 0)

)k
vk

0
k!
∀k ∈ N∪ {0}. (36)

Proof. The proof is provided in Appendix C.

4.2. The γth Conditional Moment of the ECIR Process with Time-Varying Dimension

For γ ∈ R+ and a probability space (Ω,F ,P) with a filtration (Ft)0≤t≤T , we define
the γth conditional moment of the ECIR process Vt as

U(γ)
E (t|v0) := EP[Vγ

t |F0
]
= EP[Vγ

t |V0 = v0
]
=
∫ ∞

0
vγ fVt(v, t|v0)dv (37)

for t ∈ (0, T] and v0 > 0, where fVt(v, t|v0) is the TPDF of Vt given in (31).

Rujivan [12] first presented a recursive formula for computing U(γ)
E (t|v0) using a

partial differential equation (PDE) approach. Alternatively, we apply Theorems 2, 4, and 11
to obtain a novel explicit formula for U(γ)

E (t|v0) in the following theorem.

Theorem 12. Supposing that Assumptions 1 and 2 hold, then for any γ ∈ R+ we have

U(γ)
E (t|v0)

= (2τ(t, 0))γ
∞

∑
k=0

(−1)k
Γ
(

γ + k + d(t)
2

)
Γ
(

k + d(t)
2

) 2F1

(
−k, 1− k− d(t)

2
; 1− k− d(t)

2
− γ; 1

)
ĉk(t, v0) (38)

for t ∈ (0, T] and v0 > 0, where ĉk(t, v0), k = 0, . . . , are given in (32) and (33).
In particular, for any integer m ∈ N,

U(m)
E (t|v0)

= (2τ(t, 0))m
m

∑
k=0

(−1)k
Γ
(

m + k + d(t)
2

)
Γ
(

k + d(t)
2

) 2F1

(
−k, 1− k− d(t)

2
; 1− k− d(t)

2
−m; 1

)
ĉk(t, v0) (39)

for t ∈ (0, T] and v0 > 0.



Mathematics 2023, 11, 1276 10 of 29

Proof. The proof is provided in Appendix C.

4.2.1. Comparison with Other Formulas

To date, the computation of the conditional moment has only been partially solved
due to the unavailability of the transitional PDF. Indeed, the problem of computing the
integral on the RHS of (37) with any stochastic differential equation (SDE) is typically
addressed by the Feynman–Kac theorem, where the partial differential equation (PDE) is
solved analytically, and some combinatorial techniques are used to simplify the system of
recursive ordinary differential equations (ODEs) associated with the conditional moment;
see, for instance, [38–41], for more details.

For a more concrete comparison, Rujivan [12] presented the first explicit formula
for the γth conditional moment of the ECIR process (19) with time-varying dimension
as a power series. Rujivan demonstrated the effectiveness of this analytical approach
over the other state-of-the-art techniques including the method by Dufresne [28] and MC
simulations. This result has some similarities and dissimilarities to our work, which we
shall explain. Our formula (38) expresses the γth conditional moment of the ECIR process
as an infinite series where the coefficients ĉk(t, v0) can be computed analytically recursively.
This offers a more efficient way than, say, using Equation (2.2) of Rujivan [12], which can
achieve the same purpose of characterizing the conditional moment of the ECIR process.
Therein, the parameters must also be computed recursively but the result of each iteration
does not have a closed form. The method of Rujivan [12] is therefore more time-consuming
and more prone to numerically accumulating errors.

5. Numerical Results and Discussions

As shown in Sections 2–4, our theoretical frameworks presented in this paper produce
several new explicit formulas for computing the PDF of Yn defined in (1) and its moments,
including the TPDF of the ECIR process (19) with time-varying dimension and its condi-
tional moments. A natural question that may be raised by practitioners is whether these
newly derived explicit formulas are accurate and efficient, especially considering that an
infinite sum has to be truncated. Therefore, we intensively investigated the accuracies
of our explicit formulas to confirm that there were no algebraic errors in the derivation
processes as well as to demonstrate the efficiencies of our explicit formulas compared
with either MC simulations or other explicit formulas proposed in the literature through a
series of numerical examples which were coded in MATHEMATICA 11 and executed on a
notebook with the following specifications: Intel(R) Core (TM) i5-6500, CPU @3.20GHz,
16GB RAM, Windows 10, 64 bit operating system.

5.1. The accuracy of Our Explicit Formula for f (β)
Yn

(y)

In order to illustrate the accuracy of our explicit Formula (3), we introduced random
variables as follows. For any n ∈ N, we defined

Y(j)
n :=

n

∑
i=1

α
(j)
i X(j)

i (40)

for j = 1, 2, 3, where
X(j)

i ∼ χ2
ν
(j)
i

(
δ
(j)
i

)
(41)

for i = 1, . . . , n, and the parameters were set as

α
(1)
i = α

(2)
i = α

(3)
i =

2iα
n(n + 1)

, (42)

ν
(1)
i = ν

(2)
i = ν

(3)
i =

i + 3
2

, (43)
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δ
(1)
i =

i
10

, δ
(2)
i = 0, δ

(3)
i =

(1− (−1)i)i
20

, (44)

for α > 0. Furthermore, for n ≥ 2, we assumed that X(j)
i , i = 1, . . . , n were independent

for all j = 1, 2, 3. By construction, we note that α represents the total conic coefficients,
i.e., α = ∑n

i=1 α
(j)
i , and that each Y(j)

n constitutes a sum of independent noncentral chi-
square random variables. Though, we note that through the transformations studied in
Theorems 5–9, the distribution of Y(j)

n may be identical to those of other random sums.
For instance,

Y(2)
n

law
=

n

∑
i=1

2α
(2)
i

θ(2,i)
Gi

law
=

n

∑
i=1

2α
(2)
i λ(3,i)Li,

where the Gi’s are independent random variables and are distributed according to a
gamma distribution with the shape parameter ν

(2)
i /2 and the scale parameter θ(2,i) > 0,

and similarly the Li’s are independent random variables and are distributed according to
an Erlang distribution with the shape parameter ν

(2)
i /2 and the rate parameter λ(3,i) > 0.

Example 1. We started by considering the PDF of Y(1)
6 = ∑6

i=1 α
(1)
i X(1)

i in which the values of

parameters α
(1)
i , ν

(1)
i , and δ

(1)
i for i = 1, . . . , 6 are plotted in Figure 1a. The PDFs of α

(1)
i X(1)

i , i =
1, . . . , 6 which varied in range and shape, are shown in Figure 2a–f, respectively. The problem of
analytically computing the PDF of Y(1)

6 was investigated as follows.
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Figure 1. The values of the parameters set in Example 1, in which we plotted cjν
(j)
i with a scaling

factor 0 < cj < 1 to make its scale comparable to the other parameters for all j = 1, 2, 3.
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Figure 2. The PDFs of α
(1)
i X(1)

i in which X(1)
i ∼ χ2

ν
(1)
i

(
δ
(1)
i

)
for i = 1, . . . , 6, and the values of

parameters α
(1)
i , ν

(1)
i , and δ

(1)
i are displayed in Figure 1a.

To obtain the PDF of Y(1)
6 , denoted by f (β)

Y(1)
6

(y), we set n = 6, αi = α
(1)
i , νi = ν

(1)
i , and

δi = δ
(1)
i for i = 1, . . . , 6 in (3). The ck coefficients of the Laguerre expansion (3) were computed by

using (4)–(7) with β > 1
2 maxi αi. Then, the sequence of ck’s was plotted (Figure 3a) showing that

ck → 0 as k→ ∞. After inserting the values of the ck’s into (3), a graph of f (β)

Y(1)
6

(y) was displayed,

against the histogram of Y(1)
6 obtained from MC simulations, as shown in Figure 4a. We clearly see

from the figure that the histogram representing the PDF of Y(1)
6 perfectly fit the graph of f (β)

Y(1)
6

(y)

computed by using the Laguerre expansion (3).
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(b) The ck coefficients for the PDF of Y(1)
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Figure 3. The sequences of ck’s in the Laguerre expansion (3) for the PDFs of Y(j)
n , j = 1, 2, 3 set in

Example 1, in which the values of parameters α
(j)
i , ν

(j)
i , and δ

(j)
i are displayed in Figure 1a–d.

(a) The K-S test for Y(1)
6 : p-value = 0.98 (b) The K-S test for Y(1)

11 : p-value = 0.27

(c) The K-S test for Y(2)
15 : p-value = 0.42 (d) The K-S test for Y(3)

20 : p-value = 0.21

Figure 4. The PDFs of the Y(j)
n ’s in Example 1 computed by using the Laguerre expansion (3),

against the corresponding histograms obtained from MC simulations, in which the p-values based on
the K-S tests are greater than 0.1 (the significant level).
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To extend our study to various cases of the linear combination (40) as introduced in Section 3.3,
with increasing values of n, we further considered the PDFs of Y(1)

11 = ∑11
i=1 α

(1)
i X(1)

i , Y(2)
15 =

∑15
i=1 α

(2)
i X(2)

i , and Y(3)
20 = ∑20

i=1 α
(3)
i X(3)

i . The values of the parameters α
(j)
i , ν

(j)
i , and δ

(j)
i for

j = 1, 2, 3 computed by using (42)–(44) are plotted in Figure 1b–d. By following the procedure
as previously described for determining the PDF of Y(1)

6 , we thus obtained the sequences of ck’s as

shown in Figure 3b–d along with the PDFs of Y(1)
11 , Y(2)

15 , and Y(3)
20 , denoted by f (β)

Y(1)
11

(y), f (β)

Y(2)
15

(y),

and f (β)

Y(3)
20

(y), as shown in Figure 4b–d, respectively. It is clearly seen from Figure 4b–d that the

graphs of the PDFs markedly matched their corresponding histograms obtained from MC simulations.
Next, we illustrate the fitness as previously discussed by employing the Kolmogorov–

Smirnov (K-S) test [42]. Figure 4a–d also display the p-values for the K-S tests computed from
1000 random samples generated by the PDFs f (β)

Y(1)
6

(y), f (β)

Y(1)
11

(y), f (β)

Y(2)
15

(y), and f (β)

Y(3)
20

(y) and their

corresponding random variables Y(1)
6 , Y(1)

11 , Y(2)
15 , and Y(3)

20 , respectively. As shown in Figure 4a–d,
the p-values obtained fell into the area of the acceptance region in which we set the significant levels
for the K-S tests to be 0.1; all the resulting null hypotheses of the K-S tests were accepted. Therefore,
the PDFs f (β)

Y(1)
6

(y), f (β)

Y(1)
11

(y), f (β)

Y(2)
15

(y), and f (β)

Y(3)
20

(y) computed by using the Laguerre expansion (3)

appeared consistent with their corresponding histogram of random samples generated from Y(1)
6 ,

Y(1)
11 , Y(2)

15 , and Y(3)
20 , respectively.

5.2. The Performance of Our Explicit Formula for E[Yγ
n ]

Example 2. In our next example, we demonstrate the performance of our explicit Formula (8) by
selecting Y(1)

11 , Y(2)
15 , and Y(3)

20 given in Example 1 to be our case study.

Firstly, we computed the values of E
[(

Y(1)
11

)γ]
for γ ∈ [0, 2] by using our explicit Formula (8)

with K = K1 = 100. Next, we plotted these values against the results obtained from MC
simulations with np = 10, 20, 50, 100, 500, 2000, which were the numbers of sample paths used
in the MC simulations, in Figure 5a–f, respectively. Next, we similarly applied this procedure to

investigate the accuracy of our explicit Formula (8) for E
[(

Y(2)
15

)γ]
and E

[(
Y(3)

20

)γ]
. The results

obtained for E
[(

Y(2)
15

)γ]
, where γ = 2, 2.01, . . . , 3, with K = K2 = 300 and E

[(
Y(3)

20

)γ]
,

where γ = 3, 3.01, . . . , 4, with K = K3 = 400, are displayed in Figure 6a,c,e and Figure 6b,d,f,
respectively. Evidently, the variation of the approximate values from MC simulations decreased
when np increased for all chosen γ’s, demonstrating the convergence of the approximate values from
MC simulations to the one computed by using our explicit Formula (8).

In order to verify our result presented in Theorem 3, we used (11) to compute the truncation

errors of E
[(

Y(1)
11

)γ]
, E
[(

Y(2)
15

)γ]
, and E

[(
Y(3)

20

)γ]
, denoted by E(γ,1)

k,∞ , E(γ,2)
k,∞ , and E(γ,3)

k,∞ , re-

spectively, when γ = 1
2 /∈ N and γ = 1, 2 ∈ N for k = 0, . . . , 10. The truncation errors obtained

are tabulated in Table 1. We clearly see from Table 1 that E(γ,j)
k,∞ tended to zero when k increased for

all j = 1, 2, 3 and selected γ. In particular, E(γ,j)
k,∞ = 0 for k ≥ γ when γ = 1, 2. This confirmed our

result presented in Theorem 4 that our explicit Formula (17) could be used to compute E[Yγ
n ] without

producing truncation errors when γ ∈ N; it should be remarked from Table 1 that the truncation
errors could be very large when K + 1 was less than γ for γ ∈ N. Although utilizing our explicit
Formula (8) for computing E[Yγ

n ] when γ ∈ R+ and γ /∈ N always produced a truncation error,
our result presented in Theorem 3 ensured that the truncation error tended to zero as K increased.
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(a) The comparison of our explicit formula and
the MC simulations with np = 10

(b) The comparison of our explicit formula and
the MC simulations with np = 20

(c) The comparison of our explicit formula and
the MC simulations with np = 50

(d) The comparison of our explicit formula and
the MC simulations with np = 100

(e) The comparison of our explicit formula and
the MC simulations with np = 500

(f) The comparison of our explicit formula and
the MC simulations with np = 2000

Figure 5. The variation on the approximate values of E
[
(Y(1)

11 )γ
]

obtained from MC simulations
in Example 2 with an increasing number of sample paths, demonstrating the convergence of the
approximate values obtained from MC simulations to the one computed by using our Formula (8)
with K = K1 = 100 terms in the infinite series, when the number of sample paths approaches infinity.

We finish this example by illustrating the efficiency of our explicit Formula (8) over the MC
simulations. As shown in Figures 5a–f and 6a–f, we needed to increase the value of np in the MC sim-

ulations in order to reduce the variations on the approximate values of E
[(

Y(1)
11

)γ]
, E
[(

Y(2)
15

)γ]
,

and E
[(

Y(3)
20

)γ]
, respectively, which could be time-consuming. For example, to yield an absolute

difference between the exact value of E
[(

Y(3)
20

)2
]

computed from our explicit Formula (8) and

its approximate value obtained from MC simulations to be less than 10−3, our numerical experi-
ment required MC simulations with np = 107 consuming 19 s, while implementing our explicit
Formula (8) with K = 3 took just 0.001 s.
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(a) E
[
(Y(2)15 )γ

] (b) E
[
(Y(3)20 )γ

]

(c) E
[
(Y(2)15 )γ

]
(d) E

[
(Y(3)20 )γ

]

(e) E
[
(Y(2)15 )γ

] (f) E
[
(Y(3)20 )γ

]

Figure 6. The variations on the approximate values of E
[
(Y(2)

15 )γ
]

and E
[
(Y(3)

20 )γ
]

obtained from
MC simulations in Example 2 with an increasing number of sample paths, demonstrating the
convergence of the approximate values obtained from MC simulations to the ones computed by using
our Formula (8) with K = K1 = 300 and K = K2 = 400 terms in the infinite series, respectively, when
the number of sample paths approaches infinity.

Table 1. The truncation errors of E
[(

Y(1)
11

)γ]
, E
[(

Y(2)
15

)γ]
, and E

[(
Y(3)

20

)γ]
, denoted by E(γ,1)

k,∞ , E(γ,2)
k,∞ ,

and E(γ,3)
k,∞ , respectively, computed in Example 2 by using (11) when γ = 1

2 /∈ N and γ = 1, 2 ∈ N for
k = 0, . . . , 10.

k
γ = 1/2 γ = 1 γ = 2

E(γ,1)
k,∞ E(γ,2)

k,∞ E(γ,3)
k,∞ E(γ,1)

k,∞ E(γ,2)
k,∞ E(γ,3)

k,∞ E(γ,1)
k,∞ E(γ,2)

k,∞ E(γ,3)
k,∞

0 6.2× 10−1 1.2× 100 1.6× 100 3.5× 100 7.6× 100 1.2× 101 5.6× 101 1.6× 102 3.8× 102

1 6.5× 10−2 1.9× 10−1 2.8× 10−1 0 0 0 1.3× 101 5.8× 101 1.5× 102

2 1.2× 10−2 5.5× 10−2 9.1× 10−2 0 0 0 0 0 0
3 3.2× 10−3 2.0× 10−2 3.5× 10−2 0 0 0 0 0 0
4 9.1× 10−4 7.7× 10−3 1.5× 10−2 0 0 0 0 0 0
5 2.8× 10−4 3.2× 10−3 6.8× 10−3 0 0 0 0 0 0
6 9.2× 10−5 1.4× 10−3 3.2× 10−3 0 0 0 0 0 0
7 3.1× 10−5 6.3× 10−4 1.5× 10−3 0 0 0 0 0 0
8 1.1× 10−5 2.9× 10−4 7.7× 10−4 0 0 0 0 0 0
9 4.1× 10−6 1.3× 10−4 3.9× 10−4 0 0 0 0 0 0

10 1.6× 10−6 6.7× 10−5 1.9× 10−4 0 0 0 0 0 0
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5.3. Extended Results for the ECIR Process with Time-Varying Dimension

We next shift our attention to our explicit formulas for the TPDF and the moments of ECIR
processes with time-varying dimension. We specifically set the parameter functions of the ECIR
process Vt described by (19) with time-varying dimension d(t) defined in (20) as follows:

κ(t) = 0.1 + 0.2t + 0.3ecos2(t+2), (45)

θ(t) = 0.1 + 0.5e2 sin(t+2), (46)

and
σ(t) = (0.4 + 0.1t)esin(t+2) (47)

for t ∈ [0, 3].
Figure 7a–f display variations of the three parameter functions (45)–(47) as well as

d(t), d(1)(t), and τ(t, 0) defined in (21), respectively, as given in the figure. It should be
noticed from Figure 7d that Assumption 1 was fulfilled on [0, 3], while Assumption 2 was
violated, e.g., d(1)(1.5) < 0, as shown in Figure 7e. Consequently, we set the time domain
for this study to be D1 := [0, 1], ensuring that both Assumptions 1 and 2 were satisfied.
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Figure 7. Variations of the three parameter functions (45)–(47) as well as d(t), d(1)(t), and τ(t, 0) for
t ∈ [0, 3] in Example 3.
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5.3.1. The Accuracy of Our Explicit Formula for the TPDF of the ECIR Process with
Time-Varying Dimension

Example 3. This example aimed to investigate the accuracy of our explicit Formula (31) for
calculating the TPDF of Vt. We started by implementing the result presented in Theorem 10.
Consider the convergence of the PDF of Ŷn(t, v0) := ∑n

i=1 α̂iX̂i to the PDF of Vt|v0 as n approaches
infinity, written in (22). We set v0 = 1, 2, and t = 0.1, 0.5, 1 ∈ D1. Then, we computed the
approximate PDFs of Ŷn(t, v0) for n = 1, 2, 3, based on the random samples drawn from populations
distributed according to noncentral chi-square and chi-square distributions with a number of sample
np = 106. On the other hand, as a benchmark, the approximate PDFs of Vt|v0 for all v0 = 1, 2, and
t = 0.1, 0.5, 1 were obtained by using the sample paths generated from (19) as follows.

Figure 8a–f show that the PDF of Ŷn(t, v0) tended to align better with the histogram of Vt|v0
representing the PDF of Vt|v0 when n increased for all v0 = 1, 2, and t = 0.1, 0.5, 1, demonstrating
Ŷn(t, v0) converged in distribution to Vt|v0 as n approached infinity. However, as shown in
Figure 8a–f, the number of terms used in the summation ∑n

i=1 α̂iX̂i had to be increased in order to
obtain a better approximation for the PDF of Vt|v0. This is a major drawback of implementing (22),
which requires the exact PDFs of Ŷn(t, v0) and Vt|v0 in order to estimate errors occurring for all n.

The problem mentioned above can completely be solved by employing our explicit Formula (31) for
obtaining the exact PDF of Vt|v0. Truncation errors occurring when implementing the infinite series in
(31) can be estimated by applying Lemma 1. To demonstrate the accuracy of our explicit Formula (31),
we computed fVt(v, t|v0) for v0 = 1, 2, t = 0.1, 0.5, 1 and v > 0 by setting K = 20. Sequences of
|ĉk(t, v0)|’s computed from (32) and (33) for v0 = 1, 2 and t = 0.1, 0.5, 1 are displayed in Figure 9a,b,
showing that the coefficients tended to zero when k increased. This ensured the truncation errors
vanished when K approached infinity.

Figure 8a–f also display the graphs of fVt(v, t|v0) against the corresponding histograms of
Vt|v0 for t = 0.1, 0.5, 1 ∈ D1 and v0 = 1, 2, obtained from the sample paths generated from (19).
It is readily seen that the graphs of fVt(v, t|v0) gracefully matched the corresponding histograms.
Following the K-S tests with the significance level of 10% employed in Example 1 to determine the
equivalence between two distributions, the minimum of the p-values was 0.14, implying that there
was no significance difference between fVt(v, t|v0) obtained from our explicit Formula (31) and the
corresponding histograms of the random samples generated from (19).

The validity of our explicit Formula (31) admittedly becomes questionable when Assumption
2 is violated. To investigate, we extended the time domain from D1 := [0, 1] to D2 := [0, 3] and
considered fVt(v, t|v0) for v > 0, v0 = 1, 2, and t = 0.03, 0.75, 1.5, 2.25, 3 ∈ D2. Figure 7e
visually shows that at t = 1.5, 3, d(1)(1.5) and d(1)(3) were negative and hence Assumption 2 was
violated, but fVt(v, t|v0) was finite for all v > 0, v0 = 1, 2, and t ∈ D2, as shown in Figure 10a,b.

Moreover, the graph of fVt(v, t|v0) appears to match the corresponding histograms of the
random samples from (19) based on MC simulations because the minimum of the p-values from the
K-S tests was 20%. The results obtained suggested that the condition in Assumption 2 could perhaps
be replaced with d(1)(t) < ∞ for all t ∈ [0, T] when our explicit Formula (31) was employed for
computing the TPDF of the ECIR process (19). That being said, Assumption 2 remains an important
ingredient of our analysis since the degrees of freedom ν̂i given in (27) are not allowed to be negative
from the definitions of noncentral chi-square and chi-square distributions.
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Figure 8. The convergence of Ŷn(t, v0) = ∑n
i=1 α̂iX̂i in distribution to Vt|v0 as n approaches infinity

tested by using MC simulations in Example 3, demonstrating the result (22) presented in Theorem 10,
against fVt (v, t|v0) computed by using our explicit Formula (31).
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Figure 9. The sequences of |ĉk(t, v0)|’s computed from (32) and (33) in Example 3.
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MC simulations (p-value=0.65)

MC simulations (p-value=0.86)

MC simulations (p-value=0.52)

MC simulations (p-value=0.27)

MC simulations (p-value=0.40)

fVt
(v,t|v0=1)

(a) |ĉk(t, v0 = 1)|
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MC simulations (p-value=0.42)

MC simulations (p-value=0.71)

fVt
(v,t|v0=2)

(b) |ĉk(t, v0 = 2)|
Figure 10. The graphs of fVt (v, t|v0) computed from our explicit Formula (31), against the corre-
sponding histograms of the random samples generated from (19) based on MC simulations for
t = 0.03, 0.75, 1.5, 2.25, 3, along with the p-values in parentheses obtained from the K-S tests with a
significant level of 0.1 in Example 3.

5.3.2. The performance of Our Explicit Formula for U(γ)
E (t|v0)

Example 4. In our last example, we illustrate the accuracy and efficiency of our explicit For-
mula (38) for computing the γth conditional moment of the ECIR process (19) with time-varying
dimension. As previously discussed in Section 4.2.1, we demonstrate the advantages of using our
explicit Formula (38) over the explicit formula presented in Theorem 2.1 of Rujivan [12] by setting
the parameter functions of the ECIR process (19) to follow (45)–(47) as used in Example 3.

Firstly, we considered the accuracy of our explicit Formula (38) and the one written in
Equation (2.2) of Rujivan [12] by setting γ = 0.5, 1, 1.5, 2, 2.5, 3. Let v0 = 1 and t = 1. For each
γ, we computed two sequences of U(γ,K)

E (t|v0) for K = 0, . . . , 5, from our explicit formulas (38)
and the one written in Equation (2.2) of Rujivan [12] with the number of terms, K + 1, used in
the infinite series on the RHS of (38) and Equation (2.2) of Rujivan [12]. Figure 11a–f display the
graphs of the two sequences of U(γ,K)

E (t|v0) against the approximate value of U(γ)
E (t|v0) from MC

simulations based on the ECIR process (19), demonstrating that the two sequences of U(γ,K)
E (t|v0)

converged to the corresponding approximate value of U(γ)
E (t|v0) obtained from MC simulations

when K increased.
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Figure 11. The sequences of U(γ,K)
E (t|v0) for K = 0, . . . , 5, computed from our explicit Formula (38)

and the explicit formula written in Equation (2.2) of Rujivan [12], against the approximate value of

U(γ)
E (t|v0) obtained from MC simulations based on the ECIR process (19) in Example 4 by setting

v0 = 1 and t = 1.

It should also be pointed out from Figure 11a–f that the sequence of U(γ,K)
E (t|v0) computed

from (38) converged to the corresponding approximate value of U(γ)
E (t|v0) obtained from the MC

simulations faster than the sequence of U(γ,K)
E (t|v0) computed from Equation (2.2) of Rujivan [12].

Moreover, as shown in Figure 11b,d,f, the two sequences of U(γ,K)
E (t|v0) coincided for K + 1 ≥ m

when γ = m was a positive integer, demonstrating the consistency of our closed-from Formula (39)
and the explicit formula written in Equation (2.13) in Theorem 2.2 of Rujivan [12].

Secondly, we investigated the efficiency of our explicit Formula (38) over the one written in
Equation (2.2) of Rujivan [12] for calculating U(γ)

E (t|v0) by choosing γ = 0.5 in our case study.

Figure 12a,b illustrate the computational times (seconds) used to compute U(γ,K)
E (t|v0) from the two

explicit formulas and the reduction (in folds) of computational time for K = 1, . . . , 10, respectively.
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As expected, implementing our explicit Formula (38) consumed considerably less time and effort
than implementing the explicit formula written in Equation (2.2) of Rujivan [12], in particular,
the reduction was more than sixfold when K ≥ 10.
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Figure 12. The efficiency of our explicit Formula (38) over the explicit formula written in Equation (2.2)

of Rujivan [12] for calculating U(γ)
E (t|v0) in Example 4 by setting γ = 0.5, v0 = 1, and t = 1.

6. Conclusions

In this paper, we presented the first explicit formula expressed in terms of gener-
alized hypergeometric functions for computing the γth moment of a conic combination
of n independent noncentral chi-square random variables defined in (1), when the conic
coefficients were not all identical for any integer n ≥ 2 and real number γ ∈ R+. Moreover,
the truncation errors occurring by implementing our explicit formulas were determined
analytically. We extended our result to various types of random variables which were
independent and could be transformed to noncentral chi-square random variables. For val-
idation purposes, several numerical examples were presented to show the performance
of our explicit formulas compared with MC simulations. Furthermore, we highlighted
an interesting application of our explicit formulas in interest rate modeling by expressing
the exact TPDF of the ECIR process with time-varying dimension in terms of generalized
Laguerre functions. As a result, a novel explicit formula for the γth conditional moment of
the ECIR process was obtained and tested, and we concluded that the distinguished feature
of our current analytical approach lay in its computational efficiency, which was superior
to that of the other existing methods from the literature.
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Appendix A. Omitted Proofs from Section 2

Proof of Theorem 1. To obtain the PDF of Yn as written in (3), we use the results proposed
in Section 3 of [16] as follows. From (1), we let the random variable Qn defined in [16] to be
Yn and consider the coefficients αi > 0 and random variables Xi ∼ χ2

νi
(δi) for i = 1, . . . , n.

Then, we set p = µ0 = ν
2 in Equations (3.2), (3.4a), and (3.4b) of [16]. As a result, we have

c0 = 1. Moreover, the formulas of the remaining ck coefficients on the RHS of Equation (3.2),
as written in Equations (3.4a) and (3.4b), reduce to (5) and (6)–(7), respectively.

Appendix B. Omitted Proofs from Section 3

Proof of Theorem 2. We set
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for γ ∈ R+ and k = 0, 1, . . . , where the ck’s, ν, and β are given in Theorem 1.
Observe that∫ ∞
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where the third equality follows from [43] and (·)k denotes the usual Pochhammer symbol.
By substituting the following identities to the above derivation
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we further obtain∫ ∞
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which is manifestly finite for all γ ∈ R+ and k ∈ N∪ {0}.
The uniformly convergent series of fYn derived in (3) implies that the series ∑∞

k=0 Ck,γ(y)
converges uniformly to yγ fYn(y), i.e.,

yγ fYn(y) =
∞

∑
k=0

Ck,γ(y). (A3)

Applying (A2) and (A3) yields
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and this finishes the proof.

Proof of Corollary 1. Firstly, we apply the Gauss summation formula [31] to the general-
ized hypergeometric functions in the infinite series on the RHS of (8) with γ = 1

2 as follows:
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Let z1 = k + ν
2 and z2 = ν

2 . We use the properties of gamma functions to obtain the
following relations:
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Applying (A5)–(A9) to the coefficients of the infinite series on the RHS of (8) with
γ = 1

2 and simplifying the result obtained by using the Gauss summation formula yield

(−1)k
Γ
(

1
2 + k + ν

2

)
Γ
(
k + ν

2
) 2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
− 1

2
; 1
)
=

Γ
(

ν+1
2

)
Γ
(

ν
2
) 2F1

(
−k,

ν + 1
2

;
ν

2
; 1
)

(A10)
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where

2F1

(
−k,

ν + 1
2

;
ν

2
; 1
)
=

Γ
(

ν
2
)
Γ
(

k− 1
2

)
Γ
(
k + ν

2
)
Γ
(
− 1

2

) (A11)

and this completes the proof.

Proof of Corollary 2. From (6) and (7), when β = αi = 1 for all i = 1, . . . , n, and δ =

∑n
i=1 δi > 0, we have d1 = − 1

2 δ and dj = 0 for all j = 2, 3, . . . Applying the result obtained
to (5) yields

ck =
(−1)kδk

2kk!
(A12)

for k = 1, 2, . . . We set n = 1 and X = Y1. Replacing the coefficients in the infinite series on
the RHS of (8) with (A12) and simplifying the result obtained yield (10).

Proof of Lemma 1. We follow the approach presented in Lemma 3.1 of [16] to derive
bounds for ck for k = 1, 2, . . . From Inequality (3.7) in Lemma 3.1, we set µ0 = p = ν

2
and this immediately yields (12). The last statement of the lemma is true from Remark 3.1
of [16].

Proof of Theorem 3. Using (11)–(14), we immediately obtain (15). Next, we define

PK(ν, ζ) :=
∞

∑
k=K+1

bk(γ, ν, ζ) (A13)

for K ≥ 0 and ν > 0, where bk(γ, ν, ζ) is given in (14).
Applying Lemma 1, one can show that

lim
k→∞

∣∣∣∣ bk+1(γ, ν, ζ)

bk(γ, ν, ζ)

∣∣∣∣ = ζ < 1 (A14)

providing β > 1
2 maxi αi.

Using the ratio test along with (A14), the infinite series PK(n, ζ) converges absolutely
for all 0 < ζ < 1 and ν > 0. As a result, one can show from (13) that

lim
K→∞

B(γ)
K,∞(ζ) = (2β)γe

δ
2ζ lim

K→∞
PK(ν, ζ) = 0. (A15)

By utilizing (15) and (A15), we thus obtain (16).

Proof of Theorem 4. From Euler’s transformation [31], we apply

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z) (A16)

for c > a + b to the generalized hypergeometric functions on the RHS of (8) with γ = m
as follows:

2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
−m; z

)
= (1− z)k−m

2F1

(
1− ν

2
−m,−m; 1− k− ν

2
−m; z

)
. (A17)

Using (A17), it is easy to show that, when k > m,

2F1

(
−k, 1− k− ν

2
; 1− k− ν

2
−m; 1

)
= 0 (A18)

for all m = 1, 2, . . . , and this completes the proof.

Proof of Corollary 3. We derived in the proof of Corollary 2 that the ck’s satisfy (A12).
By replacing the coefficients in the finite series on the RHS of (17) with (A12) and simplifying
the result obtained, we immediately obtain (18).
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Proof of Theorem 5. Set Xi =
Z2

i
σ2
(1,i)

. Thus, Xi ∼ χ2
1

(
µ2
(1,i)

σ2
(1,i)

)
for all i = 1, . . . , n. Moreover,

Y(1,n) can be expressed as Y(1,n) = ∑n
i=1 a(1,i)σ

2
(1,i)Xi. Utilizing Theorem 1, Theorem 2,

and Theorem 4 with αi = a(1,i)σ
2
(1,i), νi = 1, and δi =

(
µ(1,i)
σ(1,i)

)2
for all i = 1, . . . , n, we

immediately obtain that the PDF of Y(1,n), E[Y
γ
(1,n)], and E[Ym

(1,n)] can be computed by using
(3), (8), and (17), respectively, for all γ ∈ R+ and integer m ∈ N.

Proof of Theorem 6. Let νi = 2κ(2,i) and Xi ∼ χ2
νi

. By using the property of the Gamma

distribution, we have that 1
2 θ(2,i)Xi ∼ Gamma

(
κ(2,i), θ(2,i)

)
and Gi can be expressed as

Gi =
1
2 θ(2,i)Xi, for all i = 1, . . . , n. As a result, Y(2,n) can be expressed in terms of a linear

combination of independent chi-square random variables as Y(2,n) = ∑n
i=1

1
2 a(2,i)θ(2,i)Xi.

Applying Theorems 1, 2, and 4 with αi = 1
2 a(2,i)θ(2,i), νi = 2κ(2,i), and δi = 0 for all

i = 1, . . . , n, the PDF of Y(2,n), E[Y
γ
(2,n)], and E[Ym

(2,n)] can be computed by using (3), (8),
and (17), respectively, for all γ ∈ R+ and integer m ∈ N.

Proof of Theorem 7. Utilizing the property of the Erlang distribution, we have Li ∼
Gamma

(
κ(3,i), θ(3,i)

)
, where θ(3,i) =

1
λ(3,i)

for all i = 1, . . . , n. Applying Theorem 6, the PDF

of Y(3,n), E[Y
γ
(3,n)], and E[Ym

(3,n)] can be computed by using (3), (8), and (17), respectively,

for all γ ∈ R+ and integer m ∈ N, where we set αi =
a(3,i)

2λ(3,i)
, νi = 2κ(3,i), and δi = 0 for all

i = 1, . . . , n.

Proof of Theorem 8. Using the property of the exponential distribution, we have Pi ∼
Gamma

(
κ(4,i), θ(4,i)

)
, where κ(4,i) = 1 and θ(4,i) = 1

λ(4,i)
for all i = 1, . . . , n. From Theo-

rem 6, the PDF of Y(4,n), E[Y
γ
(4,n)], and E[Ym

(4,n)] can be computed by using (3), (8), and (17),

respectively, for all γ ∈ R+ and integer m ∈ N, where we set αi =
a(4,i)

2λ(4,i)
, νi = 2, and δi = 0

for all i = 1, . . . , n.

Proof of Theorem 9. From the property of the Maxwell–Boltzmann distribution, we have
W2

i ∼ Gamma
(

κ(5,i), θ(5,i)

)
, where κ(5,i) = 3

2 and θ(5,i) = 2φ2
(5,i) for all i = 1, . . . , n. Ap-

plying Theorem 6, the PDF of Y(5,n), E[Y
γ
(5,n)], and E[Ym

(5,n)] can be computed by using (3),

(8), and (17), respectively, for all γ ∈ R+ and integer m ∈ N, where we set αi = a(5,i)φ
2
(5,i),

νi = 3, and δi = 0 for all i = 1, . . . , n.

Appendix C. Omitted Proofs from Section 4

Proof of Theorem 11. First, we define

Ŷn :=
n

∑
i=1

α̂iX̂i (A19)

where the X̂i’s are the independent noncentral chi-square and chi-square random variables
given in (23) with the coefficients and parameters given in (24)–(28).

Next, we use the Laguerre expansion (3) in Theorem 1 to obtain the PDF of Ŷn by
setting αi = α̂i, νi = ν̂i, and δi = δ̂i for i = 1, . . . , n. As a result, the PDF of Ŷn, denoted by
f (β)

Ŷn
(ŷn), can be expressed as

f (β)

Ŷn
(ŷn) =

e−
ŷn
2β ŷ

ν̂n
2 −1

n

(2β)
ν̂n
2

∞

∑
k=0

k!
Γ( ν̂n

2 + k)
ĉk,nL(

ν̂n
2 −1)

k

(
ŷn

2β

)
(A20)
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for ŷn > 0 and β > 0, where

ν̂n =
n

∑
i=1

ν̂i = d(0) +
n

∑
i=2

d(1)
(
(i− 1)

t
n

)
t
n

, (A21)

ĉ0,n = 1, (A22)

ĉk,n =
1
k

k−1

∑
j=0

ĉj,nd̂k−j,n, (A23)

for k ≥ 1,

d̂1,n = − 1
2β

δ̂1α̂1 +
1
2

ν̂1

(
1− α̂1

β

)
+

1
2

n

∑
i=2

ν̂i

(
1− α̂i

β

)
= − 1

2β
v0e−

∫ t
0 κ(u)du +

1
2

d(0)
(

1− τ(t, 0)
β

)
+

1
2

n

∑
i=2

d(1)
(
(i− 1)

t
n

)
t
n

(
1−

τ
(
t, (i− 1) t

n
)

β

)
,

(A24)

and

d̂j,n = − j
2

(
1
β

)j
δ̂1α̂1(β− α̂1)

j−1 +
1
2

ν̂1

(
1− α̂1

β

)j
+

1
2

n

∑
i=2

ν̂i

(
1− α̂i

β

)j

= − j
2

(
1
β

)j
v0e−

∫ t
0 κ(u)du(β− τ(t, 0))j−1 +

1
2

d(0)
(

1− τ(t, 0)
β

)j

+
1
2

n

∑
i=2

d(1)
(
(i− 1)

t
n

)
t
n

(
1−

τ
(
t, (i− 1) t

n
)

β

)j

,

(A25)

for j ≥ 2.
It should be noted from (32)–(35) and (A22)–(A25) that choosing β = τ(t, 0) > 0 yields

lim
n→∞

ν̂n = d(t), (A26)

lim
n→∞

d̂j,n = d̂j(t, v0) (A27)

for j ≥ 1, and
lim

n→∞
ĉk,n = ĉk(t, v0) (A28)

for k ≥ 0.
From Theorem 10, we apply the convergence (22) to Ŷn as defined in (A19) and use

(A26)–(A28) to obtain
v = lim

n→∞
ŷn, (A29)

and

fVt (v, t|v0) = lim
n→∞

f (τ(t,0))
Ŷn

(ŷn) =
e−

v
2τ(t,0) v

d(t)
2 −1

(2τ(t, 0))
d(t)

2

∞

∑
k=0

k!

Γ( d(t)
2 + k)

ĉk(t, v0)L

(
d(t)

2 −1
)

k

(
v

2τ(t, 0)

)
, (A30)

respectively.
Furthermore, if d(s) = d ≥ 2 for all s ∈ [0, t] then d(1)(s) = 0 for all s ∈ [0, t]. Hence,

ĉk(t, v0) for k ≥ 0 as written in (32) and (33) are simplified to (36) by replacing d(1)(s) in
(34) and (35) with zero, and the proof is now complete.

Proof of Theorem 12. According to the proof of Theorem 11, we first apply Theorem 2 to
Ŷn defined in (A19) to obtain
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EP[Ŷγ
n
]
=
∫ ∞

0
ŷγ f (β)

Ŷn
(ŷ)dŷ

= (2β)γ
∞

∑
k=0

(−1)k
Γ
(

γ + k + ν̂n
2

)
Γ
(

k + ν̂n
2

) 2F1

(
−k, 1− k− ν̂n

2
; 1− k− ν̂n

2
− γ; 1

)
ĉk,n.

(A31)

By choosing β = τ(t, 0) > 0 and using the results written in (A26)–(A30), an explicit
formula for U(γ)

E (t|v0) = limn→∞ EP[Ŷγ
n
]

is obtained as expressed in (38). In addition,

when m ∈ N, an explicit formula for U(m)
E (t|v0) can be obtained as expressed in (39) by

applying Theorem 4 to (38), and this completes the proof.
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