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Abstract: The heterogeneous nature indicates that different nodes may play different roles in network
structure and function. Identifying influential spreaders is crucial for understanding and controlling
the spread processes of epidemic, information, innovations, and so on. So how to identify influential
spreaders is an urgent and crucial issue of network science. In this paper, we propose a novel local-
information-based method, which can obtain the degree information of nodes’ higher-order neighbors
by only considering the directly connected neighbors. Specifically, only a few iterations are needed to
be executed, the degree information of nodes’ higher-order neighbors can be obtained. In particular,
our method has very low computational complexity, which is very close to the degree centrality, and
our method is of great extensibility, with which more factors can be taken into account through proper
modification. In comparison with the well-known state-of-the-art methods, experimental analyses of
the Susceptible-Infected-Recovered (SIR) propagation dynamics on ten real-world networks evidence
that our method generally performs very competitively.

Keywords: influential spreaders; local information; complex network; network information mining
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1. Introduction

The development of science and technology has greatly enriched human life, making
people more engaged in exploring the nature of the world. Network science has pro-
vided powerful tools to abstract and understand complex mechanisms in many real-world
scenarios [1,2]. Recently, the focus of network science has shifted from the discovery of
macroscopic statistical regularities to the unfolding of mesoscopic structures organization,
and further to the revelation of the significant role played by microscopic elements (i.e.,
nodes and links) [3]. The scale-free property [4] indicates that different nodes may play
different roles in network function and structure. Vital nodes are some special ones that
can affect the structure and function of the network to a greater extent. Although the
number of vital nodes is generally very small, the influence is very large [5]. For example,
an influential user on Twitter may significantly speed up the spread of information, a super
spreader of epidemic may greatly increase the scale of epidemic, a deliberate attack on
a few vital servers may bring down the entire network, and the failure of a few critical
power grids may lead to catastrophic blackouts. Therefore, it is very important to identify
vital nodes associated with some certain functional or structural objectives, which allows
us to better control the outbreak of an epidemic [6–8], control rumor propagation [9,10],
analyze drugs and proteins [11,12], analyze financial risks [13,14], analyze online social
media systems [15], predict outstanding scientists or journals [16,17], prevent catastrophic
disruptions of Internet or power grids [18,19], discover important species [20,21], affect
political elections [22], and so on.

Most known methods make use of structural information [3]. Typical local-information-
based representatives are degree centrality (DC) and H-index [23]. DC is the simplest local
centrality only considering the number of directly connected neighbors of nodes, the larger
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the DC is, the more directly connected neighbors the node has. H-index is a local cen-
trality in which each node only needs the information about the degrees of its neighbors,
the larger the H-index is, the more large-degree neighbors the node has. Typical global-
information-based representatives are k-shell decomposition method [24] (KS), eigenvector
centrality [25] (EC), betweenness centrality [26] (BC) and closeness centrality [27] (CC). KS
is a global centrality describing the location of each node, the larger the KS is, the closer the
node to the core of the network. EC is a global centrality which indicates that the influence
of a node depends not only on the number of its neighbors, but also on the influence of each
neighbor. BC is a global centrality describing the controllability of information flow of each
node, the larger the BC is, the more shortest paths pass through the node. CC is a global
centrality describing the distance from one node to all the other nodes in the network, the
larger the CC is, the smaller the distance from the node to all the other nodes.

Although the global centralities usually perform better than the local centralities, they
need the global topology information of the network, which makes it difficult to apply the
global centralities in very large-scale dynamic networks [23]. Besides, the path-based global
centralities (such as BC, CC) are very time-consuming. Fortunately, by fully considering the
information contained in the fourth-order neighbors of each node, Chen et al. [28] proposed
an effective local algorithm named LocalRank (LR). LR is not inferior in the comparison of
the above global methods, which suggests that the well-designed local centralities have
very promising potential. Recently, a large number of local-information-based algorithms
have been proposed, and their performance is generally better than the classic centralities.
By employing the probability model, Chen et al. [29] proposed a novel method named
DynamicRank (DR). Inspired by gravity law, Li et al. [30] proposed a local gravity model
(LGM), which considers both neighborhood and path information. From the perspective of
“graph energy”, Ma et al. [31] proposed a novel method named Quasi-Laplacian centrality
(QC). Based on QC, Zhao et al. [32] proposed a variant algorithm named the third Laplacian
energy centrality (LC). By combining LGM and QC, Zhang et al. [33] proposed an effective
method named Laplacian gravity centrality (LGC). Inspired by the local tree-like structure
raised from the Push-Republish model [34], Hao et al. [35] proposed a novel method named
Local-Forest (LF).

Although the above methods have performed very well, it is necessary to consider the
higher-order neighborhood of nodes for these methods (such as DR, LGM, LC, LGC, LF),
which limits their application and is relatively time-consuming. In view of this, we propose
an iterative refinement centrality that works by iterating the following process: all nodes
collect the information of their directly connected neighbors and update the information
of themselves. Therefore, we can only consider the directly connected neighbors without
considering the higher-order neighborhood of nodes, and we can still obtain the information
of higher-order neighbors by multiple iterations. The experimental results show that our
method performs very competitively in comparison with the above methods.

The outline of the paper is as follows. Preliminaries are introduced in Section 2. Our
method is proposed in Section 3. Experiments are shown in Section 4. Finally, discussion
and conclusion are presented in Section 5 and Section 6, respectively.

2. Preliminaries

Given a simple undirected and unweighted network G =< V, E >, where V is the set
of nodes in G, and E represents the set of links connecting pairs of nodes. Denote |V| = N
and |E| = M, then the network includes N nodes and M links. The adjacent matrix of
network G is denoted by A = (aij)N×N , if there exists a link from node i to node j, aij = 1,
otherwise, aij = 0.

2.1. Well-Known State-of-the-Art Methods

The degree centrality (DC) of node i is defined as the following Equation (1):

DC(i) = k(i), (1)
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where k(i) = ∑N
j=1 aij.

The H-index [23] of node i, denoted by H(i), is defined as the maximal integer sat-
isfying that there are at least H(i) neighbors of node i whose degrees are all no less than
H(i).

The k-shell decomposition method [24] (KS) works by decomposing the network into
different shells iteratively. The first step of KS is to remove the nodes with degree k = 1
from the network, and then remove all the nodes whose residual degree k ≤ 1 until all
the remaining nodes’ residual degree k > 1. All of the nodes removed in the first step
form 1-shell with k-shell values equal to 1. Repeat the process to get 2-shell, 3-shell, ... The
decomposition process continues until there are no more nodes in the network.

The eigenvector centrality [25] (EC) of node i is defined as the following Equation (2):

EC(i) = c
N

∑
j=1

aijEC(j), (2)

where c is generally set to be the reciprocal of the largest eigenvalue of A.
The betweenness centrality [26] (BC) of node i is defined as the following Equation (3):

BC(i) = ∑
s 6=i,s 6=t,i 6=t

gst(i)
gst

, (3)

where gst is the number of shortest paths between node s and node t, and gst(i) is the
number of shortest paths through node i between node s and node t.

The closeness centrality [27] (CC) of node i is defined as the following Equation (4):

CC(i) =
N − 1

∑
j 6=i

d(i, j)
, (4)

where d(i, j) is the shortest distance between node i and node j.
The LocalRank [28] (LR) of node i is defined as the following Equation (5):

LR(i) = ∑
j∈Λi

∑
w∈Λj

R(w), (5)

where Λi is the set of the nearest neighbors of node i, and R(w) is the number of the nearest
and the next nearest neighbors of node w.

The DynamicRank [29] (DR) of node i is defined as the following Equation (6):

DR(i) =
3

∑
t=1

∑
j∈Γt(i)

score(j, t), (6)

where Γt(i) is the set of t-th order neighbours of node i, and score(j, t) can be obtained by
the following Equation (7):

score(j, t) = 1− ∏
w∈Γt−1(i)

(1− score(w, t− 1) ∗ β), (7)

where β the infected probability, and there exists a link between node j and node w.
The local gravity model [30] (LGM) of node i is defined as the following Equation (8):

LGM(i) = ∑
d(i,j)≤R,j 6=i

k(i)k(j)
d2(i, j)

, (8)
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where R is the truncation radius, and the optimal truncation radius R∗ can be estimated by
the following Equation (9):

R∗ ≈ 1
2
〈d〉, (9)

where 〈d〉 is the average distance of the network.
The Quasi-Laplacian centrality [31] (QC) of node i is defined as the following Equa-

tion (10):
QC(i) = k(i)2 + k(i) + 2 ∑

j∈Λi

k(j). (10)

The Laplacian centrality [32] (LC) of node i is defined as the following Equation (11):

LC(i) = k(i)3 + 3k(i)2 − 2k(i) + ∑
j∈Λi

(3k(j)2 + 3k(j))− 6∆i, (11)

where ∆i is the number of triangles containing node i.
The Laplacian gravity centrality [33] (LGC) of node i is defined as the following

Equation (12):

LGC(i) = ∑
d(i,j)≤〈d〉/2,j 6=i

QC(i)QC(j)
d2(i, j)

. (12)

The Local-Forest [35] (LF) of node i is defined as the following Equation (13):

LF(i) = ∑
j∈Λi

∑
w∈Λj

(k(w)− 2m(j)), (13)

where m(j) is the number of links between neighbors of node j.

2.2. SIR Model

In the SIR model [36], initially, one node selected as the seed is in the infected state (I),
and the others are in the susceptible state (S). In each step, every infected node will infect
its susceptible neighbors with probability β, and then each infected node changes to be
recovered state (R) with probability λ. The influence of node i can be calculated by the
following Equation (14):

F(i) = Nr/N, (14)

where Nr is the number of recovered nodes when the propagation process is finished. For
the sake of simplicity, λ is set to be 1, and then the corresponding epidemic threshold [37]
can be calculated by the following Equation (15):

βc ≈
〈k〉

〈k2〉 − 〈k〉 , (15)

where 〈k〉 and
〈
k2〉 are the average degree and the second-order moment of the degree

distribution.

2.3. The Kendall’s Tau

The Kendall’s Tau [38] is used to measure the strength of correlation between two
sequences. C = (c1, c2, ..., cN) and D = (d1, d2, ..., dN) are two sequences with N elements.
For any pair of two-tuples (ci, di) and (cj, dj) (i 6= j), if both ci > cj and di > dj or both
ci < cj and di < dj, the pair of two-tuples is concordant. If both ci > cj and di < dj or both
ci < cj and di > dj, the pair of two-tuples is discordant. If ci = cj or di = dj, the pair of
two-tuples is neither concordant nor discordant. The Kendall’s Tau of two sequences C and
D is defined as the following Equation (16):

τ =
2(n+ − n−)
N(N − 1)

, (16)
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where n+ and n− are the number of concordant pairs and discordant pairs.

2.4. The Monotonicity

The monotonicity [39] of ranking list is used to measure the resolution of different
ranking lists, and it is defined as the following Equation (17):

M(L) = [1− ∑r∈L Ur(Ur − 1)
U(U − 1))

]
2
, (17)

where U is the size of list L, and Ur is the number of ties with the same rank r.

3. Methods

Most local-information-based algorithms with good performance usually take into
account the third-order neighborhood or even higher-order neighborhood of nodes, which
limits their application and relatively time-consuming. In view of this, we propose an
iterative refinement centrality named degree information propagation (DP). It works by
iterating the following process: all nodes collect the information of their directly connected
neighbors and update the information of themselves. Initially, each node takes its degree
as its information, so the zero-order information of node i, denoted by I0(i), can be defined
as the following Equation (18):

I0(i) = k(i). (18)

In iteration 1, each node collects the zero-order information of its directly connected
neighbors and update the information of itself, so the first-order information of node i,
denoted by I1(i), can be defined as the following Equation (19):

I1(i) = ∑
j∈Λi

I0(j). (19)

In iteration 2, each node collects the first-order information of its directly connected
neighbors and update the information of itself, so the second-order information of node i,
denoted by I2(i), can be defined as the following Equation (20):

I2(i) = ∑
j∈Λi

I1(j). (20)

By analogy, in iteration l, each node collects the l− 1th-order information of its directly
connected neighbors and update the information of itself, so the lth-order information of
node i, denoted by Il(i), can be defined as the following Equation (21):

Il(i) = ∑
j∈Λi

Il−1(j). (21)

Finally, for DP, the influence of node i can be calculated by the following Equation (22):

DP(i) =
T

∑
l=1

Il(i), (22)

where T is the number of iterations.
An example network (shown in Figure 1a) is used to illustrate our method. As shown

in Figure 1d,f,h, the more iterations, the richer information collected by node 2. In iteration
1, node 2 collects the degree information of node 1, node 3 and node 4. In iteration 2,
node 2 collects the degree information of node 3, node 4, node 5, node 6 and itself. In
iteration 3, node 2 collects the degree information of all nodes. Therefore, in our method,
we can only consider the directly connected neighbors without considering the higher-
order neighborhood of nodes, and can still obtain the degree information of higher-order
neighbors by multiple iterations.
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Figure 1. (a) An example network. (b) The adjacency list of the example network. (c,e,g) The process
of each iteration of node 2. (d,f,h) The degree information of each order neighborhood collected by
node 2 after each iteration.

However, unrestricted iteration will eventually reduce the role of the information
collected in the previous iterations, mathematically, Il ≥ Il−1.

Theorem 1. Let G be a simple undirected and unweighted connected network, for any node i in G,
Il(i) ≥ Il−1(i).

Proof of Theorem 1. By mathematical induction, when l = 1, I1(i) = ∑j∈Λi
I0(j) =

∑j∈Λi
k(j). As k(j) ≥ 1, so I1(i) = ∑j∈Λi

k(j) ≥ ∑j∈Λi
= k(i) = I0(i). When l = p, pro-

vided Ip(i) ≥ Ip−1(i). Then when l = p + 1, Ip+1(i) = ∑j∈Λi
Ip(j) ≥ ∑j∈Λi

Ip−1(j) = Ip(i).
Therefore, Il(i) ≥ Il−1(i).
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In order to solve this problem, we propose a restricted version of DP named restricted
degree information propagation (RDP). When l ≥ 1, Il(i) can be redefined as the following
Equation (23):

Il(i) =
1
l2 ∑

j∈Λi

Il−1(j). (23)

Finally, for RDP, the influence of node i can be calculated by the following Equation (24):

RDP(i) =
T

∑
l=1

Il(i). (24)

The results of DP (T = 3) and RDP (T = 3) of the example network are shown in
Tables 1 and 2, respectively.

Table 1. The results of DP (T = 3) of the example network.

DP Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

I0 1 3 3 3 2 3 1
I1 3 7 8 9 6 6 3
I2 7 20 22 21 14 18 6
I3 20 50 55 60 40 41 18

Results 30 77 85 90 60 65 27

Table 2. The results of RDP (T = 3) of the example network.

RDP Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

I0 1.0000 3.0000 3.0000 3.0000 2.0000 3.0000 1.0000
I1 3.0000 7.0000 8.0000 9.0000 6.0000 6.0000 3.0000
I2 1.7500 5.0000 5.5000 5.2500 3.5000 4.5000 1.5000
I3 0.5556 1.3889 1.5278 1.6667 1.1111 1.1389 0.5000

Results 5.3056 13.3889 15.0278 15.9167 10.6111 11.6389 5.0000

The computational complexity of the algorithms used in this paper is shown in Table 3.
For each iteration, the computational complexity for all nodes is O(N〈k〉). Fortunately, DP
generally gets gratifying results after two iterations, and RDP generally gets gratifying
results after three iterations (see more details in Section 4). Therefore, the computational
complexity of DP and RDP is just O(N〈k〉).

Table 3. The computational complexity of different algorithms.

Algorithms Topology Complexity

DC Local O(N)
H-index Local O(N + M)
DP/RDP Local O(N〈k〉)

QC Local O(N〈k〉)
LR Local O(N〈k〉2)
LF Local O(N〈k〉2)
LC Local O(N〈k〉2)
DR Local O(N〈k〉3)

LGM Local O(N〈k〉R)
LGC Local O(N〈k〉R)
KS Global O(M)
EC Global O(N + M)
BC Global O(NM + N2logN)
CC Global O(NM + N2logN)
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4. Experiments
4.1. Data Description

In this paper, we employ ten real-world networks from different fields to verify the
performance of DP and RDP, listed as follows

• Technological network: Router [40];
• Infrastructure network: Power [41];
• Communication network: Email [42];
• Transportation network: USAir [43];
• Collaboration networks: NS [44] and Jazz [45];
• Social networks: Sex [46], WV [47], Facebook [48] and PB [49].

Table 4 shows the ten real-world networks’ topological features, including the number
of nodes and links, the average degree, the average distance and the epidemic threshold [37]
of the SIR model [36].

Table 4. The topological features of ten real-world networks.

Network N M 〈k〉 〈d〉 βc

Router 5022 6258 2.4922 6.4488 0.0786
Power 4941 6594 2.6691 18.9892 0.3483
Email 1133 5451 9.6222 3.6060 0.0565
USAir 332 2126 12.8072 2.7381 0.0231

NS 379 914 4.8232 6.0419 0.1424
Jazz 198 2742 27.6970 2.2350 0.0266
Sex 15,810 38,540 4.8754 5.7846 0.0365
WV 7066 100,736 28.5129 3.2475 0.0069

Facebook 4039 88,234 43.6910 3.6925 0.0095
PB 1222 16,714 27.3552 2.7375 0.0125

4.2. Experimental Results

We use the simulation results produced by SIR model [36] as the standard rankings
of the influence of nodes. Given the network and the spreading probability β, in order to
obtain the stable simulation results, 1000 independent implementations need to be executed
and averaged, and in each implementation, each node is selected as the seed once. Then,
we use the Kendall’s Tau (τ) between the standard rankings produced by SIR model and
the rankings produced by the algorithm to measure the accuracy of the algorithm. The
larger the value of τ, the stronger the correlation between the two sequences, and thus the
better the performance of the algorithm.

Firstly, Table 5 shows the accuracies of DP and RDP with different iterations, where
DP1 and RDP1 represent one iteration of DP and RDP, respectively. For each network, the
best performed version of DP is emphasized by italic, the best performed version of RDP
is emphasized by bold, and the best performed version of DP and RDP is emphasized
by underline.

As shown in Table 5, DP generally gets gratifying results after two iterations, and RDP
generally gets gratifying results after three iterations (the improvement of four iterations
is not obvious, only four of the ten networks are slightly better than three iterations). In
addition, except for Power, RDP performs better than DP, which suggests the effectiveness
of our restriction strategy. Considering the universality and simplicity of our algorithms,
the number of iterations of DP and RDP is set to 3.

Furthermore, 13 benchmark algorithms are selected in our experiments, respectively
are: degree centrality (DC), H-index [23], k-shell decomposition method [24] (KS), eigen-
vector centrality [25] (EC), betweenness centrality [26] (BC), closeness centrality [27] (CC),
LocalRank (LR) [28], DynamicRank (DR) [29], local gravity model (LGM) [30], Quasi-
Laplacian centrality (QC) [31], the third Laplacian energy centrality (LC) [32], Laplacian
gravity centrality (LGC) [33] and Local-Forest (LF) [35]. Figure 2 shows the accuracies of



Mathematics 2023, 11, 1302 9 of 14

DP/RDP and 13 benchmark algorithms for β = βc. The T of DP and RDP is set to 3. The R
of LGM and LGC is set to 〈d〉/2. The β of DR is set to 2.5βc. Further, Figure 3 shows the
accuracies of different β values which are not too far from βc.

Table 5. The accuracies of DP and RDP with different iterations.

Network DP = 1 DP = 2 DP = 3 DP = 4 DP = 5 RDP = 1 RDP = 2 RDP = 3 RDP = 4 RDP = 5

Router 0.6792 0.8063 0.7991 0.7654 0.7563 0.6792 0.8071 0.8159 0.8164 0.8127
Power 0.6772 0.7688 0.8138 0.8534 0.8572 0.6772 0.7416 0.7625 0.7702 0.7719
Email 0.8932 0.9230 0.9214 0.9143 0.9073 0.8932 0.9212 0.9241 0.9217 0.9190
USAir 0.8984 0.9044 0.8956 0.8957 0.8948 0.8984 0.9046 0.8973 0.8966 0.8955

NS 0.8550 0.8991 0.8801 0.8509 0.8174 0.8550 0.8928 0.8995 0.8985 0.8974
Jazz 0.9043 0.9339 0.9340 0.9219 0.9102 0.9043 0.9324 0.9351 0.9277 0.9201
Sex 0.7520 0.7989 0.7964 0.7933 0.7621 0.7520 0.8029 0.8151 0.8184 0.8066
WV 0.8312 0.8379 0.8360 0.8348 0.8341 0.8312 0.8379 0.8361 0.8350 0.8343

Facebook 0.8003 0.8483 0.8599 0.8641 0.8382 0.8003 0.8474 0.8609 0.8670 0.8515
PB 0.8964 0.9213 0.9178 0.9150 0.9095 0.8964 0.9214 0.9185 0.9162 0.9118

As shown in Figure 2, the effective local-information-based algorithms (LR, DR, QC,
LC, LF, LGM, LGC, DP and RDP) perform better than the classic algorithms (DC, H-index,
KS, EC, BC and CC). Although EC performs well on some networks (especially in USAir
and WV), it performs extremely poorly in these two networks (Power and NS). Furthermore,
for the local-information-based algorithms, RDP generally performs better than the other
algorithms. In ten real-world networks, RDP gets six best results (Email, NS, Jazz, WV,
Facebook and PB), DR gets two best results (Router, USAir) , and LGC gets two best results
(Power and Sex). Considering that the complexity of these two algorithms is relatively
high in local-information-based algorithms, while our method has the lowest complexity,
which suggests that our method has both accuracy and efficiency. Furthermore, as shown
in Figure 3, DP and RDP still perform very competitively compared with 13 benchmark
algorithms for different β values, which suggests the robustness of our findings.
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Figure 4 shows the runtime and accuracy of different algorithms in the ten real-world
networks. The closer the point corresponding to the algorithm is to the upper left corner,
the higher the accuracy and the shorter the runtime of the algorithm. It is obvious that DP
and RDP perform very well.

Finally, we use the monotonicity [39] to measure the resolution of different algorithms.
As shown in Figure 5, only six algorithms (i.e., EC, DR, LGM, LGC, DP and RDP) have
monotonicity above 0.99 for all networks, which demonstrates that DP and RDP are
remarkably high-resolution algorithms. Generally speaking, the higher the complexity of
the algorithm, the higher the resolution. DR and RDP can still achieve gratifying results
even with extremely low complexity, which shows the superiority of our method.
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5. Discussion

Although our method has performed very well in the above experiments, there are
still open issues for future studies. First of all, although we find that the effect of increasing
the number of iterations to more than three is not obvious, whether there is an optimal
number of iterations is still worth further verification. Secondly, our method is very simple
and general, which can be further extended. The initial information of nodes in our method
is degree that can be replaced by other centralities (such as H-index) or combinations of
centralities (such as the combination of DC and H-index). Our method only uses degree
information and some iterations to greatly improve the accuracy of DC. So, our method may
also work for other centralities. Notice that, once the centrality based on global information
(such as KS) is selected, our method will also become the global method accordingly.
Furthermore, the number of iterations required may also change. Finally, the restriction
strategy we proposed is relatively simple and rough, which can be further optimized. In
view of these aspects, a universal information propagation model can be described as the
following Equation (25):

UPM(i) =
T

∑
l=1

R(l) ∑
j∈Λi

Il−1(j), (25)

where R(l) is the restriction function, and the initial information of node i can be described
as the following Equation (26):

I0(i) = S(i), (26)

where S(i) is the selected information of node i.
As a result, our suggestions for practical use are as follows:

• The number of iterations (i.e., T) is determined by the size of node neighborhood to
be considered;
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• The formula of node information (i.e., S(i)) can be set according to the needs of the
problem, which can contain multi-characteristics of nodes;

• The restriction function (i.e., R(l)) can be set according to certain characteristics of the
specific network, the growth rate of the results after iteration, or other specific needs.

6. Conclusions

In summary, we propose a novel iterative refinement centrality named degree informa-
tion propagation (DP), which can obtain the degree information of higher-order neighbors
by only considering the directly connected neighbors. Specifically, only a few iterations
are needed to be executed, the degree information of nodes’ higher-order neighbors can be
obtained. Furthermore, we propose a restriction version of DP named restricted degree
information propagation (RDP), and experimental results suggest our restriction strategy’s
effectiveness. In comparison with most local-information-based algorithms, our method
is not only accurate, but also extremely low in complexity. No matter whether DP or
RDP, it generally achieves the desired results within three iterations. In addition, our
method is of great extensibility, with which more factors can be taken into account through
proper modification.
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