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Abstract: In computer programming languages, partial additive semantics are used. Since partial
functions under disjoint-domain sums and functional composition do not constitute a field, linear
algebra cannot be applied. A partial ring can be viewed as an algebraic structure that can process
natural partial orderings, infinite partial additions, and binary multiplications. In this paper, we
introduce the notions of a one-prime partial bi-ideal, a two-prime partial bi-ideal, and a three-prime
partial bi-ideal, as well as their extensions to partial rings, in addition to some characteristics of
various prime partial bi-ideals. In this paper, we demonstrate that two-prime partial bi-ideal is a
generalization of a one-prime partial bi-ideal, and three-prime partial bi-ideal is a generalization of a
two-prime partial bi-ideal and a one-prime partial bi-ideal. A discussion of the mpb1, (mpb2, mpb3)

systems is presented. In general, the mpb2 system is a generalization of the mpb1 system, while the
mpb3 system is a generalization of both mpb2 and mpb1 systems. If Φ is a prime bi-ideal of f, then Φ
is a one-prime partial bi-ideal (two-prime partial bi-ideal, three-prime partial bi-ideal) if and only
if f \Φ is a mpb1 system (mpb2 system, mpb3 system) of f. If Θ is a prime bi-ideal in the complete
partial ring f and ∆ is an mpb3 system of f with Θ ∩ ∆ = φ, then there exists a three-prime partial
bi-ideal Φ of f, such that Θ ⊆ Φ with Φ ∩ ∆ = φ. These are necessary and sufficient conditions
for partial bi-ideal Θ to be a three-prime partial bi-ideal of f. It is shown that partial bi-ideal Θ is a
three-prime partial bi-ideal of f if and only if HΘ is a prime partial ideal of f. If Θ is a one-prime
partial bi-ideal (two-prime partial bi-ideal) in f, then HΘ is a prime partial ideal of f. It is guaranteed
that a three-prime partial bi-ideal Φ with a prime bi-ideal Θ does not meet the mpb3 system. In order
to strengthen our results, examples are provided.

Keywords: partial ring; prime bi-ideal; one-prime partial bi-ideal; two-prime partial bi-ideal; three-prime
partial bi-ideal; mpb1 system; mpb2 system; mpb3 system

MSC: 06B10; 20M25; 16Y60

1. Introduction

Mathematical structures have several applications. It is important to generalize the
ideals of algebraic structures and ordered algebraic structures and to make them available
for further study and application. Between 1950 and 1980, mathematicians studied bi-ideals,
quasi ideals, and interior ideals. During 1950–2019, however, only mathematicians studied
their applications. The notions of one-sided ideals of rings and semigroups, as well as
the notions of quasi ideals of rings and semigroups, can all be considered generalizations
of the notion of ideals of rings and semigroups. Semigroups are generalizations of rings
and groups. Semigroup structure can be studied using certain band decompositions
in semigroup theory. This research uses bi-ideals of semirings with additively reduced
semilattices to open a new area of mathematics. In mathematics, various types of ideals
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have been discussed in various structures, including semiring [1] and ring [2]. In the theory
of algebraic numbers, Dedekind introduced the idea of ideals that included associative rings.
In 1952, Good et al. [3] introduced the notion of bi-ideals for semigroups. Furthermore,
this is a special case of the (m, n)-ideal discussed by Lajos, i.e., it is a special case of the
(m, n)-ideal. Lajos provided both regular and intra-regular semigroups as a result of the bi-
ideals [4]. Furthermore, Lajos developed generalized bi-ideals and quasi ideals to analyze
regular and intra regular semigroups. As an example, bi-ideals that describe different
classes of semigroups [5–7]. Lajos et al. [8] define associative rings in terms of bi-ideals.
quasi ideals are generalizations of left ideals and right ideals, and are therefore special
cases of bi-ideals. Steinfeld introduced the concept of quasi ideals based on semigroups
and rings in 1956. In semirings, prime ideals can be described in a variety of ways [1]. In
the theory of commutative rings, the prime ideal has been extensively used. In contrast
with commutative rings, its application to non-commutative rings has been less extensive.
A few aspects of prime ideals in general rings have been discussed by McCoy [2]. Prime
ideals for rings and semirings can be found in [1,9,10]. The concepts of prime bi-ideal
and semiprime bi-ideal were introduced by Van der Walt. Specifically, with regard to the
subsets X1 and X2 of f and the product X1X2, what we mean is that the subring of f is
generated by the set of all products x1x2, where x1 ∈ X1, x2 ∈ X2. In order to define a
bi-ideal Θ of f, we must satisfy the condition ΘfΘ ⊆ Θ [8]. If Θ is any bi-ideal of f,
then ΛΘ = {c ∈ Θ|fc ⊆ Θ} and HΘ = {c′ ∈ ΛΘ|c

′f ⊆ ΛΘ} [11]. An ideal Φ of f is
prime ideal if and only if ΨΘ ⊆ Φ, for ideals Ψ and Θ of f implies Ψ ⊆ Φ or Θ ⊆ Φ [2].
Palanikumar et al. addressed semigroups, semirings, rings, and ternary semirings in their
recent work [12–17]. Recently, Badmaev et al. [18–22] discussed various application for
Boolean functions generated by maximal partial ultraclones.

There are several closely related structures that have been introduced in other contexts
which have partially additive semantics, such as those in [23–25]. It is suggested that ∑
should be emphasized in computing science, according to the flowchart enclosed with [23].
It is possible to find partially defined infinity operations in many contexts. A wide variety
of contexts can be found here, ranging from the semantics of programming languages
to the integration theory of systems. Computer scientists try to make programs more
understandable by changing the function that was computed without changing their
function. A program transformation algebraic theory is clearly required to solve this
problem [26]. A positive partial monoid can be explained as follows: If ∑(ci : i ∈ Q) is
defined and equals 0, then each xi must be zero. An Abelian monoid satisfies the positivity
requirement that c + c

′
= 0 implies c = 0 = c

′
. Due to the partition-association property,

a subset of the summable families has finite support and a usual sum. Assume that M
is the fixed set. Functions are Q indexed families in M. The notation for this function is
c = (ci|i ∈ Q). Here, we have used ci instead of c(i). Instead of making the co-domain
explicit, as with the function notation c : Q→ M, the family notation suppresses it. As a
result, family notation is useful when there is a stable co-domain relationship. In technical
terms, “meaning” can be called “semantics”. Programming languages use semantics to
explain what programs written in a given language mean when they are run. A semantic
function is a function whose input is a syntactically correct program. The output is a
description of the function calculated by the program based on the input. The partial
addition that will be automated for some Q-indexed families in M is expected to include
an element of ∑i(ci|i ∈ Q). In the semantic concepts we want to capture, there are no
uncountable sums involved, so we can only deal with countable families. Using an axiom,
I will demonstrate the ineffectiveness of subdividing a sum based on an axiom.

For example, c1 + c2 + c3 + c4 + c5 + c6 = c2 + (c1 + c5) + (c3 + c4) + c6. If Q =
1, 2, ..., 6, Qa = {2, 6}, Qb = {1, 5}, Qc = {3, 4} and R = {a, b, c}, we may write this result
as ∑(ci : i ∈ Q) = ∑(∑(ci : i ∈ Qj) : j ∈ R). Here, (Qj|j ∈ R) is a partition of Q; that is,
if j 6= k then Qj ∩ Qk = φ and also Q = ∪(Qj : j ∈ R). In our definition of Qj = φ, we
would like to emphasize that any number of j (even an infinite number of j) is appropriate
if the partition properties are true. Various ideals of partial semirings and gamma partial
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semirings are discussed by Rao et al. [27–29]. Amarendra Babu et al. [30] discussed the
bi-ideals of sum ordered partial semirings. Partial addition and a ternary product-based
so-semiring is discussed by Bhagyalakshmi et al. [31]. The theory of partial semirings of
continuous valued functions is explained by Shalaginova et al. [32]. Throughout this paper,
there are five sections that are organized differently. The following Section 2 contains some
basic definitions that need to be briefly explained. The different types of prime partial
bi-ideals and their extensions are discussed in Section 3. The partial semiprime bi-ideals
are discussed in Section 4. The conclusion is drawn in Section 5. In this study, we aim to
achieve the following fundamental goals:

1. A one-prime partial bi-ideal implies a two-prime partial bi-ideal which implies a
three-prime partial bi-ideal, but the reverse implication does not hold.

2. The mpb1 system implies the mpb2 system, which implies mpb3 system, and the opposite
direction does hold with the Example.

3. A one-partial semiprime bi-ideal implies a two-partial semiprime bi-ideal, which im-
plies a three-partial semiprime bi-ideal, and the reverse implication does not match up.

4. The npb1 system implies the npb2 system, which implies the npb3 system, and the
opposite direction is not valid based on the Example.

2. Preliminaries

We discuss some of the basic definitions required for the rest of our study in this section.

Definition 1 ([2]). The algebraic structure (R,+, ·) is a ring if

1. (R,+) is an abelian group.
2. (R, ·) is a semigroup.
3. (i) a · (b + c) = a · b + a · c.

(ii) (a + b) · c = a · c + b · c, ∀ a, b, c ∈ R.

Definition 2 ([2]). The algebraic structure (R,+, ·) is a ring. Then

1. An additive subgroup I of R with the property that ra ∈ I(ar ∈ I), for a ∈ I, r ∈ R is called
a left ideal (right ideal) of R.

2. If I happens to be both a left ideal and right ideal, then we call I a two-sided ideal of R, or
simply an ideal of R.

3. The quasi ideal Q of a ring R is a subring Q of R, such that RQ ∩QR ⊆ Q.
4. The bi-ideal B of a ring R is a subring B of R, satisfying BRB ⊆ B.
5. An ideal P in a ring R is said to be a prime ideal if and only if it has the following property: if

A and B are ideals in R such that A · B ⊆ P, then A ⊆ P or B ⊆ P.

Definition 3 ([2]). A set M of elements of a ring R is said to be an m system if a, b ∈ M there
exists x ∈ R, such that axb ∈ M.

Definition 4. A partial monoid is a pair (M, ∑), ∑ is a partial addition defined on some, but not
necessarily all families (ci : i ∈ Q) in a non-empty set M subject to the conditions:
(i) If (ci : i ∈ Q) in M and Q = {j}, then ∑(ci : i ∈ Q) is defined and equals cj (unary
sum axiom).
(ii) If (ci : i ∈ Q) in M and (Qj : j ∈ R) is a partition of Q, then (ci : i ∈ Q) is summable if
and only if (ci : i ∈ Qj) is summable for all j ∈ R, (∑(ci : i ∈ Qj) : j ∈ R) is summable and
∑(ci : i ∈ Q) = ∑(∑(ci : i ∈ Qj) : j ∈ R) (the partition associativity axiom).

Definition 5. Let f be the partial semiring if there exists a mapping f×f→ f which satisfies
the following axioms:
(i) c1(c2c3) = (c1c2)c3,
(ii) (ci : i ∈ Q) is summable in f implies (c ci : i ∈ Q) is summable in f and c[∑(ci : i ∈ Q)] =

∑(cci : i ∈ Q).
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(iii) (ci : i ∈ Q) is summable in f implies (ci c : i ∈ Q) is summable in f and [∑(ci : i ∈ Q]c =
∑(cic : i ∈ Q).

Definition 6. Let Ψ be the nonempty subset of f. Then, Ψ is said to be a partial left ideal (partial
right ideal) of f if
(i) (ci : i ∈ Q) is summable in f and ci ∈ Ψ, ∀i ∈ Q implies ∑i ci ∈ Ψ.
(ii) For all c ∈ f, c

′ ∈ Ψ, cc
′ ∈ Ψ (c

′
c ∈ Ψ).

Definition 7. A partial ring is said to be complete if every family within it can be summed up.

Remark 1. Let f be the complete partial ring and b ∈ f. The right ideal and left ideal of f are
generated by “b”
(i) < b >r= {c ∈ f|c = nb + ∑i bri, ri ∈ f, n ∈ N}.
(ii) < b >l= {c ∈ f|c = nb + ∑i rib, ri ∈ f, n ∈ N}.
(iii) < b >= {c ∈ f|c = nb + ∑i bri + ∑j rjb + ∑k brkb, ri, rj, rk ∈ f, n ∈ N}.

Definition 8. Let f be the partial rings and let Ψ and Θ be the subsets of f. We define
ΨΘ = {c ∈ f|c = ∑i limi, li ∈ Ψ and mi ∈ Θ}.

Definition 9 ([11]). (i) The bi-ideal Θ of f is the prime bi-ideal if u1fu2 ⊆ Θ implies u1 ∈ Θ or
u2 ∈ Θ.
(ii) The bi-ideal Θ of f is a semiprime bi-ideal if u1fu1 ⊆ Θ implies u1 ∈ Θ.

Theorem 1 ([11]). (i) The bi-ideal Θ of f is a prime bi-ideal if and only if Ψ1Ψ2 ⊆ Θ, while Ψ1 as
a right ideal of f and Ψ2 as a left ideal of f implies Ψ1 ⊆ Θ or Ψ2 ⊆ Θ.
(ii) The bi-ideal Θ of f is semiprime bi-ideal if and only if Ψ2

1 ⊆ Θ (or Ψ2
2 ⊆ Θ) implies Ψ1 ⊆ Θ

(or Ψ2 ⊆ Θ) for any left ideal Ψ1 (or right ideal Ψ2) of f.

3. Different Prime Partial Bi-Ideals

In this section, three different prime partial bi-ideals and their corresponding partial
m systems were introduced.

Definition 10. (i) A proper prime bi-ideal Φ of f is called a one-prime partial bi-ideal if Θ1Θ2 ⊆ Φ
implies Θ1 ⊆ Φ or Θ2 ⊆ Φ for any prime bi-ideals Θ1 and Θ2 of f.
(ii) A two-prime partial bi-ideal if a1fa2 ⊆ Φ implies a1 ∈ Φ a2 ∈ Φ.
(iii) A three-prime partial bi-ideal if Υ1Υ2 ⊆ Φ implies Υ1 ⊆ Φ or Υ2 ⊆ Φ for any prime ideals Υ1
and Υ2 of f.

Example 1. Consider f =

{(
a1 a2
0 a3

)∣∣∣∣a1, a2, a3 ∈ Z2

}
with “ ∑ ” is defined on f by

∑
i
(ci : i ∈ Q) =


∑i ci i f ci ∈ Q is f inite

unde f ined otherwise

and “ · ” is defined by the usual multiplication.

Example 2. Consider f =

{(
a1 a2
a3 a4

)∣∣∣∣a1, a2, a3, a4 ∈ Z2

}
with “ ∑ ” is defined on f by

∑
i
(ci : i ∈ Q) =


∑i ci i f ci ∈ Q is f inite

unde f ined otherwise
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and “ · ” is defined by the usual multiplication.

Remark 2. Every left ideal, right ideal and bi-ideal are a partial left ideal, partial right ideal and
partial bi-ideal of f.

Proof. Straightforward.

The converse of the Remark 2 cannot be proved by the following example.

Example 3. In Example 1, (i) Ψ1 =

{(
0 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
0 1

)}
is a partial right ideal of f.

Since Ψ1 + Ψ1 =

{(
0 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
0 1

)
,
(

0 1
0 1

)}
6⊆ Ψ1 implies Ψ1 is not a right ideal

of f.

(ii) Λ1 =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

0 1
0 0

)}
is a partial left ideal of f.

Since Λ1 + Λ1 =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

1 1
0 0

)}
6⊆ Λ1 implies Λ1 is not a left ideal

of f.

Example 4. In Example 2, (iii) Υ =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)
,
(

1 1
0 0

)
,(

1 0
1 0

)
,
(

0 1
0 1

)
,
(

0 0
1 1

)
,
(

1 1
1 1

)}
is a partial ideal of f. Since Υ + Υ = f 6⊆ Υ implies Υ is

not an ideal of f.

(iv) Θ =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

1 1
0 0

)}
is a partial bi-ideal of f.

Since Θ + Θ =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

0 1
0 0

)
,
(

1 1
0 0

)}
6⊆ Θ implies Θ is not a bi-ideal of f.

Lemma 1. If Φ is a one-prime partial bi-ideal of f, then Φ is a two-prime partial bi-ideal of f.

Proof. Straightforward.

In the example below, we can see that the converse of the Lemma 1 is not true.

Example 5. In Example 2,

Φ =

{(
0 0
0 0

)}
, Θ1 =

{(
0 0
0 0

)
,
(

1 0
0 0

)
,
(

1 0
1 0

)}
and

Θ2 =

{(
0 0
0 0

)
,
(

0 0
1 0

)
,
(

0 0
1 1

)}
. Here, Φ is a two-prime partial bi-ideal, but not a one-prime

partial bi-ideal. Now, Θ1 ·Θ2 =

(
0 0
0 0

)
⊆ Φ, but Θ1 6⊆ Φ and Θ2 6⊆ Φ.

Lemma 2. If Φ is a two-prime partial bi-ideal of f, then Φ is a three-prime partial bi-ideal of f.

Proof. Straightforward.

We cannot prove the converse of Lemma 2 based on the following example.



Mathematics 2023, 11, 1309 6 of 11

Example 6. Based on the Example 2, Φ =

{(
0 0
0 0

)
,
(

0 1
0 1

)
,
(

1 0
1 0

)}
. Here, Φ is a

three-prime partial bi-ideal, but not a two-prime partial bi-ideal. Now,
(

1 1
1 1

)
f
(

0 0
0 1

)
={(

0 0
0 0

)
,
(

0 1
0 1

)}
⊆ Φ, but

(
1 1
1 1

)
6⊆ Φ and

(
0 0
0 1

)
6⊆ Φ.

Definition 11. (i) A subset ∆ of f is called a mpb1 system if, for any a1, b1 ∈ ∆, there exists
a1

1 ∈< a1 >b and b1
1 < b1 >b, such that a1

1b1
1 ∈ ∆.

(ii) A subset ∆ of f is called a mpb2 system if, for any a1, b1 ∈ ∆, there exists a1
1 ∈< a1 >r and

b1
1 ∈< b1 >l , such that a1

1b1
1 ∈ ∆.

(iii) A subset ∆ of f is called a mpb3 system if, for any a1, b1 ∈ ∆, there exists a1
1 ∈< a1 > and

b1
1 ∈< b1 > such that a1

1b1
1 ∈ ∆.

Lemma 3. If Φ is a partial bi-ideal of f, then Φ is a one-prime partial bi-ideal (two-prime partial
bi-ideal, three-prime partial bi-ideal) if and only if f \ Φ is a mpb1 system (mpb2 system, mpb3
system) of f.

Proof. Let Φ be the one-prime partial bi-ideal of f and let a1, b1 ∈ f \Φ. Hence, < a1 >b<

b1 >b 6⊆ Φ. Then there exists a
′
1 ∈< a1 >b and b

′
1 ∈< b1 >b, such that a

′
1 · b

′
1 = {n1a1 +

n2a2
1 + l1} · {n

′
1b1 + n

′
2b2

1 + l2}, where l1 = ∑i a1ria1 and l2 = ∑i b1r
′
ib1 for n1, n2, n

′
1, n

′
2 ∈ N

and ri, r
′
i ∈ f. Since l1l2 ∈< a1 >b< b1 >b 6⊆ Φ. Thus, a1b1 /∈ Φ. Hence, f \Φ is a mpb1

system.
Conversely, let Θ1 and Θ2 be the partial bi-ideals of f, such that Θ1Θ2 ⊆ Φ. Suppose

that Θ1 6⊆ Φ and Θ2 6⊆ Φ. Then, there exists b1 ∈ Θ1 and b2 ∈ Θ2, such that b1 /∈ Φ and
b2 /∈ Φ. Let b1, b2 ∈ f \Φ. Since f \Φ is an mpb1 system, then there exists b

′
1 ∈< b1 >b

and b
′
2 ∈< b2 >b such that b

′
1b
′
2 ∈ f \Φ. However, b

′
1b
′
2 ∈< b1 >b · < b2 >b⊆ Θ1Θ2 ⊆ Φ,

which is a contradiction. Thus, Θ1 ⊆ Φ or Θ2 ⊆ Φ. Hence, Φ is a one-prime partial bi-ideal
of f.

Remark 3. Every mpb1 system is a mpb2 system.

As illustrated by the following example, the converse may not be true.

Example 7. In Example 2, Clearly ∆ =

{(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)
,
(

1 1
0 0

)
,
(

1 0
1 0

)
,(

0 1
0 1

)
,
(

0 0
1 1

)
,
(

1 1
1 1

)
,
(

1 0
0 1

)
,
(

0 1
1 1

)
,
(

1 1
1 0

)
,
(

0 1
1 0

)
,
(

1 0
1 1

)
,
(

1 1
0 1

)}
is an

mpb2 system, but not a mpb1 system.

Put z1 =

(
1 0
1 0

)
, z2 =

(
0 0
1 1

)
. Now, z

′
1 ∈ 〈z1〉b and z

′
2 ∈ 〈z2〉b such that z

′
1 · z

′
2 /∈ ∆.

Remark 4. Every mpb2 system is a mpb3 system.

In the following example, however, the converse may not be true.

Example 8. In Example 2, clearly, ∆ =

{(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)
,
(

1 1
0 0

)
,
(

1 1
1 1

)
,(

0 0
1 1

)
,
(

1 0
0 1

)
,
(

0 1
1 1

)
,
(

1 1
1 0

)
,
(

0 1
1 0

)
,
(

1 0
1 1

)
,
(

1 1
0 1

)}
is an mpb3 system, but not a

mpb2 system.
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Let z1 =

(
1 1
1 1

)
, z2 =

(
0 0
1 0

)
. Now, z

′
1 ∈ 〈z1〉r and z

′
2 ∈ 〈z2〉l , such that

z
′
1 · z

′
2 =

{(
0 0
0 0

)
,
(

1 0
1 0

)}
/∈ ∆.

Remark 5. For any bi-ideal Θ of f, ΛΘ = {c ∈ Θ | fc ⊆ Θ} and HΘ is defined as
HΘ = {c′ ∈ ΛΘ | c

′f ⊆ ΛΘ}.

Remark 6. For any bi-ideal Θ of f, ΨΘ = {c ∈ Θ | cf ⊆ Θ} and HΘ is defined as
HΘ = {c′ ∈ ΨΘ | fc

′ ⊆ ΨΘ}.

Lemma 4. Let Θ be the partial bi-ideal of f. Then, ΛΘ is a partial left ideal of f, such that
ΛΘ ⊆ Θ.

Proof. Let ci ∈ ΛΘ. Then, ci ∈ Θ and fci ⊆ Θ, ∀i. Since Θ is a partial bi-ideal of f, then
∑i ci ∈ Θ and (c1 · c2 · ... · cn) ∈ Θ. Now, f(∑i ci) ⊆ Θ. Thus, ∑i ci ∈ ΛΘ. Now, f(c1 ·
c2 · ... · cn) = (fc1) · (c2 · ... · cn) ⊆ (fc1) · (fc2) · (c3... · cn) ⊆ (fc1) · (fc2) · ... · (fcn) ⊆ Θ.
Thus, (c1 · c2 · ... · cn) ∈ ΛΘ. Let c ∈ ΛΘ and r ∈ f. Since rc ∈ fc ⊆ Θ, we have rc ∈ Θ
and frc ⊆ ffc ⊆ fc ⊆ Θ. Thus, rc ∈ ΛΘ. Hence ΛΘ is a partial left ideal of f and
ΛΘ ⊆ Θ.

Lemma 5. Let Θ be the partial bi-ideal of f. Then HΘ is a partial subring of f.

Proof. Let ci ∈ HΘ. Then, ci ∈ ΛΘ and cif ⊆ ΛΘ, ∀i. Since ci ∈ ΛΘ, ci ∈ Θ and
fci ⊆ Θ, ∀i. Since ci ∈ Θ and Θ is a partial subring of f, we have ∑i ci ∈ Θ and
(c1 · c2 · . . . · cn) ∈ Θ. Now, f(∑i ci) ⊆ Θ implies ∑i ci ∈ ΛΘ. Now, (∑i ci)f ⊆ ΛΘ implies
∑i ci ∈ HΘ. Now, f(c1 · c2 · . . . · cn) = (fc1) · (c2 · . . . · cn) ⊆ (fc1) · (fc2) · (c3 . . . · cn) ⊆
(fc1) · (fc2) · . . . · (fcn) ⊆ Θ implies (c1 · c2 · . . . · cn) ∈ ΛΘ and (c1 · c2 · . . . · cn)f =
(c1 · c2 · . . . · cn−1) · (cnf) ⊆ (c1f) · (c2f) · . . . · (cnf) ⊆ ΛΘ. Thus, (c1 · c2 · . . . · cn) ∈ HΘ.
Hence, HΘ is a partial subring of f.

Lemma 6. Let Θ be the partial left ideal of f. Then, ΛΘ = Θ.

Proof. Clearly, ΛΘ ⊆ Θ. Let c ∈ Θ, since Θ is a partial left ideal of f. We have fc ⊆ Θ
implies c ∈ ΛΘ. Thus, Θ ⊆ ΛΘ. Hence, ΛΘ = Θ.

Theorem 2. If Θ is any partial bi-ideal of a complete partial ring f, then HΘ is the unique largest
two sided partial ideal of f contained in Θ.

Proof. Let Θ be the any partial bi-ideal of f. First, we prove that HΘ is the two sided partial
ideal of f. Since ΛΘ ⊆ Θ and HΘ ⊆ ΛΘ, HΘ ⊆ ΛΘ ⊆ Θ. Let ci ∈ HΘ, ∀i ∈ Υ and c

′ ∈ f.
Then, ci ∈ HΘ ⊆ Θ =⇒ ci ∈ Θ. Since ci ∈ ΛΘ, we have fci ⊆ Θ and cif ⊆ ΛΘ, ∀i ∈ Υ.
Since Θ is a partial bi-ideal of f, then ∑i ci ∈ Θ. Since ci ∈ ΛΘ, ∑i ci ∈ ΛΘ, f(∑i ci) ⊆
ΛΘ ⊆ Θ and (∑i ci)f ⊆ ΛΘ. Hence, ∑i ci ∈ HΘ. Since c ∈ ΛΘ, then c

′
c ∈ fc ⊆ Θ and

fc
′
c ⊆ ffc ⊆ fc ⊆ Θ =⇒ c

′
c ∈ ΛΘ. Moreover, cc

′ ∈ cf ⊆ ΛΘ. Therefore, cc
′ ∈ ΛΘ

and c
′
c ∈ ΛΘ. To prove that cc

′ ∈ HΘ and c
′
c ∈ HΘ. Now, cc

′f ⊆ cff ⊆ cf ⊆ ΛΘ =⇒
cc
′ ∈ HΘ. Moreover, c

′
cf ⊆ fcf ⊆ fΛΘ ⊆ ΛΘ =⇒ c

′
c ∈ HΘ, since ΛΘ is a partial

left ideal of f. Hence, HΘ is a two-sided partial ideal of f. To prove HΘ is the largest
two-sided partial ideal of fl let Υ be any partial ideal of f and Υ ⊆ Θ. Let i ∈ Υ. Then,
i ∈ Θ and fi ⊆ Υ ⊆ Θ. Hence, fi ⊆ Θ =⇒ i ∈ ΛΘ. Hence, Υ ⊆ ΛΘ. Next, i ∈ ΛΘ and
if ⊆ Υ ⊆ ΛΘ =⇒ i ∈ HΘ. Hence, Υ ⊆ HΘ.

Theorem 3. Let Θ be any partial bi-ideal of a complete partial ring f. If Θ is a one-prime partial
bi-ideal (two-prime partial bi-ideal) of f, then HΘis a prime partial ideal of f.
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Next, we provide an example showing that the converse of Theorem 3 does not hold.

Example 9. In Example 2, HΘ1 = HΘ2 =

{(
0 0
0 0

)}
is a prime partial ideal.

Let Θ1 =

{(
0 0
0 0

)
,
(

0 0
0 1

)
,
(

0 1
0 1

)}
and Θ2 =

{(
0 0
0 0

)
,
(

0 1
0 0

)
,
(

1 0
0 0

)}
, Θ1 is not

a one-prime partial bi-ideal and Θ2 is not a two-prime partial bi-ideal of f. Since{(
0 0
0 0

)
,
(

0 0
0 1

)
,
(

0 1
0 0

)}
·
{(

0 0
0 0

)
,
(

0 1
0 0

)
,
(

1 1
0 0

)}
=

{(
0 0
0 0

)}
⊆ Θ1 and{(

0 0
0 0

)
,
(

1 0
0 0

)
,
(

1 1
0 0

)}
f
{(

0 0
0 0

)
,
(

1 0
1 0

)
,
(

0 1
0 1

)}
=

{(
0 0
0 0

)
,
(

1 0
0 0

)}
⊆ Θ2.

Theorem 4. Let Θ be any partial bi-ideal of a complete partial ring f. Θ is a three-prime partial
bi-ideal of f if and only if HΘ is a prime partial ideal of f.

Proof. Let Θ be a three-prime partial bi-ideal of f. Let C and C
′

be partial ideals of f, such
that CC

′ ⊆ HΘ. Since HΘ ⊆ Θ, CC
′ ⊆ Θ. Since Θ is an three-prime partial bi-ideal of f,

C ⊆ Θ or C
′ ⊆ Θ. By Theorem 2, HΘ is the unique largest partial ideal of f, such that

HΘ ⊆ Θ. Thus, C ⊆ HΘ or C
′ ⊆ HΘ. Hence, HΘ is a prime partial ideal of f.

Conversely, let HΘ be the prime partial ideal of f. Suppose that Υ1Υ2 ⊆ Θ, for any
partial ideals Υ1 and Υ2 of f, since HΘ ⊆ Θ and Υ1, Υ2 are partial ideals of f. Hence,
Υ1Υ2 ⊆ HΘ, since HΘ is a prime partial ideal of f. Hence Υ1 ⊆ HΘ or Υ2 ⊆ HΘ, since
HΘ ⊆ Θ. Thus, Υ1 ⊆ Θ or Υ2 ⊆ Θ. Hence, Θ is a three-prime partial bi-ideal of f.

Theorem 5. Let ∆ be the mpb3 system and Θ be the prime bi-ideal of a complete partial ring f with
Θ ∩ ∆ = φ. Then, there exists a three-prime partial bi-ideal Φ of f containing Θ with Φ ∩ ∆ = φ.

Proof. Let X =
{

R|R be a partial bi-ideal with Θ ⊆ R and R ∩ ∆ = φ
}

. Clearly X 6= {φ}
and is an ideal of f. According to Zorn’s lemma, X contains a maximal element Φ with X
and Φ ∩ ∆ = {φ}. Let us show that Φ is a three-prime partial bi-ideal. Using Theorem 4,
we show that HΦ is a prime partial ideal in f. Since HΦ ⊆ Φ and Φ∩∆ = {φ}, this implies
that HΦ ∩ ∆ = {φ}.

Case-(i) Suppose that HΦ is a maximal prime ideal, such that HΦ ∩ ∆ = {φ}. Suppose
< a >< b >⊆ HΦ. This implies that < a >⊆ HΦ or < b >⊆ HΦ. Suppose that < a > 6⊆ HΦ
and < b > 6⊆ HΦ. Let us show that < a >< b > 6⊆ HΦ. Since < a > 6⊆ HΦ, hence c ∈< a >
but c 6∈ HΦ and < b > 6⊆ HΦ, hence c

′ ∈< b > but c
′ 6∈ HΦ. Then, < c >⊆< a >

and < c
′
>⊆< b >. Based on the maximal property of Φ, (HΦ+ < c >) ∩ ∆ 6= φ

and (HΦ+ < c
′
>) ∩ ∆ 6= φ. Since ∆ is an mpb3 system for z1, z2 ∈ ∆, then there exist

z1 ∈ (HΦ+ < c >) ∩ ∆ and z2 ∈ (HΦ+ < c
′
>) ∩ ∆, such that z

′
1z
′
2 ∈< z1 >< z2 >. If

z1 ∈ (HΦ+ < c >), then z1 = l
′
+ l1 for some l

′ ∈ HΦ and l1 ∈< c >. If z2 ∈ (HΦ+ <
c
′
>), then z2 = l

′′
+ l2 for some l

′′ ∈ HΦ and l2 ∈< c
′
>. Now, z1

′z2
′ ∈ (l

′
+ l1)(l

′′
+ l2) =

l
′
l
′′
+ l

′
l2 + l1l

′′
+ l1l2 ∈ HΦ+ < a >< b >. If < a >< b >⊆ HΦ, then z

′
1z
′
2 ∈ HΦ. So

HΦ ∩ ∆ 6= φ, which is a contradiction. Hence, < a >< b > 6⊆ HΦ. Hence, HΦ is a prime
partial ideal of f.

Case-(ii) If HΦ is not a maximal prime ideal, then there exists a prime partial ideal Υ,
such that Υ ⊆ Φ ∩ ∆ = φ, to apply case-(i), we get the proof.

4. Different Partial Semiprime Bi-Ideals

Throughout this section, we will introduce three different partial semiprime bi-ideals
and their corresponding partial n systems.
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Definition 12. (i) A proper prime bi-ideal Φ of f is called a one-partial semiprime bi-ideal if
Θ2 ⊆ Φ implies Θ ⊆ Φ, for any prime bi-ideal Θ of f.
(ii) It is called a two-partial semiprime bi-ideal if a1fa1 ⊆ Φ implies a1 ∈ Φ.
(iii) It is called a three-partial semiprime bi-ideal if Υ2 ⊆ Φ implies Υ ⊆ Φ, for any ideal Υ of f.

Lemma 7. If Φ is a one-partial semiprime bi-ideal of f, then Φ is a two-partial semiprime bi-ideal
of f.

The following example suggests that Lemma 7 could not have a converse.

Example 10. In Example 2, Θ =

{(
0 0
0 0

)
,
(

1 1
1 1

)}
and Φ =

{(
0 0
0 0

)
,
(

0 0
1 0

)
,
(

0 0
0 1

)}
.

Here, Φ is a two-partial semiprime bi-ideal, but not a one-partial semiprime bi-ideal by Θ ·Θ ⊆ Φ,
but Θ 6⊆ Φ.

Lemma 8. If Φ is a two-partial semiprime bi-ideal of f, then Φ is a three-partial semiprime bi-ideal
of f.

In the following example, the converse of Lemma 8 may not be true.

Example 11. In Example 2, Φ =

{(
0 0
0 0

)
,
(

0 0
1 1

)
,
(

1 1
1 1

)}
is a three-partial semiprime bi-

ideal, but not a two-prime partial bi-ideal. Since
(

0 0
1 0

)
f
(

1 1
0 0

)
=

{(
0 0
0 0

)
,
(

0 0
1 1

)}
⊆ Φ,

but
(

0 0
1 0

)
6⊆ Φ and

(
1 1
0 0

)
6⊆ Φ.

Definition 13. (i) A subset N of f is called a npb1 system if, for any a1 ∈ N, there exist a
′
1, a

′′
1 ∈<

a1 >b such that a
′
1a
′′
1 ∈ N.

(ii) A subset N of f is called a npb2 system if for any a1 ∈ N, there exist a
′
1, a

′′
1 ∈< a1 >r

(a
′
1, a

′′
1 ∈< a1 >l) such that a

′
1a
′′
1 ∈ N.

(iii) A subset N of f is called a npb3 system if for any a1 ∈ N, there exist a
′
1, a

′′
1 ∈< a1 > such that

a
′
1a
′′
1 ∈ N.

Lemma 9. If Φ is a partial bi-ideal of f, then Φ is a one-partial semiprime bi-ideal, two-partial
semiprime bi-ideal and three-partial semiprime bi-ideal if and only if f \Φ is an npb1 system (npb2
system, npb3 system).

Remark 7. Every npb1 system is a npb2 system.

From the following example, it can be seen that the converse may not be true.

Example 12. In Example 2, Clearly, N =

{(
1 0
0 0

)
,
(

0 1
0 0

)
,
(

1 0
1 0

)
,
(

0 1
0 1

)
,
(

1 1
0 0

)
,(

0 0
1 1

)
,
(

1 1
1 1

)
,
(

1 0
0 1

)
,
(

0 1
1 1

)
,
(

1 1
1 0

)
,
(

0 1
1 0

)
,
(

1 0
1 1

)
,
(

1 1
0 1

)}
is a npb2 system,

but not a npb1 system.

Theorem 6. Let Θ be any partial bi-ideal of f. If Θ is a one-partial semiprime bi-ideal (two-partial
semiprime bi-ideal) of f, then HΘ is a partial semiprime ideal of f.
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In the following example, the converse of Theorem 6 might not be true.

Example 13. In Example 2, HΘ =

{(
0 0
0 0

)}
is a partial semiprime ideal but not a one-partial

semiprime bi-ideal. For the prime bi-ideal Θ =

{(
0 0
0 0

)
,
(

0 1
0 0

)}
. Since Θ ·Θ ⊆ HΘ.

Theorem 7. Let Θ be any partial bi-ideal of f. If Θ is a three-partial semiprime bi-ideal of f if and
only if HΘ is a partial semiprime ideal of f.

5. Conclusions

In this paper, we introduce several prime partial bi-ideals of partial rings and identify
prime partial bi-ideals and partial semiprime bi-ideals. We also introduced and character-
ized three partial m systems. Every one-prime partial bi-ideal is a two-prime partial bi-ideal
and every two-prime partial bi-ideal is a three-prime partial bi-ideal. As far as examples are
concerned, the reverse is not true. A further development of semirings, ternary semirings
and hyper semirings based on quasi ideals, tri-ideals and bi-quasi ideals will be the focus
of future research.
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