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Abstract: Adequate personalized numerical simulation of hemodynamic indices in coronary arteries
requires accurate identification of the key parameters. Elastic properties of coronary vessels produce
a significant effect on the accuracy of simulations. Direct measurements of the elasticity of coronary
vessels are not available in the general clinic. Pulse wave velocity (AoPWV) in the aorta correlates
with aortic and coronary elasticity. In this work, we present a neural network approach for estimating
AoPWV. Because of the limited number of clinical cases, we used a synthetic AoPWV database of
virtual subjects to train the network. We use an additional set of AoPWV data collected from real
patients to test the developed algorithm. The developed neural network predicts brachial–ankle
AoPWV with a root-mean-square error (RMSE) of 1.3 m/s and a percentage error of 16%. We
demonstrate the relevance of a new technique by comparing invasively measured fractional flow
reserve (FFR) with simulated values using the patient data with constant (7.5 m/s) and predicted
AoPWV. We conclude that patient-specific identification of AoPWV via the developed neural network
improves the estimation of FFR from 4.4% to 3.8% on average, with a maximum difference of 2.8%
in a particular case. Furthermore, we also numerically investigate the sensitivity of the most useful
hemodynamic indices, including FFR, coronary flow reserve (CFR) and instantaneous wave-free ratio
(iFR) to AoPWV using the patient-specific data. We observe a substantial variability of all considered
indices for AoPWV below 10 m/s and weak variation of AoPWV above 15 m/s. We conclude that the
hemodynamic significance of coronary stenosis is higher for the patients with AoPWV in the range
from 10 to 15 m/s. The advantages of our approach are the use of a limited set of easily measured
input parameters (age, stroke volume, heart rate, systolic, diastolic and mean arterial pressures) and
the usage of a model-generated (synthetic) dataset to train and test machine learning methods for
predicting hemodynamic indices. The application of our approach in clinical practice saves time,
workforce and funds.
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1. Introduction

Coronary artery disease (CAD) is one of the leading reasons for disability or death in
the world. Stenosis of the coronary artery is a common reason for CAD. The hemodynamic
significance of stenosis dictates a choice between noninvasive treatment (e.g., drug ad-
ministration) and surgical procedures (stenting or balloon angioplasty). The evaluation of
hemodynamic significance usually involves the measurement of one of the hemodynamic
indices: fractional flow reserve (FFR), coronary flow reserve (CFR) and/or instantaneous
wave-free ratio (iFR). Medical doctors widely use FFR, CFR and iFR to evaluate the func-
tional severity of epicardial coronary stenosis [1,2]. The measurements of the hemodynamic
indices in clinics require invasive, expensive procedures with possible side effects. Various
personalized computational simulation approaches based on noninvasive data present an
excellent alternative [3–6]. Various well-developed models of coronary circulation have
been reported in [7–10]. Patient-specific identification of the parameters is the cornerstone
of the successful computational model.

A possible solution to the parameter identification problem is to perform preliminary
calculations for various typical physiological values. Each simulation represents the con-
dition of a hypothetical virtual patient. Generated databases of virtual subjects provide
means for pulse wave analysis and the effects of arterial disease on hemodynamics [11–14],
development of new diagnostic techniques [15] or validation of existing methodologies [11].
The precomputed databases also promote the identification of the parameters of the blood
flow models. Artificial intelligence methodologies help in noninvasive FFR predictions
with high accuracy for both virtual and real subjects [16,17].

In this work, we describe a 1D coronary blood flow model capable of calculating FFR,
CFR and iFR, which is sensitive enough for patient-specific accuracy. Personalization of this
model requires an extensive amount of patient data. A methodology for the identification
of the structure of coronary vessels based on CT data was developed in [18]. A recursive
algorithm for computing hydraulic resistance coefficients in terminal vessels is presented
in [5]. The other aspects of structural and functional personalization are discussed in [19].

Elastic properties of coronary vessels have a significant effect on the accuracy of
numerical simulations of blood flow as well as on FFR, CFR and iFR. Direct measurements
of the elasticity of coronary vessels are not available in general clinics. Aortic pulse wave
velocity (AoPWV) correlates with aortic and coronary elasticity. Typically, AoPWV is
estimated from medical history. Alternatively, in our previous works, we set it to some
well-known average physiological value (7.5 m/s).

In this work, we investigate the sensitivity of various hemodynamic indices to PWV
to demonstrate the importance of this parameter. A solution to the parameter identification
problem is necessary for the personification of blood flow models. We address this problem
with the help of synthetic databases. A neural network trained on a virtual population is
capable of estimating PWV with adequate accuracy. This approach does not require large
cohorts of real patients and can be easily repurposed to estimate another parameter.

The neural network is trained on a pulse wave database of 4374 virtual subjects
developed at King’s College, London [11]. It is capable of predicting AoPWV values for
various parts of the systemic circulation. We use a set of brachial–ankle AoPWV data
collected from real patients from Sechenov University to test the developed algorithms.
Brachial–ankle AoPWV is a surrogate of AoPWV that can be used as an estimation of
actual AoPWV. We find that the neural network predicts brachial–ankle AoPWV with an
RMSE of 1.3 m/s and a percentage error of 16%. We also compare the accuracy of the
developed approach with the other existing techniques (linear regression, support vector
machine, decision tree, K-nearest neighbors and ridge regression). The best-performing
algorithm is selected and retrained to estimate AoPWV by simulating coronary blood flow
and hemodynamic indices (FFR, CFR and iFR).

We demonstrate the importance of a new technique of AoPWV evaluation via the
neural network by comparing invasively measured FFR with simulated FFR using the
patient data from [3] with constant (7.5 m/s) and predicted AoPWV. We conclude that
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patient-specific predictions of AoPWV via the developed neural network improve esti-
mations of FFR from 4.43% to 3.73% on average, with a maximum difference of 2.78%.
Furthermore, we also numerically investigated the sensitivity of FFR, CFR and iFR to
AoPWV using the patient-specific data from [3]. We observe a substantial variability of
all considered indices for AoPWV below 10 m/s and weak variation for AoPWV above
15 m/s. Finally, we conclude that FFR, iFR and CFR-based hemodynamic significance of
the stenosis is higher for the patients with AoPWV in the range of 10 to 15 m/s.

The advantages of our approach are the use of a limited set of easily measured input
parameters (age, stroke volume, heart rate, systolic, diastolic and mean arterial pressures)
and the usage of a model-generated (synthetic) dataset to train and test machine learning
methods for predicting hemodynamic indices. The application of our approach in clinical
practice saves time, workforce and funds.

2. Materials and Methods
2.1. Coronary Circulation Model

In this section, we present a 1D reduced-order model of the unsteady flow of viscous
incompressible fluid through the network of elastic tubes. In the following parts, we use
this model for numerical simulations of coronary blood flow and hemodynamic indices
(FFR, CFR and iFR). The details of the approach can be found in [5,20]. In this section, we
present the governing equations and the main assumptions of the model. We also discuss
the parameter identification problem in detail.

Mass and momentum balance conditions describe the flow in every vessel

∂V
∂t

+
∂F(V)

∂x
= G(V), (1)

V =

(
A
u

)
, F(V) =

(
Au

u2/2 + p(A)/ρ

)
, G(V) =

(
0
ψ

)
,

where t is time, x is the distance along the vessel, ρ is the blood density (constant,
1.06 g/cm3), A(t, x) is the vessel cross-section area, p is the blood pressure, u(t, x) is the
linear velocity averaged over the cross-section and ψ is the friction force.

ψ = −8πµ
u
A

, (2)

µ is the dynamic viscosity of the blood (constant). The relationship between pressure and
the cross-section is defined by the wall-state equation

p(A) = ρwc2F(A), (3)

where ρw is the vessel’s wall density (constant), c is the velocity of small disturbances
propagation in the material of the vessel wall, and F(A) is a monotone S-like function
(see [19] for a review of possible alternatives).

F(A) =

{
exp (η − 1)− 1, η > 1
ln η, η 6 1

, η =
A
Ã

, (4)

where Ã is the cross-sectional area of the unstressed vessel. c in (3) can be interpreted as
the pulse wave velocity (PWV) of an unstressed vessel [21]. There are many methods to
estimate a patient’s PWV [22]. In contrast to blood pressure or heart rate, this parameter is
rarely measured during clinical procedures. Some clinicians still consider PWV as a ’new
biomarker’ [23]. Various PWV measurement techniques lack proper standardization [24].
Usually, we estimate PWV regarding the patient’s age and medical history. Various studies
report different typical values of aortic PWV, ranging from 4 to 20 m/s [25,26]. We use
values from cardiovascular magnetic resonance-based PWV measurements [26], which
range from 5.5 to 8.5 m/s. The majority of patients in our studies are over 55 years old and
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have various cardiovascular pathologies. Without any specific knowledge of the patient’s
medical history, we assume a default value of 7.5 m/s. In the following sections, we
present an approach to estimate this parameter more accurately with the help of a synthetic
database and machine learning techniques.

PWV in coronary vessels tends to have higher values [27]. Clinical studies report that
coronary PWV is higher than aortic PWV by a factor of 1.15–1.5 [27,28]. Direct measure-
ments of coronary PWV involve advanced techniques and equipment, including pressure
and Doppler guide wires [28]. These measurements are expensive and are typically not
available. We estimate c in coronary vessels as AoPWV multiplied by a factor of 1.3, which
is close to an average ratio between coronary and aortic PWV.

At the vessel’s junction points, we impose mass conservation conditions and continuity
of the total pressure (Bernoulli integral)

∑
ki=k1,k2,...,kM

εki
Aki

(
t, x̃ki

)
uki

(
t, x̃ki

)
= 0, (5)

pki

(
Aki

(
t, x̃ki

))
+

ρu2(t, x̃ki

)
2

= pki+1

(
Aki+1

(
t, x̃ki+1

))
+

ρu2
(

t, x̃ki+1

)
2

, ki = k1, k2, . . . , kM−1, (6)

where ki is the index of the vessel, M is the number of the connected vessels, {k1, . . . , kM}
is the range of the indices of the connected vessels, εki

= 1, x̃ki
= Lki

for incoming vessels,
εki

= −1, x̃ki
= 0 for outgoing vessels and Lki

is the length of the vessel with index ki [5,20].
A typical junction in our model connects less than five vessels (see Figure 1).

Figure 1. The structure of the computational domain for patient 1. LCA and RCA were extracted
from the patient’s CT scans. Each numbered segment corresponds in the model to a one-dimensional
tube. Stenosis is a separate segment with decreased diameter. We solve hyperbolic set (1) in the inner
points of each segment. We impose mass conservation (5) and continuity of the total pressure (6) on
each junction. FFR is measured at segment 6.

The computational domain is the network of arteries, including the aortic root, aorta,
left and right coronary arteries and their branches (Figure 1). The aortic root is a short
(3 cm) vessel with its diameter extracted from the patient’s CT scans. The aortic root splits
into three branches, including the aorta, left coronary artery (LCA) and right coronary
artery (RCA). The aorta and other systemic arteries are simulated as a single vessel with
a length set to 80 cm and a diameter set to 2.17 cm. The length and diameter of the aorta
can be adjusted based on the patient’s data, including CT scans, height, pressure and/or
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velocity measurements. In case additional information is unavailable, we set the length and
diameter to the default values. We refer to this vessel as ’aorta’ since its properties (diameter
and elasticity) correspond to the real patient’s aorta. The aorta’s parameters were adjusted
to represent the compliance of a systemic circle and to get an adequate arterio–venous
pressure difference. RCA and LCA are extracted from a patient’s CT scans [18]. We also
use an additional description of stenoses to adjust coronary arteries’ diameters and lengths
in case such information is provided in clinical records.

At the attachment of the left ventricle to the aortic root, we set the blood flow boundary
condition as a predefined time function QH(t)

u(t, 0)A(t, 0) = QH(t). (7)

We use an approximation of the left ventricle outflow QH(t) in the time domain. We
define it as a sine-like function for ventricular systole and set it to zero otherwise.

QH(t) =

SV
π

2τ
sin
(

πt
τ

)
, 0 6 t 6 τ,

0, τ < t 6 T,
(8)

where SV is the stroke volume of the left ventricle, T is the period of the cardiac cycle and τ
is the duration of the systole. The stroke volume is computed as

SV =

T∫
0

QH(t)dt (9)

and cardiac output (CO) by definition [29] equals

QCO = SV · HR. (10)

Parameters SV, HR, cardiac period T and duration of the systole τ can be taken from
the patient’s data or can be simulated [30].

The outflow boundary conditions assume that a terminal artery with index k is con-
nected to the venous pressure reservoir with the pressure pveins = 8 mmHg through a
hydraulic resistance Rk. Poiseuille pressure drop condition describes it as

pk Ak − pveins = Rk Akuk, (11)

where pk, Ak, uk are the blood pressure, cross-sectional area and blood velocity at the
terminal point of k-th vessel, respectively. We used the same outflow condition for the aorta
and coronary arteries. Resistance Rk is set according to Murray’s law through an iterative
algorithm described in [5].

The hyperbolic system (1) inside every vessel is numerically solved by the grid-
characteristic method [31]. We use Newton’s method to solve the systems of nonlinear
algebraic equations in the vessel’s connections (5), (6), aortic root (7) and at the end points
of terminal arteries (11).

2.2. Hemodynamic Indices Calculation

In most cases, we have information on the position, length and degree of the stenosis.
The stenosis degree is a percentage of the artery diameter that is closed due to obstruction.
We simulate stenosis as a separate segment with reduced diameter and increased velocity
of small disturbance propagation c from (3) (by a factor of 2). Some hemodynamic indices
are measured during hyperemia. Hyperemia is induced by exercise, or exogenously
administered vasodilator drugs. Vasodilatation (hyperemia) is simulated by the same model
with reduced terminal resistances Rk of coronary arteries for the boundary conditions (11).
We reduced the resistances by 70%, according to [3,32]. This provides a 200–300% increase
in coronary blood flow that is clinically observed during hyperemia. We performed two
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series of simulations for the stenosed tree: for normal (nonhyperemic) conditions and for
vasodilatation (hyperemia).

We calculated the fractional flow reserve (FFR) as the ratio of the mean pressure

in the coronary artery distal to stenosis (Ph
dist) to mean aortic pressure (Ph

aortic) during
hyperemia [33]. Stenoses with FFR values below 0.8 are considered to be hemodynami-
cally significant.

FFR =
Ph

dist

Ph
aortic

. (12)

The instantaneous wave-free ratio (iFR) is defined [34] as the ratio between the mean
pressure in coronary artery distal to stenosis (Pw

dist) and mean aortic blood pressure (Pw
aortic)

during the diastolic wave-free period (WFP) under the nonhyperemic normal condition.
WFP begins in 25% of the way into diastole and ends 5 ms before the end of diastole in
accordance with the general definition of iFR [35]. Stenoses with iFR values below 0.9 are
considered to be hemodynamically significant.

iFR =
Pw

dist

Pw
aortic

. (13)

Coronary flow reserve (CFR) is calculated as the ratio of mean blood flow through

a stenosed vessel during hyperemia (Qh) to mean blood flow through a stenosed vessel
under nonhyperemic normal condition (Qn) [2]. Healthy vessels may have a CFR above
2.5, 3 and even 6. Values below 2.0 are associated with significant pathology.

CFR =
Qh

Qn . (14)

2.3. Datasets

In this section, we describe datasets that were used in this work, including the synthetic
database [12], the retrospective PWV dataset of real patients and the retrospective FFR
dataset from [36]. We use a synthetic database to train machine learning algorithms to
estimate AoPWV from patients’ data using the values of Age, SV, HR, SBP, DBP and MBP
as inputs. Next, we use the PWV dataset to validate the developed algorithms. Finally,
we used the FFR dataset to apply the algorithms to parameter identification problems for
numerical simulations of FFR. Due to the limited clinical data, we investigate the sensitivity
of hemodynamic indices (FFR, CFR and iFR) to the physiological variations of AoPWV.

2.3.1. Synthetic Database

We used a publicly available database of simulated pulse waves. It was developed
at King’s College London and described in detail in [11]. This database is publicly avail-
able [12]. Pulse waves were generated with a 1D-0D hemodynamic model of the sys-
temic circulation. This database represents healthy adults of age ranging from 25 to 75
years. The database contains pulse waves in all major arteries of systemic circulation for
4374 virtual subjects. Each subject has different cardiovascular properties varying within
a physiological range. This collection of generated subjects is often referred as a ’virtual
population’ [11]. Characteristics of the virtual population are presented in Table 1. This
dataset was randomly split into two parts. The data from 2930 subjects (two-thirds of
the dataset) were used for training the neural networks and the data from 1444 subjects
(one-third of the dataset) were used for validation.

2.3.2. PWV Dataset

We use real patients’ AoPWV measurements to validate machine learning algorithms.
We used retrospective anonymous data collected at First University Clinical Hospital of
Sechenov University. The brachial–ankle AoPWV measurements were performed for



Mathematics 2023, 11, 1358 7 of 18

102 patients. The time of the peak pressure pulse wave was measured at four locations,
including the left and right brachial arteries and the left and right ankles. Measurements
were synchronized with electrocardiogram (ECG). Brachial–ankle AoPWV was estimated by
the foot-to-foot method [37]. Stroke volume was measured by echocardiography. Brachial–
ankle distance Lba is expressed as

Lba = 1.3c + d− b, (15)

where b, c and d indicate heart–brachial, heart–femoral and femoral–ankle lengths [38]. For
each patient, we have the values of age, HR, SV, SBP (left brachial), DBP (left brachial), MBP
(left brachial) and brachial–ankle AoPWV. Average typical values are presented in Table 1.

2.3.3. FFR Dataset

We used FFR datasets collected at Swansea University. These datasets are freely
available [36] and presented in detail in [3]. They consisted of 10 patients with 14 sites of
FFR measurements. The data include 3D surface meshes, 1D meshes, patient clinical data
with FFR and cFFR values (calculated by various methods) and sketches from physicians
indicating the approximate location of FFR measurement. Patient clinical data include
blood pressure measurements (systolic, diastolic and average), body mass index (BMI), age
and heart rate during CT acquisition. Stroke volume measurements are not present. We
used BMI and heart HR to approximate the stroke volume of each patient according to [39].

Table 1. Comparison of PWV dataset and synthetic database.

Database PWV Dataset Synthetic Database

Subjects 102 4374
Age, years 58 ± 15 50 ± 17

Heart rate, bpm 68 ± 12 76 ± 9
Stroke volume, ml 54.6 ± 19.6 60.4 ± 12.3

SBP (brachial), mmHg 104.0 ± 17.1 119.1 ± 11.4
DBP (brachial), mmHg 86.7 ± 12.2 72.6 ± 7.2
MBP (brachial), mmHg 92.5 ± 12.9 93.8 ± 6.75

AoPWV (brachial–ankle), m/s 8.0 ± 1.4 9.4 ± 2.1

2.4. PWV Estimation with Neural Network and Other Machine Learning Methods

In this section, we describe machine learning methods used for PWV estimation.
We provide a more detailed explanation of the neural network approach since this is the
method that we use for PWV estimation in FFR simulations. In all cases, we used two-thirds
of the synthetic database (2930 synthetic subjects) to train the method. We validated each
method with the remaining third of the synthetic database (1444 synthetic subjects) and
with the PWV dataset (102 real subjects). We used the Python libraries Torch and Sklearn
to implement and optimize the neural network and other methods. All input parameters
were linearly scaled with respect to the maximum and minimum values (MinMaxScaler).

2.4.1. Error Estimation

We evaluated each method by calculating the percentage error. First, we calculated
the root mean square error (RMSE) for each machine-learning approach.

RMSE =

√
∑N

i=1
(

PWVtest
i − PWVest

i
)2

N
, (16)

where N is the size of the test dataset (1444 for the synthetic database and 102 for the PWV
dataset), PWVtest

i is the i-th PWV value in the test dataset and PWVest
i is the i-th estimated

PWV value. Next, we use RMSE to calculate the percentage error ε:
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ε =
RMSE

PWVmean
· 100%, (17)

where PWVmean is the mean PWV value of the studied population (Table 1).

2.4.2. Neural Network

We use a synthetic pulse wave database to train the neural network. We use six input
values, including age, HR, SV, brachial systolic blood pressure (SBP), brachial diastolic
blood pressure (DBP) and brachial mean blood pressure (MBP). The output can be set to
PWV of any major part of systemic circulation presented in the synthetic database. We set
the output as the value of brachial–ankle AoPWV, which is measured between the brachial
and ankle regions.

We use a feedforward neural network (FNN) [40]. It consists of nodes (neurons).
The nodes are grouped in layers. Each neuron collects the outputs from the nodes of the
previous layer and produces a single output of its own (Figure 2). An output is computed
as a weighted sum of inputs

y = w1x1 + w2x2 + w3x3 + · · ·+ wnxn,

where y is an output, xi is the i-th input, wi is a weight corresponding to the i-th input and
n is the number of neurons in the previous layer. The output is calculated as a function of
weighted sum

y = y(s), s = w1x1 + w2x2 + w3x3 + · · ·+ wnxn,

where y(s) is called an activation function. Function y(s) is different for different layers.
The case y(s) = s is referred to as a linear activation function. In this work, we also used
standard ReLU and ELU functions. The details of these functions are given in Figure A1.

The weights for each neuron were adjusted during the training procedure. In our case
(see Figure 2), we have 2 · 6 · 6+ 5 · 6+ 5 = 107 weight coefficients, including 2 for the inner
layers with 6 neurons and 6 inputs for each neuron, 1 for the inner layer with 5 neurons and
6 inputs for each neuron and output with 5 inputs. We solve the parameter optimization
problem using a built-in ADAM optimizer from the PyTorch library. During the training,
the data from subjects are processed by a neural network. The final outputs are compared
with the target values. The weights are corrected based on the deviations. These corrections
occur after a certain number of subjects are processed. The number of subjects between
each update is called a ’batch’, and the size of the set is a batch size. One cycle through
the full training dataset is called an ’epoch.’ The number of epochs required for training
depends on many factors, including the complexity of the neural network, quality of the
training dataset, etc.

Thus, the number of inner (hidden) layers, the number of neurons in each layer, the
batch size, the number of epochs and the type of activation functions are the parameters
to be determined. We optimize these parameters by a hyperparameter tuning algorithm
to achieve the lowest error during validation tests on synthetic data. Finally, we set the
number of hidden layers to 3, the number of neurons per layer to 6 (to 5 for the last hidden
layer), the batch size to 200 and the number of epochs to 150. The activation functions are
ReLU, ELU and linear, according to Figure 2. This configuration results in a percentage error
of 4–5% during the validation on the synthetic data. However, the same neural network
showed a 36% error when tested on the PWV dataset from real patients. We conclude
that the resulting neural network is overfitted and apply an early stop technique to avoid
overfitting. We break the training process if the percentage error reaches 10%. The value
of 10% is chosen on the basis of the repeatability error during PWV measurements [41,42].
It reduces the number of epochs to 11. The updated neural network demonstrates a 16%
percentage error during validation on the PWV dataset, which is an acceptable deviation.

We also investigate the performance of the neural network for a various number of
layers. For each case, we perform seven runs and calculate the mean values of errors and
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standard deviations (Table A1). It seems that increasing the number of hidden layers beyond
three or four does not yield any improvement. We experienced occasional convergence
problems during learning: in 1 of 10 runs, the loss function did not decrease a certain large
value. In each such case, we restarted the run.

During the FFR simulations, we use the same structure of the neural network, but we
train it to estimate actual AoPWV instead of brachial–ankle AoPWV. We train the neural
network to produce the same 10% percentage error on synthetic data. We do not have
measured values of AoPWV for real patients. Thus, it is impossible to validate the resulting
neural network on real measurements. Brachial–ankle AoPWV is a good marker of central
aortic stiffness [43] that correlates significantly with AoPWV [44]. Thus, we assume that
the neural network trained and validated for brachial–ankle AoPWV can be retrained
to estimate AoPWV. We also test the neural networks with various PWV outputs (aortic,
brachial–ankle and carotid-femoral). We conclude that neural networks with the same
structure and parameters produce a similar error for various types of PWV.

Figure 2. Structure of neural network: inputs, output, layers, number of neurons in each layer and
activation functions (ReLu, ELu and Linear—Figure A1).

2.4.3. Other Methods

We tested other machine learning methods implemented in the Sklearn library: deci-
sion tree, K-nearest neighbors and random forest [45,46]. All methods produce a very low
percentage error in synthetic data after hyperparameter tuning. The error of the decision
tree is 5%. The error of K-nearest neighbors is 6%. The error of random forest is 4%.
Similarly to the developed neural network, all methods perform poorly when tested on
the PWV dataset, with percentage errors in the range from 35% to 45%. We tuned the
parameters of each method to enforce a 10% error on the synthetic dataset. For the decision
tree, we set the maximum depth of the tree to five and imposed a random splitting strategy
at each node. For the K-nearest neighbors, we set the number of neighbors to 210 and
brute-force search to compute the nearest neighbors and uniform weights for all neighbors.
For the random forest, we set the maximum depth of the tree to five and the number of
estimators (trees) to five.

3. Results
3.1. AoPWV Estimation

Figure 3 shows the difference between brachial–ankle AoPWV predicted with neural
network and subjects’ brachial–ankle AoPWV (both for virtual subjects and real patients).
We observe that PWV values for real patients tend to be overestimated. RMSE for the PWV
dataset is 1.3 m/s, and the percentage error is 16%. In our results, the deviation is higher
for female subjects (22%) than for males (14%). The ten patients with the highest deviation
were diagnosed with mitral valve insufficiency. Mitral valve pathologies correlate highly
with AoPWV [47]. This fact demonstrates the limitations of synthetic databases trained on
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the basis of the range for a healthy population. Some authors reported that each pathology
requires a separate database [15]. Despite these limitations, the developed neural network
demonstrated adequate accuracy. It allows the separation of patients into groups with high
and low AoPWV to assess the risks of cardiovascular events.

Figure 3. Bland–Altman plot for brachial–ankle AoPWV: cross-validation on the synthetic database
(blue circles) and comparison with brachial–ankle AoPWV calculated for real patients (orange
triangles). ∆—difference between brachial–ankle AoPWV predicted by the neural network and
subject’s brachial–ankle AoPWV.

The resulting deviation is close to the reported errors of machine learning methods
for AoPWV estimation (Table 2). We compare the 16% percentage error with other similar
approaches. These approaches are:

1. Estimating carotid-femoral PWV from the radial pressure wave using machine learn-
ing algorithms [48]. The study population was the Twins UK cohort, containing
3082 subjects aged from 18 to 110 years. The authors used Gaussian process regression
and a recurrent neural network to estimate carotid-femoral PWV from the entire radial
pressure wave. They report errors of 17–19%.

2. Estimating carotid-femoral PWV from one carotid waveform measured by tonometry
and few clinical variables (age, blood pressure, heart rate, etc.) [48]. The study
population included 5050 subjects in the age range of 20 to 69. The authors use the
newly developed Intrinsic Frequency algorithm together with neural networks and
bootstrap averaging. This algorithm uses an uncalibrated noisy waveform with few
additional parameters. The reported error is 14%.

3. Estimating aortic PWV with ridge regression and a deep neural network from two sets
of inputs: a basic set of predictors (age, sex, height, weight, heart rate, systolic and
diastolic blood pressure) and an expanded set of predictors (HbA1c, total cholesterol, use
of antihypertensive, antidiabetic or cholesterol-lowering medication and smoking status in
addition to basic set) [49]. A total of 2254 participants from the Netherlands Epidemiology
of Obesity study were included (age 45–65 years). The reported error is 18–22%.

We also compare reported errors with studies devoted to the repeatability of PWV
measurements. PWV measurements tend to have a 3–10% variation [41] depending on the
method and location of measurement. Another study reports a 10% average difference
between two occasionally different measurements of brachial–ankle PWV by one observer.
These values give us a good idea of the best possible accuracy. The development of
methods with errors below 3–10% would require a substantial improvement in PWV
measurement techniques.

We highlight two advantages of our approach. First, developed methods use only
six input parameters (Age, SV, HR, SBP, DBP and MBP). It is useful when one does not
have much patient-specific data. Secondly, we use synthetic data to train machine learning
methods. Collecting large datasets requires extensive amounts of time, workforce and funds.
Synthetic databases generated with the help of mathematical models are much cheaper
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and easier to obtain. They will never be as useful as real datasets, but the availability and
flexibility of synthetic data may fit many applications. The shortcomings of our approach
are the small validation dataset (PWV dataset) and the focus on brachial–ankle PWV.
Brachial–ankle PWV is not as valuable as carotid-femoral PWV or aortic PWV, but it is
easier to measure [42].

Table 2. Comparison of various errors in PWV estimation.

Description Error

Brachial–ankle PWV with a neural network trained on synthetic data (Table 3) 16%

Carotid–femoral PWV with machine learning using peripheral pulse waves [48] 17–19%

Carotid–femoral PWV with a neural network using carotid waveform [50] 14%

Aortic PWV with a neural network [49] 18–22%

The difference between two occasionally different measurements of brachial–ankle
PWV by one observer [42] 10%

Repeatability of carotid–femoral PWV measurements [41] 3.4–9.5%

Table 3 presents the RMSE and percentage errors for various machine-learning meth-
ods. We should consider that the coefficient of variation (ratio between standard deviation
and mean value) of brachial–ankle AoPWV is 17% in the PWV dataset and 22% in the
synthetic database. It may seem that the performance of the proposed methods is subpar
since the percentage error of the three methods is higher than the coefficient of variation
for the PWV dataset. However, we trained all methods with a synthetic dataset and did
not use any information from the PWV dataset, and we used only six input parameters.
Synthetic and real subjects are very different: the synthetic database represents the average
healthy population, while the PWV dataset consists of patients with various cardiovascular
diseases. This shows that synthetic databases can be used as training datasets when actual
patient data are unavailable. In the next section, we demonstrate how the developed
methods can be used for parameter identification in cardiovascular simulations.

Table 3. Comparison of different machine learning methods used for AoPWV estimation. For each
case, we present the mean values and standard deviations for seven attempts

Method RMSE, m/s Percentage Error

K-nearest neighbors 1.96 ± 0.09 24% ± 1%
Decision tree 1.88 ± 0.21 23% ± 3%

Random forest 1.73 ± 0.14 22% ± 2%
Neural network 1.31 ± 0.19 16% ± 2%

3.2. FFR Estimation with Predicted AoPWV

We present information on each stenosis and invasive FFR measurements in Table 4.
The diameters of stenosed vessels and degrees of stenoses are extracted from the post-
processed one-dimensional structure of coronary vessels [18]. One can observe that larger
vessels with a higher stenosis degree (patients 2 and 3) tend to have higher FFR values. At
the same time, narrow vessels with lower stenosis degree (patient 7) tend to have lower
FFR values. It demonstrates the well-known fact that the degree of stenosis is not a reliable
predictor of possible cardiovascular events [1].

We use the developed neural network to estimate individual values of AoPWV based
on datasets from real patients (see Section 2.3). The PWV of coronary vessels (CoPWV) is
evaluated as a product of AoPWV and a factor of 1.3 [27,28]. Thus, we personalize both
aortic and coronary elasticity: we set parameter c in (4) to be equal to AoPWV or CoPWV.
As long as we use the correlation between CoPWV and AoPWV in the rest of the paper,
we use AoPWV as an independent parameter. Next, we use these personally predicted
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AoPWVNN values for calculating cFFRNN values of each stenosis and compare the results
with invasively measured FFRinv. We also calculated cFFR f ixed with a fixed default value
of AoPWVf ixed (7.5 m/s) for each stenosis.

The results of the comparison are presented in Table 4. RMSE for calculations with
AoPWVf ixed is σf ixed = 0.05. RMSE for calculations with AoPWVNN derived by neural
network is σNN = 0.04. The average relative deviation improved from 4.4% to 3.8%, with a
maximum difference of 2.8%.

The difference is rather small because only two patients have estimated AoPWVNN sig-
nificantly different from the default AoPWVf ixed value (patients 3 and 10). We can see that
estimating AoPWV from a neural network allowed us to correct the false negative conclusion
for patient 10. The simulated value FFR for patient 10 has changed from 0.81 for AoPWVf ixed to
0.79 for personalized AoPWVNN with a possible recommendation for surgical treatment. The
latter conclusion conforms with a decision that is based on invasive diagnostics (FFRinv = 0.72).
The area under the receiver operator curve (AUC) for both per-vessel and per-patient analysis
improved from 0.75 (AoPWVf ixed = 7.5 m/s) to 1.0 (AoPWV from a neural network). The
improvement of AUC may look significant, but we should consider that the total number of
stenoses is 14, and only 2 of them are diagnosed as hemodynamically significant. As a result,
ROC-curves only contain two segments (Figure A2). We need a larger set of data to properly
analyze the effectiveness of our approach.

Table 4. FFR values for average and personalized AoPWV. Vessel ID is the notation of the vessel
with stenosis, d is the diameter of the non-stenosed part of a vessel, Degree is the percentage
diameter in stenosis, FFRinv is the invasively measured FFR value, cFFR f ixed is the calculated FFR
with fixed AoPWV for each case (AoPWV = 7.5 m/s), PWVNN is the AoPWV estimated from the
neural network and cFFRNN is the calculated FFR with AoPWV estimated from the neural network.
The bottom of the table contains the mean values ± standard deviations.

Patient Vessel ID d, mm Degree FFRinv cFFR f ixed PWVNN , m
s cFFRNN

1 LAD 1.9 46% 0.89 0.90 9.7 0.89
2 LAD 3.3 61% 0.86 0.87 6.4 0.87
3 RCA 3.0 61% 0.88 0.91 13.5 0.89
4 LAD 2.5 48% 0.82 0.83 8.8 0.83
5 LAD 1.6 55% 0.82 0.81 7.3 0.81
6 LADp 2.4 38% 0.90 0.92 9.1 0.91
6 LADd 2.4 28% 0.82 0.86 9.1 0.85
6 DA 1.9 58% 0.81 0.84 9.1 0.83
7 LAD 1.5 57% 0.75 0.66 7.4 0.66
7 LCX 1.9 32% 0.84 0.85 7.4 0.85
8 LAD 2.3 56% 0.88 0.91 7.8 0.91
8 LCX 3.1 58% 0.89 0.95 7.8 0.95
9 LAD 2.0 48% 0.83 0.89 6.6 0.89

10 LAD 1.9 63% 0.72 0.81 14.2 0.79

2.2 ± 0.5 51% ± 11% 0.84 ± 0.05 0.86± 0.07 9.1 ± 2.6 0.85 ± 0.07

3.3. FFR, iFR and CFR Sensitivity to AoPWV

In Section 3.2, we concluded that a change in AoPWV value modified the predicted FFR
value, which slightly decreased below the threshold and provided substantially different
clinical recommendations for patient 10. The actual AoPWV value is generally unknown.
Although both FFR f ixed and FFRNN differ from the threshold value by 10%, it is important
to study the sensitivity of FFR and other hemodynamic indices (iFR and CFR) involved in
making the clinical decision to AoPWV. It increases the reliability of the conclusions via the
evaluation of the possible worst values of the indices, which may be realized outside the
clinical conditions or due to the possible errors in parameter evaluation and simulations.
Sensitivity analysis also helps in the assessment of the stability of the indices, especially
near the threshold. For example, the index may remain within 5–10% below the threshold
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under various PWV values. Clinicians interpret it as a stable situation, possibly without
the need for revascularization.

In this section, we investigate the sensitivity of FFR, iFR and CFR to AoPWV (parameter c
in (3)) and identify the critical AoPWV value that corresponds to the minimum value of each
index. We performed blood flow simulations for a range of AoPWV values from 4 to 20 m/s
with the modified CoPWV. This range covers the physiological values of AoPWV for most
patients [25,51]. We set CoPWV to a product of AoPWV and a factor of 1.3 [27,28].

The results are shown in Figures 4–7. One can observe that FFR and iFR have increased
values for low and high values of AoPWV. CFR values tend to be higher for lower values
of AoPWV and almost constant for high AoPWV. The value of AoPWV, which gives a
minimum to FFR, iFR and CFR, depends on the particular patient. In our simulations, it
ranges from 10 to 12.5 m/s for FFR and iFR and from 12.5 to 20 m/s for CFR. In most cases,
CFR is almost constant for AoPWV, greater than 12.5 m/s.

We note the anomalous increase in FFR and iFR with the increase in AoPWV for
patient 2 and to a degree for patients 4 and 5 (see Figure 4). Patient 2 had the lowest
pressure and the highest cardiac output. Patients 4 and 5 had average values of cardiac
output but low blood pressure. This results in a low value of the peripheral resistance (11).
FFR sensitivity to AoPWV appears to depend on blood pressure, cardiac output and total
peripheral resistance. Total peripheral resistance can be estimated as the ratio between the
average blood pressure and cardiac output. Lower values of peripheral resistance result in
higher sensitivity for higher values of AoPWV (above 15 m/s).

Figures 5 and 6 demonstrate FFR, iFR and CFR values for patients 6 and 7. These two
patients had stenoses of various degrees located in all major branches of LCA (LAD, LCx,
DA). Notably, stenosis in DA for patient 6 was the most severe in terms of FFR and iFR but
the least severe in terms of CFR. It shows that various hemodynamic indices demonstrate
various properties of coronary arteries with stenoses and should be considered together in
a complex analysis.

Figure 4. FFR, iFR and CFR sensitivity to AoPWV for patients from 1 to 5.

Figure 5. FFR, iFR and CFR sensitivity to AoPWV for patient 6. Patient 6 had three stenoses located
in the proximal part of the left anterior descending artery (LADp), distal part of the left anterior
descending artery (LADd) and middle part of the diagonal artery (DA).
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Figure 6. FFR, iFR and CFR sensitivity to AoPWV for patient 7. Patient 7 had two stenoses located in
the left anterior descending artery (LAD) and the left circumflex artery (LCx).

Figure 7. FFR, iFR and CFR sensitivity to AoPWV for patients from 8 to 10. Patient 8 had two stenoses
located in the left anterior descending artery (LAD) and the left circumflex artery (LCx).

4. Discussion

In this work, we developed a novel machine learning approach to estimate AoPWV.
We used a simulated pulse wave database for training and real patients’ data for validation.
Based on validation simulations, we report a 16% error and consider it as a promising
result. Similar works report a 14–22% error (Table 2). The advantages of our approach
are a restricted set of input values and training on synthetic data. These features make
our approach more flexible: it is easy to retrain the model to calculate other PWV or add
some additional input parameters. We note that the simulated database does not consider
possible cardiovascular pathologies. Our approach may be improved by including more
input parameters and refining the neural network structure. Expanding the simulated
pulse wave database and incorporating various pathologies is another way to increase
accuracy. This improvement is labor-intensive and time-consuming due to the exponential
growth of the complexity of virtual databases with each new variable parameter.

The hemodynamic parameters’ sensitivity to AoPWV is rather low. The length and
the degree of stenosis are much more important factors. Nevertheless, transient (close to
threshold) values of the FFR, iFR and CFR can change the diagnosis due to the corrected
AoPWV value. The developed approach for AoPWV identification can be used for the
evaluation of the other parameters as well. For example, stroke volume or peripheral
resistance can be estimated similarly.

This study shows that hemodynamic indices undergo substantial change within the
range of AoPWV below 12 m/s, which corresponds to a more elastic vasculature. Our
simulations showed that these cases correspond to the highest values of FFR, iFR and CFR.
More elastic vessels adapt to the increase in blood flow [52] and thus, the hemodynamic
significance of their stenosis is lower. Clinical studies also show that FFR is higher in more
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flexible vasculature [53]. Higher values of AoPWV correspond to stiffer vessels, which
become similar to the rigid tubes. It explains almost constant values of CFR for AoPWV
greater than 15 m/s. The ratio between hyperemic and resting flows mainly on peripheral
resistance since the diameters in all cases are almost identical. FFR and iFRs represent the
ratios of pressures. Elevation of AoPWV increases the pressure in both numerator and
denominator. As a result, both FFR and iFR increase.

Summarizing the results of the simulations, we conclude that hemodynamic signifi-
cance of the stenosis is higher for patients with AoPWV in the range from 10 to 15 m/s. Of
course, this needs further confirmation by clinical studies.
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Appendix A

Figure A1. Activation functions of neural network (Figure 2). ReLU: y(x) = x if x ≥ 0 and y(x) = 0
if x < 0 . ELU: y(x) = x if x ≥ 0 and y(x) = ex − 1 if x < 0. Linear: y(x) = x.

Table A1. Comparison of errors for various numbers of hidden layers in the neural network.

Number of Layers RMSE, m/s Percentage Error

2 layers 1.55 ± 0.41 19% ± 5%
3 layers 1.31 ± 0.19 16% ± 2%
4 layers 1.32 ± 0.22 16% ± 3%
5 layers 1.37 ± 0.19 17% ± 2%

Figure A2. ROC-curves for two approaches that estimate FFR: utilizing fixed AoPWV 7.5 m/s and
AoPWV from the neural network. In both cases, stenosis is considered to be significant if FFR < 0.8.
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Pulse Wave Velocity as a Marker of Vascular Dysfunction and Its Correlation with Cardiac Disease in Children with End-Stage
Renal Disease (ESRD). Diagnostics 2021, 12, 71. [CrossRef] [PubMed]

25. Shahzad, R.; Shankar, A.; Amier, R.; Nijveldt, R.; Westenberg, J.J.M.; de Roos, A.; Lelieveldt, B.P.F.; van der Geest, R.J. Quantification of
aortic pulse wave velocity from a population based cohort: A fully automatic method. J. Cardiovasc. Magn. Reson. 2019, 21, 27. [CrossRef]

26. van Hout, M.J.; Dekkers, I.A.; Westenberg, J.J.; Schalij, M.J.; Widya, R.L.; de Mutsert, R.; Rosendaal, F.R.; de Roos, A.; Jukema, J.W.;
Scholte, A.J.; et al. Normal and reference values for cardiovascular magnetic resonance-based pulse wave velocity in the
middle-aged general population. J. Cardiovasc. Magn. Reson. 2021, 23, 46. [CrossRef]

27. Aguado-Sierra, J.; Parke, K.H.; Davies, J.E.; Francis, D.; Hughes, A.D.; Mayet, J. Arterial pulse wave velocity in coronary arteries.
In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY,
USA, 30 August–3 September 2006; pp. 867–870.

http://dx.doi.org/10.1002/cnm.3235
http://www.ncbi.nlm.nih.gov/pubmed/31315158
http://dx.doi.org/10.1002/cnm.3255
http://dx.doi.org/10.3390/math9182221
http://dx.doi.org/10.5334/gh.837
http://dx.doi.org/10.1152/ajpheart.00603.2013
http://dx.doi.org/10.1007/s11517-016-1604-8
http://dx.doi.org/10.1016/j.jcmg.2016.11.024
http://dx.doi.org/10.1152/ajpheart.00218.2019
http://www.ncbi.nlm.nih.gov/pubmed/31442381
https://peterhcharlton.github.io/pwdb/pwdb.html
http://dx.doi.org/10.1177/0954411920926094
http://www.ncbi.nlm.nih.gov/pubmed/32650691
http://dx.doi.org/10.1002/cnm.3497
http://www.ncbi.nlm.nih.gov/pubmed/33973397
http://dx.doi.org/10.3390/sym13050804
http://dx.doi.org/10.1177/0954411920946526
http://dx.doi.org/10.1016/j.cma.2021.113892
http://dx.doi.org/10.1002/cnm.2754
http://dx.doi.org/10.1134/S0965542515090134
http://dx.doi.org/10.1515/rnam-2021-0025
http://dx.doi.org/10.1016/j.jbiomech.2007.05.027
http://dx.doi.org/10.1097/HJH.0000000000002081
http://www.ncbi.nlm.nih.gov/pubmed/30882597
http://dx.doi.org/10.1007/s40846-015-0086-8
http://www.ncbi.nlm.nih.gov/pubmed/26500469
http://dx.doi.org/10.3390/diagnostics12010071
http://www.ncbi.nlm.nih.gov/pubmed/35054238
http://dx.doi.org/10.1186/s12968-019-0530-y
http://dx.doi.org/10.1186/s12968-021-00739-y


Mathematics 2023, 11, 1358 18 of 18

28. Harbaoui, B.; Courand, P.-Y.; Cividjian, A.; Lantelme, P. Development of Coronary Pulse Wave Velocity: New Pathophysiological
Insight Into Coronary Artery Disease. J. Am. Heart Assoc. 2017, 6, e004981. [CrossRef]

29. Barret, K.; Brooks, H.; Boitano, S.; Barman, S. Ganong’s Review of Medical Physiology, 23th ed.; The McGraw-Hill: New York, NY,
USA, 2010.

30. Gamilov, T.; Kopylov, P.; Serova, M.; Syunaev, R.; Pikunov, A.; Belova, S.; Liang, F.; Alastruey, J.; Simakov, S. Computational
analysis of coronary blood flow: The role of asynchronous pacing and arrhythmias. Mathematics 2020, 8, 1205. [CrossRef]

31. Magomedov, K.M.; Kholodov, A.S. Grid–Characteristic Numerical Methods; Nauka: Moscow, Russia, 2018. (In Russian)
32. Ernest, W.L.; Menezes, L.J.; Torii, R. On outflow boundary conditions for CT-based computation of FFR: Examination using PET

images. Med. Eng. Phys. 2020, 76, 79–87.
33. Pijls, Nico H.J.; de Bruyne, B.; Peels, K.; van der Voort, P.H.; Bonnier, Hans J.R.M.; Bartunek, J.; Koolen, J.J. Measurement of Fractional

Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses. N. Engl. J. Med. 1996, 334, 1703–1708. [CrossRef]
34. Nijjer, S.S.; Sen, S.; Petraco, R.; Sachdeva, R.; Cuculi, F.; Escaned, J.; Broyd, C.; Foin, N.; Hadjiloizou, N.; Foale, R.A.; et al.

Improvement in coronary haemodynamics after percutaneous coronary intervention: Assessment using instantaneous wave-free
ratio. Heart 2013, 99, 1740–1748. [CrossRef]

35. Sen, S.; Escaned, J.; Malik, I.S.; Mikhail, G.W.; Foale, R.A.; Mila, R.; Tarkin, J.; Petraco, R.; Broyd, C.; Jabbou, R.; et al. Development and
validation of a new adenosine–independent index of stenosis severity from coronary wave-intensity analysis: Results of the ADVISE
(ADenosine Vasodilator Independent Stenosis Evaluation) study. J. Am. Coll. Cardiol. 2012, 59, 1392–402. [CrossRef] [PubMed]

36. Carson, J.; Pant, S.; Roobottom, C.; Alcock, R.; Blanco, P.J.; Bulant, C.A.; Vassilevski, Y.; Simakov, S.; Gamilov, T.; Pryamonosov, R.;
Liang, F.; Ge, X.; Liu, Y.; Nithiarasu, P. Supplementary Material. 2019. Available online:. (accessed on 23 February 2023). [CrossRef]

37. Laurent, S.; Boutouyrie, P.; Asmar, R.; Gautier, I.; Laloux, B.; Guize, L.; Ducimetiere, P.; Benetos, A. Aortic stiffness is an
independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001, 37, 1236–1241.
[CrossRef] [PubMed]

38. Munakata, M. Brachial-Ankle Pulse Wave Velocity: Background, Method, and Clinical Evidence. Pulse 2016, 3, 195–204. [CrossRef]
39. Collis, T.; Devereux, R.B.; Roman, M.J.; de Simone, G.; Yeh, J.; Howard, B.V.; Fabsitz, R.R.; Welty, T.K. Relations of stroke volume

and cardiac output to body composition: The strong heart study. Circulation 2001, 103, 820–825. [CrossRef] [PubMed]
40. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
41. Grillo, A.; Parati, G.; Rovina, M.; Moretti, F.; Salvi, L.; Gao, L.; Baldi, C.; Sorropago, G.; Faini, A.; Millasseau, S.; et al. Short-Term

Repeatability of Noninvasive Aortic Pulse Wave Velocity Assessment: Comparison Between Methods and Devices. Am. J.
Hypertens. 2018, 31, 80–88. [CrossRef]

42. Yamashina, A.; Tomiyama, H.; Takeda, K.; Tsuda, H.; Arai, T.; Hirose, K.; Koji, Y.; Hori, S.; Yamamoto, Y. Validity, reproducibility, and
clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens. Res. 2002, 25, 359–364. [CrossRef]

43. Kang, J.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Zo, J.H.; Kim, M.A.; Kim, S.H. Relationship between brachial-ankle pulse wave velocity
and invasively measured aortic pulse pressure. J. Clin. Hypertens. 2018, 20, 462–468. [CrossRef]

44. Sugawara, J.; Hayashi, K.; Yokoi, T.; Cortez-Cooper, M. Y.; DeVan, A. E.; Anton, M.A.; Tanaka, H. Brachial–ankle pulse wave
velocity: An index of central arterial stiffness? J. Hum. Hypertens 2005, 19, 401–406. [CrossRef]

45. Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2020, 9, 381–386.
46. Dietterich, T. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting,

and Randomization. Mach. Learn. 2000, 40, 139–157. [CrossRef]
47. Rossi, A.; Bonapace, S.; Cicoira, M.; Conte, L.; Anselmi, A.; Vassanelli, C. Aortic stiffness: An old concept for new insights into the

pathophysiology of functional mitral regurgitation. Heart Vessel. 2013, 28, 606–612. [CrossRef] [PubMed]
48. Jin, W.; Chowienczyk, P.; Alastruey, J. Estimating pulse wave velocity from the radial pressure wave using machine learning

algorithms, PLoS ONE 2021, 16, e0245026. [CrossRef] [PubMed]
49. van Hout, M.J.; Dekkers, I.A.; Lin, L.; Westenberg, J.J.; Schalij, M.J.; Jukema, J.W.; Widya, R.L.; Boone, S.C.; de Mutsert, R.;

Rosendaal, F.R.; et al. Estimated pulse wave velocity (ePWV) as a potential gatekeeper for MRI-assessed PWV: A linear and deep
neural network based approach in 2254 participants of the Netherlands Epidemiology of Obesity study. Int. J. Cardiovasc. Imaging
2022, 38, 183–193. [CrossRef] [PubMed]

50. Tavallali, P.; Razavi, M.; Pahlevan, N.M. Artificial Intelligence Estimation of Carotid-Femoral Pulse Wave Velocity using Carotid
Waveform. Sci. Rep. 2018, 8, 1014. [CrossRef]

51. Sutton-Tyrrell, K.; Mackey, R.H.; Holubkov, R.; Vaitkevicius, P.V.; Spurgeon, H.A.; Lakatta, E.G. Measurement variation of aortic
pulse wave velocity in the elderly. Am. J. Hypertens. 2001, 14, 463–468. [CrossRef]

52. Yong A.S.C.; Javadzadegan A.; Fearon W.F.; Moshfegh, A.; Lau, J.K.; Nicholls, S.; Ng, M.K.C.; Kritharides, L. The relationship
between coronary artery distensibility and fractional flow reserve. PLoS ONE 2017, 12, e0181824. [CrossRef]

53. Cividjian, A.; Harbaoui, B.; Chambonnet, C.; Bonnet, J.M.; Paquet, C.; Courand, P.Y.; Lantelme, P. Comprehensive assessment of
coronary pulse wave velocity in anesthetized pigs. Physiol. Rep. 2020, 8, e14424. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1161/JAHA.116.004981
http://dx.doi.org/10.3390/math8081205
http://dx.doi.org/10.1056/NEJM199606273342604
http://dx.doi.org/10.1136/heartjnl-2013-304387
http://dx.doi.org/10.1016/j.jacc.2011.11.003
http://www.ncbi.nlm.nih.gov/pubmed/22154731
http://dx.doi.org/10.6084/m9.figshare.8047742.v2 (accessed on 23 February 2023).
http://dx.doi.org/10.1161/01.HYP.37.5.1236
http://www.ncbi.nlm.nih.gov/pubmed/11358934
http://dx.doi.org/10.1159/000443740
http://dx.doi.org/10.1161/01.CIR.103.6.820
http://www.ncbi.nlm.nih.gov/pubmed/11171789
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1093/ajh/hpx140
http://dx.doi.org/10.1291/hypres.25.359
http://dx.doi.org/10.1111/jch.13200
http://dx.doi.org/10.1038/sj.jhh.1001838
http://dx.doi.org/10.1023/A:1007607513941
http://dx.doi.org/10.1007/s00380-012-0295-9
http://www.ncbi.nlm.nih.gov/pubmed/23064718
http://dx.doi.org/10.1371/journal.pone.0245026
http://www.ncbi.nlm.nih.gov/pubmed/34181640
http://dx.doi.org/10.1007/s10554-021-02359-0
http://www.ncbi.nlm.nih.gov/pubmed/34304318
http://dx.doi.org/10.1038/s41598-018-19457-0
http://dx.doi.org/10.1016/S0895-7061(00)01289-9
http://dx.doi.org/10.1371/journal.pone.0181824
http://dx.doi.org/10.14814/phy2.14424

	Introduction
	Materials and Methods
	Coronary Circulation Model
	Hemodynamic Indices Calculation
	Datasets
	Synthetic Database
	PWV Dataset
	FFR Dataset

	PWV Estimation with Neural Network and Other Machine Learning Methods
	Error Estimation
	Neural Network
	Other Methods


	Results
	AoPWV Estimation
	FFR Estimation with Predicted AoPWV
	FFR, iFR and CFR Sensitivity to AoPWV

	Discussion
	Appendix A
	References

