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Abstract: This manuscript is focused on a new parametric class of multi-step iterative procedures
to find the solutions of systems of nonlinear equations. Starting from Ostrowski’s scheme, the class
is constructed by adding a Newton step with a Jacobian matrix taken from the previous step and
employing a divided difference operator, resulting in a triparametric scheme with a convergence
order of four. The convergence order of the family can be accelerated to six by setting two parameters,
resulting in a uniparametric family. We performed dynamic and numerical development to analyze
the stability of the sixth-order family. Previous studies for scalar functions allow us to isolate those
elements of the family with stable performance for solving practical problems. In this regard, we
present dynamical planes showing the complexity of the family. In addition, the numerical properties
of the class are analyzed with several test problems.
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real discrete dynamics; chaos and stability
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1. Introduction

A large number of problems in Computer Science and related disciplines are mathemat-
ically characterized by a nonlinear equation or a nonlinear system of equations F(x) = 0,
where F : D ⊂ Rn → Rn is a sufficiently Frechet-differentiable function over an open con-
vex set D. Finding the value of a solution ξ is a problem that has been tackled via multiple
strategies in fields such as Numerical Analysis, Applied Mathematics, and Engineering.

Newton’s scheme is the best known scheme for finding the root ξ ∈ D of F:

x(k+1) = x(k) − [F′(x(k))]−1F(x(k)),

where k ≥ 0 and the Jacobian matrix of F at x(k) is denoted by F′(x(k)).
In recent years, this problem has attracted the attention of many scientists, highlighting

the following techniques. The extension of scalar to vector iterative methods [1–4] is a
common practice, provided the extension is feasible, that affords solutions to n-dimensional
problems. To improve the convergence order without compromising the computational
cost, new steps are included with only one new evaluation of F, keeping F′ frozen [5–8].

We propose in this manuscript a new parametric class of multi-step iterative procedure
(1) for solving systems of nonlinear equations. This family is a multidimensional extension
of the set of methods defined in [9] for nonlinear equations. The starting point of this family
is Ostrowski’s scheme, appending a Newton-type step with a “frozen” Jacobian matrix.
Thus, it has an iterative expression with three arbitrary parameters and three steps:
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y(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = y(k) − [2[x(k), y(k); F]− F′(x(k))]−1F(y(k)),

x(k+1) = z(k) − (αI + βu(k) + γv(k))[F′(x(k))]−1F(z(k)),

(1)

where α, β, and γ are arbitrary parameters, v(k) = [x(k), y(k); F]−1F′(x(k)), u(k) = I −
[F′(x(k))]−1[x(k), y(k); F], and k = 0, 1, 2, . . .. The definition of the divided difference opera-
tor can be found in [10], where it is defined as the map [·, ·; F] : D×D ⊂ Rn ×Rn → L(Rn)
that satisfies

[x, y; F](x− y) = F(x)− F(y), ∀x, y ∈ D. (2)

Starting from (1), a uniparametric family is constructed that reaches a convergence
order of six, which is corroborated by a supporting convergence analysis. The objective of
the new family is to increase the convergence order without significantly increasing the
computational cost.

The dynamic behavior of the rational operator obtained from iterative schemes applied
to low-degree nonlinear polynomial systems is an effective tool for analyzing the stability
and reliability of these numerical methods [6,11]. The stability of the family is analyzed
using a real multidimensional discrete dynamical system. Here, we construct dynamical
planes that show the complexity of this class. It should be noted that we extend the complex
analysis presented in [9] for scalar functions to vector functions in order to choose stable
members from the parameter spaces. Several numerical tests are performed to illustrate
the efficiency and stability of the iterative schemes.

The outline of this manuscript is as follows: we introduce the proposed class of
iterative procedures in Section 1; its convergence is analyzed in Section 2, finding that with
appropriate selection of the parameters it is possible to find a single-parametric family
for the sixth order of convergence. Section 3 is devoted to the dynamical analysis of this
family in order to find those members with best and worst performance in terms of stability.
The numerical performance is checked in Section 4, and our conclusions are stated in
Section 5.

2. Convergence Analysis of the Family

In this section, we analyze the convergence properties of the new triparametric iterative
family. Although the order of the triparametric family is four, in the proof we use higher-
order Taylor expansions, as they are useful for proving the order of the uniparametric family.

Theorem 1 (Tri-parametric class). Consider a sufficiently differentiable function
F : D ⊆ Rn → Rn in an convex open set D. Let ξ ∈ D be a solution of the nonlinear sys-
tem F(x) = 0. Assume that F′(x) is continuous and nonsingular at ξ and that x(0) is a seed that is
sufficiently close to ξ. Then, sequence {x(k)}k≥0 can be obtained using expression (1), converges to
solution ξ, and has a convergence order of four. Under this hypothesis, its error equation is

e(k+1) = (1− α− γ)
(

C3
2 − C3C2

)
e(k)

4
+O(e(k)5

),

where α, β, and γ are arbitrary parameters, Cq = 1
q! [F

′(ξ)]−1F(q)(ξ), q = 2, 3, . . ., and

e(k) = x(k) − ξ.

Proof. Next, let us consider ξ such that F(ξ) = 0 and F′(ξ) 6= 0); here, we let be x(k) =
ξ + e(k). Using Taylor expansion series of F(x(k)) and F′(x(k)) around ξ, we have

F(x(k)) = F′(ξ)
[
e(k) + C2e(k)

2
+ C3e(k)

3
+ C4e(k)

4
]
+O(e(k)5

) (3)

and
F′(x(k)) = F′(ξ)

[
I + 2C2e(k) + 3C3e(k)

2
+ 4C4e(k)

3
]
+O(e(k)4

), (4)
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where the coefficients Cq are defined as Cq =
1
q!
[F′(ξ)]−1F(q)(ξ), q = 2, 3, . . .

Now, the Taylor expansion of the inverse [F′(x(k))]−1 can be stated as follows:

−1 =
[

I + X2e(k) + X3e(k)
2
+ X4e(k)

3
+ X5e(k)

4
+ X6e(k)

5
][

F′(ξ)
]−1

+O(e(k)7
), (5)

where X2, X3, . . . , X6 are unknowns such that

−1F′(x(k)) = I. (6)

Then, we have

X2 = −2C2,

X3 = 4C2
2 − 3C3,

X4 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4,

X5 = 16C4
2 − 12C2

2C3 − 12C2C3C2 + 8C2C4 + 9C2
3 − 12C3C2

2 + 8C4C2 − 5C5,

X6 = −32C5
2 + 24C3

2C3 + 24C2
2C3C2 − 16C2

2C4 + 24C2C3C2
2 − 16C2C4C2 − 18C2C2

3 + 10C2C5

− 18C2
3C2 + 24C3C3

2 − 18C3C2C3 + 12C3C4 − 16C4C2
2 + 12C4C3 + 10C5C2 − 6C6.

(7)

Thus, by multiplying (5) by (3) and replacing them in the first step of (1), we have

y(k) = ξ −
[
−C2e(k)

2
+ (−2C3 + 2C2

2)e
(k)3

+ A4e(k)
4
+ A5e(k)

5
+ A6e(k)

6
]
+O(e(k)7

), (8)

where

A4 = −3C4 + 4C2C3 − 4C3
2 + 3C3C2,

A5 = −4C5 + 6C2C4 − 8C2
2C3 + 6C2

3 + 8C4
2 − 6C2C3C2 − 6C3C2

2 + 4C4C2,

A6 = −5C6 + 8C2C5 − 12C2
2C4 + 9C3C4 + 16C3

2C3 − 12C2C2
3 − 12C3C2C3 + 8C4C3 − 16C5

2

+ 12C2
2C3C2 + 12C2C3C2

2 − 8C2C4C2 − 9C2
3C2 + 12C3C3

2 − 8C4C2
2 + 5C5C2.

(9)

Again, by means of the Taylor series, we develop F(y(k)) around ξ, with e(k)y = y(k) − ξ,
meaning that we have

F(y(k)) = F′(ξ)
[
C2e(k)

2
+ (2C3 − 2C2

2)e
(k)3

+ B4e(k)
4
+ B5e(k)

5
+ B6e(k)

6
]
+O(e(k)7

), (10)

where
B4 = −A4 + C2 A2

2,

B5 = −A5 + C2 A2 A3 + C2 A3 A2,

B6 = −A6 + C2 A2 A4 + C2 A2
3 + C2 A4 A2 − C3 A3

2.

(11)

In order to prove the order of convergence of the second step of (1), we can use the
Genocchi–Hermite formula (see [12]):

=
∫ 1

0
F′(x + th) dt (12)

Expanding F′(x + th) in the Taylor series around x, we have∫ 1

0
F′(x + th) dt = F′(x) +

1
2!

F′′(x)h +
1
3!

F′′′(x)h2 +
1
4!

F(iv)(x)h3 +
1
5!

F(v)(x)h4 +O(h5). (13)

Denoting e = x− ξ and taking into account that F′(ξ) is nonsingular, we have

= F′(ξ)
[

I + P1e(k) + P2e(k)
2
+ P3e(k)

3
+ P4e(k)

4
]
+O(e(k)5

), (14)
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where the error at the first step is denoted by e(k)y = y(k) − ξ. In this expression,

P1 = C2,

P2 = C2
2 + C3,

P3 = C4 + 2C2C3 + C3C2 − 2C3
2 ,

P4 = C5 + 3C2C4 − 4C2
2C3 + 4C4

2 − 3C2C3C2 + 2C2
3 − C3C2

2 + C4C2.

(15)

Now, denoting M = 2[x(k), y(k); F]− F′(x(k)), we have

M = F′(ξ)
[

I + M2e(k)
2
+ M3e(k)

3
+ M4e(k)

4
]
+O(e(k)5

), (16)

where

M2 = 2C2
2 − C3,

M3 = 2
(
−C4 + 2C2C3 + C3C2 − 2C3

2

)
,

M4 = −3C5 + 6C2C4 − 8C2
2C3 + 8C4

2 − 6C2C3C2 + 4C2
3 − 2C3C2

2 + 2C4C2.

(17)

The inverse of M must satisfy

M−1M = I, (18)

where

M−1 =
[

I + Y1e(k) + Y2e(k)
2
+ Y3e(k)

3
+ Y4e(k)

4
][

F′(ξ)
]−1

+O(e(k)5
), (19)

where Y1, . . . , Y4 are unknowns. Then, replacing M−1 and M in (18), we have

Y1 = 0,

Y2 = −2C2
2 + C3,

Y3 = 2C4 − 4C2C3 − 2C3C2 + 4C3
2 ,

Y4 = 3C5 − 6C2C4 + 6C2
2C3 − 4C4

2 + 6C2C3C2 − 3C2
3 − 2C4C2.

(20)

Next, we denote L = M−1F(y(k)) and obtain

L = C2e(k)
2
+ 2
(

C3 − C2
2

)
e(k)

3
+ L4e(k)

4
+ L5e(k)

5
+ L6e(k)

6
+O(e(k)7

), (21)

where

L4 = 3C4 − 4C2C3 − 2C3C2 + 3C3
2 ,

L5 = 4C5 − 6C2C4 + 6C2
2C3 − 4C2

3 − 4C4
2 + 4C2C3C2 + 2C3C2

2 − 2C4C2,

L6 = 5C6 − 8C2C5 + 9C2
2C4 − 6C3C4 − 8C3

2C3 + 8C2C2
3 + 4C3C2C3 − 4C4C3

+ 6C5
2 − 7C2

2C3C2 − 5C2C3C2
2 + 5C2C4C2 + 3C2

3C2 − 2C3C3
2 + 2C4C2

2 − 2C5C2.

(22)

Therefore,

z(k) = y(k) − L = ξ −
[
K4e(k)

4
+ K5e(k)

5
+ K6e(k)

6
]
+O(e(k)7

), (23)
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where

K4 = −C3
2 + C3C2,

K5 = −2C2
2C3 + 2C2

3 + 4C4
2 − 2C2C3C2 − 4C3C2

2 + 2C4C2,

K6 = −3C2
2C4 + 3C3C4 + 8C3

2C3 − 4C2C2
3 − 8C3C2C3 + 4C4C3 − 10C5

2

+ 5C2
2C3C2 + 7C2C3C2

2 − 3C2C4C2 − 6C2
3C2 + 10C3C3

2 − 6C4C2
2 + 3C5C2.

(24)

Similarly, denoting e(k)z = z(k) − ξ,

F(z(k)) = F′(ξ)
[
−K4e(k)

4 − K5e(k)
5 − K6e(k)

6
]
+O(e(k)7

). (25)

Using (5) and (25) and denoting N = [F′(x(k))]−1F(z(k)), we have

N = (C3
2 − C3C2)e(k)

4
+ N5e(k)

5
+ N6e(k)

6
+O(e(k)7

), (26)

N5 = 2C2
2C3 − 2C2

3 − 6C4
2 + 4C2C3C2 + 4C3C2

2 − 2C4C2,

N6 = 3C2
2C4 − 3C3C4 − 12C3

2C3 + 8C2C2
3 + 8C3C2C3 − 4C4C3 + 22C5

2

− 13C2
2C3C2 − 15C2C3C2

2 + 7C2C4C2 + 9C2
3C2 − 13C3C3

2 + 6C4C2
2 − 3C5C2.

(27)

Then, replacing (5) and (14) in u(k),

u(k) = C2e(k) + (−3C2
2 + 2C3)e(k)

2
+O(e(k)3

). (28)

Now, we can find the Taylor series expansion of [x(k), y(k); F]−1 as follows:

−1 =
[

I + R1e(k) + R2e(k)
2
][

F′(ξ)
]−1

+O(e(k)3
), (29)

where R1 and R2 are unknowns such that

−1[x(k), y(k); F] = I. (30)

Thus, we have
R1 = −C2,

R2 = −C3.
(31)

By substituting (29) and (4) in v(k),

v(k) = I + v1e(k) + v2e(k)
2
+O(e(k)3

), (32)

where
v1 = C2,

v2 = 2C3 − 2C2
2 .

(33)

Denoting T = (αI + βu(k) + γv(k))N and using (28) and (32), we have

T = (α + γ)(C3
2 − C3C2)e(k)

4
+ T5e(k)

5
+ T6e(k)

6
+O(e(k)7

), (34)

T5 = (α + γ)N5 + (β + γ)u1N4,

T6 = (α + γ)N6 + (β + γ)u1N5 + (βu2 + γv2)N4.
(35)

Finally, using (23) and (34),

x(k+1) = ξ −
[
W4e(k)

4
+ W5e(k)

5
+ W6e(k)

6
]
+O(e(k)7

), (36)
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where

W4 = (α + γ− 1)
(

C3
2 − C3C2

)
,

W5 = 2(α + γ− 1)
(

C2
2C3 − C2

3 + 2C3C2
2 − C4C2

)
− (6α− β + 5γ− 4)C4

2

+ (4α− β + 3γ− 2)C2C3C2,

W6 = −3C2
2C4 + 3C3C4 + 8C3

2C3 − 4C2C2
3 − 8C3C2C3 + 4C4C3 − 10C5

2 + 5C2
2C3C2

+ 7C2C3C2
2 − 3C2C4C2 − 6C2

3C2 + 10C3C3
2 − 6C4C2

2 + 3C5C2

+ (α + γ)
(

3C2
2C4 − 3C3C4 − 12C3

2C3 + 8C2C2
3 + 8C3C2C3 − 4C4C3 + 22C5

2

−13C2
2C3C2 − 15C2C3C2

2 + 7C2C4C2 + 9C2
3C2 − 13C3C3

2 + 6C4C2
2 − 3C5C2

)
+ (β + γ)C2

(
2C2

2C3 − 2C2
3 − 6C4

2 + 4C2C3C2 + 4C3C2
2 − 2C4C2

)
+
(

β
(
−3C2

2 + 2C3

)
+ γ

(
2C3 − 2C2

2

))(
C3

2 − C3C2

)
,

(37)

and the error equation is

e(k+1) = −W4e(k)
4 −W5e(k)

5 −W6e(k)
6
+O(e(k)7

)

= (1− α− γ)
(

C3
2 − C3C2

)
e(k)

4
+O(e(k)5

).
(38)

This finishes the proof.

From Theorem 1, the triparametric family is fourth-order convergent for any α, β, and
γ. Nevertheless, the order of convergence can be accelerated by reducing the number of
parameters, resulting in a uniparametric family.

Theorem 2 (Uni-parametric family). Consider a sufficiently differentiable function
F : D ⊆ Rn → Rn defined in a convex open set D, and let ξ ∈ D be a solution of the non-
linear system F(x) = 0. Assuming that F′(x) is nonsingular and continuous at ξ and x(0) is a
seed close enough to ξ, sequence {x(k)}k≥0 obtained using (1) converges to ξ with the sixth order of
convergence only if γ = 1− α and β = 1 + α. Therefore, its error equation is

e(k+1) =
(

C2
3C2 − C3C3

2 + 6C5
2 − 6C2

2C3C2

)
e(k)

6
+O(e(k)

7
),

where Cq = 1
q! [F

′(ξ)]−1F(q)(ξ), q = 2, 3, . . ., and e(k) = x(k) − ξ.

Proof. Using the results of Theorem 1, in order to cancel W4 and W5 the coefficients of e(k)
4

and e(k)
5

in (38), which are respectively α + γ = 1, 6α− β + 5γ = 4 and 4α− β + 3γ = 2,
must be satisfied. This system has infinite solutions for

β = 1 + α and γ = 1− α, (39)

with α being a disposable parameter. Then, replacing (39) in (37), we have the following:

W4 = 0, W5 = 0, and W6 = −C2
3C2 + C3C3

2 − 6C5
2 + 6C2

2C3C2, (40)

for which the error equation is

e(k+1) = −W6e(k)
6
+O(e(k)7

)

=
(

C2
3C2 − C3C3

2 + 6C5
2 − 6C2

2C3C2

)
e(k)

6
+O(e(k)

7
).

(41)

This finishes the proof.
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As follows from Theorem 2, by replacing β = 1 + α and γ = 1 − α in (1) the tri-
parametric family becomes a uniparametric family with sixth-order convergence. Thus,
the iterative expression of the new three-step family dependent on α, denoted henceforth
as MCCT(α), is

y(k) = x(k) − [F′(x(k))]−1F(x(k)),

z(k) = y(k) − [2[x(k), y(k); F]− F′(x(k))]−1F(y(k)),

x(k+1) = z(k) − (αI + (1 + α)u(k) + (1− α)v(k))[F′(x(k))]−1F(z(k)),

(42)

where α is an arbitrary parameter v(k) = [x(k), y(k); F]−1F′(x(k)), u(k) = I − [F′(x(k))]−1

[x(k), y(k)F], and k = 0, 1, 2, . . ..
Next, we analyze the stability of the MCCT(α) family in order to select its best members,

for which we use the real dynamical tools presented in Section 3.

3. Real Dynamics for Stability

This section refers to our analysis of the dynamical behavior of the rational operator
related with iterative schemes of the MCCT(α) family. It provides significative information
about the reliability and stability of the class. We construct rational operators and their
dynamical planes in order to identify the performance of particular schemes from the
different basins of attraction.

3.1. Rational Operator

Rational operators are built on low-degree nonlinear polynomial systems, as the
criterion of stability of a method applied to these systems can be generalized to other
multidimensional cases. Thus, we propose two nonlinear systems, one with separated
variables F(x1, x2) and another with non-separated variables G(x1, x2), as follows:

F(x1, x2) =
(
x2

1 − 1, x2
2 − 1

)
= (0, 0), (43)

G(x1, x2) =

(
x2

1 + x2
2 − 1, x2

1 − x2
2 −

1
2

)
= (0, 0). (44)

Proposition 1 (Rational operator RF). Consider the polynomial system F(x1, x2) provided
in (43) with roots (−1,−1), (−1, 1), (1,−1), (1, 1) ∈ R2. The rational operator associated with
the MCCT(α) family and applied on F(x1, x2) (with α ∈ R being an arbitrary parameter) is

RF(x1, x2, α) =
(

RF11 , RF12

)
, (45)

where

RF11 =
1
32

((
x2

1 − 1
)4(

α + (α− 19)x4
1 − 2(α− 1)x2

1 + 1
)

4x5
1
(

x2
1 + 1

)2(3x2
1 + 1

) +
8
(
x4

1 + 6x2
1 + 1

)
x3

1 + x1
−

α
(
x2

2 − 1
)4

x3
2
(
x2

2 + 1
)2

)
,

RF12 =
1

32

((
x2

2 − 1
)4(

α + (α− 19)x4
2 − 2(α− 1)x2

2 + 1
)

4x5
2
(

x2
2 + 1

)2(3x2
2 + 1

) +
8
(
x4

2 + 6x2
2 + 1

)
x3

2 + x2
−

α
(
x2

1 − 1
)4

x3
1
(
x2

1 + 1
)2

)
.

In Proposition 1, note that the rational operator RF(x1, x2, α) is obtained by substituting
the nonlinear system F(x1, x2) into the iterative scheme of the MCCT(α) family. To simplify
RF, we can select a value of α that cancels terms in the expression in order to reduce it.
It is easy to show that the rational operator is simpler for α = 0 and that there are fewer
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fixed and critical points, which can improve the performance of the associated method.
In addition, the components of RF(x1, x2, 0) are of separate variables, as shown by

RF(x1, x2, 0) =

(
77x12

1 + 782x10
1 + 775x8

1 + 404x6
1 + 11x4

1 − 2x2
1 + 1

128x5
1
(
x2

1 + 1
)2(3x2

1 + 1
) ,

77x12
2 + 782x10

2 + 775x8
2 + 404x6

2 + 11x4
2 − 2x2

2 + 1

128x5
2
(
x2

2 + 1
)2(3x2

2 + 1
)

)
.

(46)

Proposition 2 (Rational operator RG). Consider the polynomial system G(x1, x2) provided

in (44) with roots

(
−
√

3
2

,−1
2

)
,

(
−
√

3
2

,
1
2

)
,

(√
3

2
,−1

2

)
,

(√
3

2
,

1
2

)
∈ R2. The rational

operator associated with the MCCT(α) family and applied on G(x1, x2) (with α ∈ R being an
arbitrary parameter) is

RG(x1, x2, α) =
(

RG11 , RG12

)
, (47)

where

RG11 =

(
3− 4x2

1
)4(9(α + 1) + 16(α− 19)x4

1 − 24(α− 1)x2
1
)

24576x5
1
(
4x2

1 + 1
)(

4x2
1 + 3

)2 +
16x4

1 + 72x2
1 + 9

64x3
1 + 48x1

−
α
(
1− 4x2

2
)4

512x3
2
(
4x2

2 + 1
)2 ,

RG12 =

(
1− 4x2

2
)4(

α + 16(α− 19)x4
2 − 8(α− 1)x2

2 + 1
)

8192x5
2
(
4x2

2 + 1
)2(12x2

2 + 1
) +

16x4
2 + 24x2

2 + 1
64x3

2 + 16x2
−

α
(
3− 4x2

1
)4

512x3
1
(
4x2

1 + 3
)2 .

From Proposition 2, note that the rational operator RG(x1, x2, α) is obtained by sub-
stituting the nonlinear system G(x1, x2) into the iterative scheme of the MCCT(α) family.
In the same way for RF, it is easy to prove that the rational operator RG is simpler for α = 0.
Moreover, the components of RG(x1, x2, 0) are of separate variables, as shown by

RG(x1, x2, 0) =

((
−304x4

1 + 24x2
1 + 9

)(
3− 4x2

1
)4

24576x5
1
(
4x2

1 + 1
)(

4x2
1 + 3

)2 +
16x4

1 + 72x2
1 + 9

64x3
1 + 48x1

,

(
−304x4

2 + 8x2
2 + 1

)(
1− 4x2

2
)4

8192x5
2
(
4x2

2 + 1
)2(12x2

2 + 1
) +

16x4
2 + 24x2

2 + 1
64x3

2 + 16x2

)
.

(48)

With these two rational operators RF(x1, x2, α) and RG(x1, x2, α), we can study the
stability of the MCCT(α) family by means of dynamical planes built for different values of α.
These planes show the complexity of the iterative class.

3.2. Fixed Points and Their Stability

The fixed points are calculated from the rational operators RF(x1, x2, α) and RG(x1, x2, α)
provided in (45) and (47), respectively. Using these points, we can perform a stability
analysis.

Proposition 3 (RF fixed points). The real fixed points of RF(x1, x2, α) are the roots of the equation
RF(x1, x2, α) = (x1, x2), that is,

f p1 = (−1,−1), f p2 = (−1, 1), f p3 = (1,−1), f p4 = (1, 1),

corresponding to the roots of the polynomial system F(x1, x2) provided in (43); moreover, they
are superattracting. While other strange fixed points may appear, their components are roots of
polynomials of degree 120.
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Proposition 4 (RG fixed points). The real fixed points of RG(x1, x2, α) are the roots of the
equation RG(x1, x2, α) = (x1, x2), that is,

f p1 =

(
−
√

3
2

,−1
2

)
, f p2 =

(
−
√

3
2

,
1
2

)
, f p3 =

(√
3

2
,−1

2

)
, f p4 =

(√
3

2
,

1
2

)
,

corresponding to the roots of the polynomial system G(x1, x2) provided in (44); these are superat-
tracting as well. Again, for other strange fixed points that may appear, their components are roots of
polynomials of degree 120.

Propositions 3 and 4 establish a minimum of four fixed points for polynomial systems
F(x1, x2) and G(x1, x2). Of these, f p1 to f p4 correspond to the roots of the original systems,
and are attractive and critical points.

3.3. Dynamical Planes

We can perform a stability analysis of the MCCT(α) family by representing dynamical
planes of the rational operators RF(x1, x2, α) and RG(x1, x2, α). Two values of α with
different behavior in the parameter space of Figure 1 have been chosen; value α = 0 is in
the red zone, which implies convergence, while value α = 200 is in the black zone, which
does not guarantee convergence. These parameter spaces were obtained from the MCCT(α)
family for scalar cases [9], with their results then extrapolated for vector cases.

Figure 1. Parameter spaces of free critical points of the MCCT(α) family applied to a nonlinear
polynomial equation (x− a)(x− b) = 0, where a, b ∈ C.

A dynamical plane is represented by a mesh of 400× 400 points in R2. Each point of
the mesh is a seed of the iterative process. The convergence of the scheme is shown with a
maximum of 50 iterations and a stopping criterion of ||x(k+1) − x(k)|| < 10−3. Each root is
color assigned. The color of the mesh points indicates which root it converges to, with black
being the points at which the maximum number of iterations is reached and brighter colors
indicating a lower number of iterations. Fixed points are represented in white by a circle
(‘#’), critical points by a square (‘�’), and attractors by an asterisk (‘∗’). The resulting plane
was generated using Matlab R2020b.

The dynamical planes corresponding to RF(x1, x2, 0) and RF(x1, x2, 200) on the one
hand and RG(x1, x2, 0) and RG(x1, x2, 200) on the other are shown in Figures 2 and 3,
respectively. In both cases, yellow convergence orbits can be observed.

In both cases, the method for α = 0 presents four basins of attraction associated with
the roots. No black areas are observed. Consequently, this method shows good dynamic
behavior. In contrast, in RF and RG the method for α = 200 presents the same four basins
of attraction associated with the roots, except now with reduced size, which minimizes the
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possibility of convergence to the solution. Black areas of slow convergence are observed.
In consequence, this method shows poor dynamic performance.

(a) (b)

Figure 2. Dynamical planes for RF(x1, x2, α): (a) convergence to p f1 = (−1,−1) for α = 0 and an
initial estimation x(0) close to the roots; (b) no convergence to any p f for α = 200 and an initial
estimation x(0) close to the roots.

(a) (b)

Figure 3. Dynamical planes for RG(x1, x2, α): (a) convergence to p f1 ≈ (−0.87,−0.5) for α = 0 and
an initial estimation x(0) close to the roots; (b) no convergence to any p f for α = 200 and an initial
estimation x(0) close to the roots.

From Figures 2 and 3, it is apparent that the basins of attraction have similar behavior
for the rational operators RF and RG with α = 0. However, for α = 200, these basins are
reduced and the associated iterative methods do not easily converge to the solution.

If we consider nonlinear systems that involve logarithmic, trigonometric, and expo-
nential as well as polynomial functions, the behavior of the representative members of the
MCCT(α) family for α = 0 and α = 200 is similar to what has already been studied. For ex-
ample, when analyzing the systems shown in Table 1, we can observe in their dynamical
planes (see Figures 4–6) that the regions of the basins of attraction for α = 0 are much larger
than for α = 200, increasing the chances of converging to the solution for the first case.



Mathematics 2023, 11, 1374 11 of 15

In addition, more regions of slow convergence or non-convergence are observed for the
MCCT(200) iterative method as compared to the MCCT(0) method.

Table 1. Tested nonlinear systems for dynamical analysis.

Non-Linear System Some Roots

M(x1, x2) = (ex1 ex2 + x1 cos (x2), x1 + x2 − 1) = (0, 0) ξ ≈ (−6.4165, 7.4165;−4.3816, 5.3816;
3.4706,−2.4706; 5.1572,−4.1572;

9.1554,−8.1554)T

N(x1, x2) =
(
ln (x2

1)− 2 ln (cos (x2)), x1 tan (x2)
)
= (0, 0) ξ = (−1, 0; 1, 0)T

O(x1, x2) = (x1 + ex2 − cos (x2) + 0.5, 3x1 − x2 − sin (x2)) = (0, 0) ξ ≈ (−0.2535,−0.3851;−0.9389,−1.8576;
−1.0935,−4.0974)T

(a) (b)

Figure 4. Dynamical planes for system M(x1, x2): (a) considering the MCCT(0) method and (b) con-
sidering the MCCT(200) method.

(a) (b)

Figure 5. Dynamical planes for system N(x1, x2): (a) considering the MCCT(0) method and (b) con-
sidering the MCCT(200) method.
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(a) (b)

Figure 6. Dynamical planes for system O(x1, x2): (a) considering the MCCT(0) method and (b) con-
sidering the MCCT(200) method.

4. Numerical Results

Several numerical tests were carried out to check the performance of MCCT(α) family,
with the aim of verifying our theoretical results for convergence and stability. We employed
two members of the class used above as representatives, namely, MCCT(0) and MCCT(200).
These methods were applied to the same two-by-two non-linear test systems seen above
and to new three-by-three and four-by-four systems. Along with the corresponding roots,
they are summarized in Table 2.

Table 2. Test nonlinear systems and their roots.

Non-Linear Test System Roots

F(x1, x2) =
(

x2
1 − 1, x2

2 − 1
)
= (0, 0) ξ = (1, 1)T

G(x1, x2) =

(
x2

1 + x2
2 − 1, x2

1 − x2
2 −

1
2

)
= (0, 0) ξ =

(√
3

2
,

1
2

)T

M(x1, x2) = (ex1 ex2 + x1 cos(x2), x1 + x2 − 1) = (0, 0) ξ ≈ (3.4706,−2.4706)T

N(x1, x2) =
(
ln (x2

1)− 2 ln (cos (x2)), x1 tan (x2)
)
= (0, 0) ξ = (1, 0)T

O(x1, x2) = (x1 + ex2 − cos (x2) + 0.5, 3x1 − x2 − sin (x2)) = (0, 0) ξ ≈ (−0.2535,−0.3851)T

P(x1, x2, x3) =

(
cos (x2)− sin (x1), xx1

3 −
1
x2

, ex1 − x2
3

)
= (0, 0) ξ ≈ (0.9096, 0.6612, 1.5758)T

Q(x1, x2, x3, x4) = (x2x3 + x4(x2 + x3), x1x3 + x4(x1 + x3), ξ ≈ (0.5774, 0.5774,
x1x2 + x4(x1 + x2), x1x2 + x1x3 + x2x3 − 1) = (0, 0) 0.5774,−0.2887)T

A comparison of MCCT(0) was conducted against three methods from the literature:
Newton’s [10], Ostrowski’s [13], and HMT’s methods [14]. Table 3 collects the numerical
results, using initial guesses for x(0) close to ξ solutions.

The computations were performed in Matlab R2020b using variable precision arith-
metic, with a mantissa of 200 digits. For each scheme, the amount of iterations (iter)
needed to converge to the solution was analyzed in such a way that the stopping criteria
|||x(k+1) − x(k)|| < 10−100 or |||F(x(k+1))|| < 10−100 were satisfied.

The approximate computational order of convergence (ACOC) [15] was obtained.
The ACOC column is ‘nc’ if the number of iterations reaches 50 or ‘-’ if the ACOC does
not stabilize.

Table 3 indicates that MCCT(0) converges to ξ in fewer iterations than the other
methods in five of the seven nonlinear systems. The theoretical order of convergence
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is achieved by ACOC as well, being close to six. This method was analyzed for seeds
both near the solution and far from it, i.e., for x(0) ≈ 3ξ and x(0) > 10ξ, respectively.
The obtained results are collected in Tables 4 and 5.

The results in Tables 4 and 5 show that MCCT(0) converges to the solution in six of the
seven nonlinear test systems, regardless of the initial estimates used. The ACOC does not
stabilize its value in several cases; however, when it does its value approaches six.

Our analysis of the MCCT(200) method is shown below. The numerical results
for x(0) ≈ ξ) and x(0) ≈ 3ξ) are presented in Tables 6 and 7.

MCCT(200) presents convergence problems for x(0) ≈ 3ξ, as it does not converge to
the solution in three of the seven cases, establishing a dependence on the initial estimate
and the nonlinear test system used. In addition, the number of iterations is increased
with respect to the MCCT(0) method for the same conditions in those systems in which the
solution is reached.

Consequently, we conclude that the method for α = 0 is robust, and is able to converge
to the solution in few iterations and for any seed and system used. Nevertheless, the method
for α = 200 is unstable, as it does not tend to the solution according to the seed and the
system used. It can be observed that both methods converge to the solution with order six.
Therefore, the theoretical results of the dynamical behavior and convergence analysis of
the MCCT(α) family can be considered verified.

Table 3. Numerical results of MCCT(0) and known schemes on test problems for x(0) ≈ ξ.

System Method ||x(k+1)− x(k)|| ||F(x(k+1))|| Iter ACOC

F(x1, x2) MCCT(0) 4.1590× 10−41 1.0578× 10−162 3 6.0326
x(0) = (0.90, 0.90)T Newton 4.0862× 10−82 1.1806× 10−163 7 2.0000

Ostrowski 2.3572× 10−61 6.5488× 10−183 4 -
HMT 2.1362× 10−52 5.5061× 10−208 3 -

G(x1, x2) MCCT(0) 1.6140× 10−29 3.8389× 10−115 3 5.9785
x(0) = (0.80, 0.40)T Newton 8.4816× 10−62 1.0174× 10−122 7 2.0000

Ostrowski 3.1433× 10−46 8.7844× 10−137 4 -
HMT 2.5671× 10−36 1.9467× 10−208 3 -

M(x1, x2) MCCT(0) 1.1444× 10−49 1.3224× 10−131 3 5.5845
x(0) = (3.40,−2.40)T Newton 2.4421× 10−57 2.1989× 10−114 6 2.0000

Ostrowski 3.9750× 10−66 3.0486× 10−148 4 -
HMT 8.1589× 10−54 7.7869× 10−208 3 5.9851

N(x1, x2) MCCT(0) 1.0160× 10−76 5.8602× 10−308 4 -
x(0) = (0.90, 0.10)T Newton 1.6691× 10−73 1.5673× 10−146 7 2.0000

Ostrowski 6.5957× 10−87 1.4347× 10−259 5 -
HMT 3.0359× 10−41 3.8934× 10−208 3 6.1133

O(x1, x2) MCCT(0) 1.2709× 10−37 6.3818× 10−107 3 5.9417
x(0) = (−0.20,−0.30)T Newton 2.3676× 10−73 3.4799× 10−146 7 2.0000

Ostrowski 7.1310× 10−54 3.2193× 10−123 4 -
HMT 2.3769× 10−43 4.0133× 10−208 3 5.9289

P(x1, x2, x3) MCCT(0) 1.3178× 10−66 1.2841× 10−162 4 -
x(0) = (0.80, 0.60, 1.50)T Newton 1.4817× 10−63 2.0520× 10−126 7 1.9802

Ostrowski 2.3811× 10−82 2.8239× 10−179 5 -
HMT 6.1154× 10−24 5.9378× 10−139 3 6.2016

Q(x1, x2, x3, x4) MCCT(0) 2.4839× 10−22 2.0342× 10−128 3 5.6492
x(0) = (0.50, 0.50, 0.50,−0.20)T Newton 3.2002× 10−72 7.8134× 10−145 7 2.0156

Ostrowski 4.1778× 10−49 3.0779× 10−157 4 4.0962
HMT 2.0321× 10−44 1.6859× 10−208 3 -
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Table 4. Numerical performance of MCCT(0) on test problems for x(0) ≈ 3ξ.

System x(0) ||x(k+1)− x(k)|| ||F(x(k+1))|| Iter ACOC

F(x1, x2) (3.00, 3.00)T 2.9511× 10−49 2.6815× 10−195 4 5.8233
G(x1, x2) (2.60, 1.50)T 1.0829× 10−49 6.7038× 10−196 4 5.8689
M(x1, x2) (10.41,−7.41)T 2.3053× 10−41 1.0439× 10−113 4 5.9611
N(x1, x2) (3.00, 0.00)T nc nc nc nc
O(x1, x2) (−0.76,−1.16)T 7.0387× 10−71 7.9136× 10−174 5 -

P(x1, x2, x3) (2.73, 1.98, 4.73)T 6.8830× 10−58 4.1779× 10−146 5 -
Q(x1, x2, x3, x4) (1.73, 1.73, 1.73,−0.87)T 1.2880× 10−33 8.1032× 10−180 4 -

Table 5. Numerical performance of MCCT(0) on test problems for x(0) > 10ξ.

System x(0) ||x(k+1)− x(k)|| ||F(x(k+1))|| Iter ACOC

F(x1, x2) (11.00, 11.00)T 3.4914× 10−55 0 5 -
G(x1, x2) (9.53, 5.50)T 1.2350× 10−55 0 5 -
M(x1, x2) (38.18,−27.18)T 4.9654× 10−57 3.4199× 10−145 5 5.4814
N(x1, x2) (11.00, 0.00)T nc nc nc nc
O(x1, x2) (−2.79,−4.24)T 3.7780× 10−39 2.3868× 10−110 3 -

P(x1, x2, x3) (10.01, 7.27, 17.33)T 1.6228× 10−61 2.8246× 10−153 14 -
Q(x1, x2, x3, x4) (6.35, 6.35, 6.35,−3.18)T 1.0412× 10−45 1.9467× 10−208 5 -

Table 6. Numerical performance of MCCT(200) on test problems for x(0) ≈ ξ.

System x(0) ||x(k+1)− x(k)|| ||F(x(k+1))|| Iter ACOC

F(x1, x2) (0.90, 0.90)T 1.9038× 10−29 4.6447× 10−116 3 6.0626
G(x1, x2) (0.80, 0.40)T 5.1091× 10−67 1.9467× 10−208 4 -
M(x1, x2) (3.40,−2.40)T 1.6761× 10−43 2.8365× 10−119 3 5.9400
N(x1, x2) (0.90, 0.10)T 2.0202× 10−48 7.7869× 10−208 4 -
O(x1, x2) (−0.20,−0.30)T 3.8365× 10−85 6.7625× 10−202 4 -

P(x1, x2, x3) (0.80, 0.60, 1.50)T 3.2604× 10−41 5.4472× 10−112 4 -
Q(x1, x2, x3, x4) (0.50, 0.50, 0.50,−0.20)T 8.7884× 10−87 1.9467× 10−208 4 5.6358

Table 7. Numerical performance of MCCT(200) on test problems for x(0) ≈ 3ξ.

System x(0) ||x(k+1)− x(k)|| ||F(x(k+1))|| Iter ACOC

F(x1, x2) (3.00, 3.00)T 9.6219× 10−49 3.0304× 10−193 5 5.7669
G(x1, x2) (2.60, 1.50)T 3.4103× 10−49 7.5761× 10−194 5 5.8239
M(x1, x2) (10.41,−7.41)T 5.0005× 10−75 1.0922× 10−182 9 -
N(x1, x2) (3.00, 0.00)T nc nc nc nc
O(x1, x2) (−0.76,−1.16)T nc nc nc nc

P(x1, x2, x3) (2.73, 1.98, 4.73)T nc nc nc nc
Q(x1, x2, x3, x4) (1.73, 1.73, 1.73,−0.87)T 5.9657× 10−32 4.5520× 10−179 5 5.8489

5. Conclusions

In conclusion, the designed class MCCT(α) for solving systems of nonlinear equations
proves to be a highly efficient class with a convergence order of six.

We analyzed the convergence of the class of iterative schemes, assessed its stability
using a real multidimensional discrete dynamical system, and verified its throughput
performance numerically using several test problems.

The stable members of the MCCT(α) family exhibited outstanding numerical perfor-
mance. The method for α = 0 proved to be robust (stable) according to the real dynamics
analysis performed. The method for α = 200 was shown to be unstable and chaotic, and
it may not converge to the searched solution. The theoretical order of convergence was
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verified by ACOC, and is close to six. Finally, numerical experiments were conducted to
confirm the theoretical results.

Future lines of research consist of introducing a new step with similar characteristics
to increase the order of convergence without considerable penalty to its computational cost,
then analyzing its effect on the stability of the resulting family of methods.
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