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Abstract: In this article, based on the regularization techniques, we construct two new algorithms
combining the forward-backward splitting algorithm and the proximal contraction algorithm, respec-
tively. Iterative sequences of the new algorithms can converge strongly to a common solution of the
variational inclusion and null point problems in real Hilbert spaces. Multi-inertial extrapolation steps
are applied to expedite their convergence rate. We also give some numerical experiments to certify
that our algorithms are viable and efficient.
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1. Introduction

Let H be a real Hilbert space such that norm is ‖ · ‖ and the inner product is 〈·, ·〉,
respectively. We recall that the variational inclusion problem (VIP):

Find v∗ ∈ H such that 0 ∈ A(v∗) + B(v∗), (1)

where A : H → 2H is a set-valued operator and B : H → H is a single-valued operator. We
denote the solution set of (1) by Φ. The variational inclusion problem is a crucial extension
of the variational inequality problem. Many nonlinear problems such as problems of saddle
point, minimization, and split feasibility can be transformed into variational inclusion
problems which can be applied to signal processing, neural networks, medical image
reconstruction, machine learning, and data mining, etc., see [1–7].

As we all know, (1) can be converted to the fixed point equation v∗ = JλA(v∗ − λBv∗)
for some λ > 0, where JλA = (I + λA)−1 is the resolvent operator of A. The famous
forward–backward splitting method (FBSM) was proposed by Lions and Mercier [8] in 1979:

xn+1 = JλA(I − λB)xn,

where A and B are maximally monotone and η-inverse strongly monotone, respectively,
λ ∈ (0, 2η). Note that the Lipschitz continuity of an operator is a weaker property than the
inverse strong monotonicity. So the algorithm has a shortcoming: the convergence requires
a strong hypothesis. In order to overcome this difficulty, Tseng [9] constructed a modified
forward–backward splitting algorithm (TFBSM) in 2000:{

yn = JλA(I − λB)xn,

xn+1 = yn − λ(Byn − Bxn),
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where B is monotone and Lipschitz continuous.
On the other hand, a famous method for solutions of variational inequalities is the

projection and contraction method which was first introduced by He [10] for the variational
inequality problem in Euclidean space. Inspired by this, the following proximal contraction
method (PCM) was proposed by Zhang and Wang [11] in 2018:

yn = Jλn A(xn − λnBxn),

hn = xn − yn − λn(Bxn − Byn),

xn+1 = xn − rβnhn,

where r ∈ (0, 2),

βn =

{
0, hn = 0,
φ(xn ,yn)
‖hn‖2 , hn 6= 0,

φ(xn, yn) = 〈xn − yn, hn〉, and the sequence of variable stepsizes {λn} satisfies some
conditions. Notice that both (TFBSM) and (PCM) can only get weak convergent results in
real Hilbert spaces. In general, weakly convergent results are obviously less popular than
strongly convergent ones. In order to get the strong convergence, Hieu et al. [12] gave an
algorithm named the regularization proximal contraction method (RPCM), for solving (1)
in 2021: 

yn = Jλn A(xn − λn(B + αnF)xn),

hn = xn − yn − λn(Bxn − Byn),

xn+1 = xn − rβnhn,

where r ∈ (0, 2), φ(xn, yn) = 〈wn − yn, hn〉,βn = min
{

β, φ(xn ,yn)
‖hn‖2

}
and {λn} satisfies some

appropriate conditions. Before this, some scholars successfully applied this technique to
the variational inequality problem. Very recently, Song and Bazighifan [13] introduced an
inertial regularized method for solving the variational inequality and null point problem.

In recent years, there has been interest in methods with inertia which are considered
effective methods to expedite the convergence. The inertial method is favored by many
scholars because of its simple structure and easy operation, which is promoted by many
scholars and in-depth research. In 2003, Moudafi and Oliny [14] combined (FBSM) with
the inertial method to construct a new algorithm:{

yn = xn + ϑn(xn − xn−1),

xn+1 = Jλn A(yn − λnBxn),

where {λn} is a positive real sequence. Furthermore, some scholars have proposed multi-
step inertial methods. In 2021, Wang et al. [15] proposed the multi-step inertial hybrid
method to solve the problem (1).

Inspired by [12,13,15], we consider the variational inclusion and null point problem:

Find x§ ∈ Φ ∩ G−1(0) such that 〈Fx§, x− x§〉 ≥ 0, ∀x ∈ Φ ∩ G−1(0), (2)

where G and F are nonlinear operators. We propose two modified regularized multi-step
inertial methods to solve the above problem. These two algorithms are the modified
forward-backward splitting algorithm and the proximal contraction algorithm. Using
regularization techniques, the new algorithms converge strongly under mild conditions.
Some numerical examples are given to show that our algorithms are efficient.

This article is arranged as follows: we introduce some notations, fundamental defi-
nitions, and results that are used in later proofs in Section 2. In Section 3, we present the
new algorithms and discuss their convergence. In Section 4, we report some numerical
experiments to support our theoretical results obtained.
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2. Preliminaries

Let H be a real Hilbert space. The weak convergence and strong convergence of
sequence {xn} are denoted by xn ⇀ x and xn → x, respectively.

Definition 1 ([16]). The mapping T : H → H is called

(i) monotone, if
〈Ty− Tx, y− x〉 ≥ 0, ∀x, y ∈ H;

(ii) γ-strongly monotone (γ > 0), if

〈Ty− Tx, y− x〉 ≥ γ‖y− x‖2, ∀x, y ∈ H;

(iii) δ-inverse strongly monotone (δ > 0), if

〈Ty− Tx, y− x〉 ≥ δ‖Ty− Tx‖2, ∀x, y ∈ H;

(iv) l-Lipschitz continuous (l > 0), if

‖Ty− Tx‖ ≤ l‖y− x‖, ∀x, y ∈ H;

(v) firmly nonexpansive, if

〈Ty− Tx, y− x〉 ≥ ‖Ty− Tx‖2, ∀x, y ∈ H;

(vi) nonexpansive, if
‖Ty− Tx‖ ≤ ‖y− x‖, ∀x, y ∈ H.

Definition 2 ([16]). Let T : H → 2H be a set-valued mapping. The graph of T is defined by
Graph(T) = {(x, u) : x ∈ H, u ∈ Tx}. The mapping T is said to be

(i) monotone, if
〈v− u, y− x〉 ≥ 0, ∀u ∈ Tx, v ∈ Ty;

(ii) maximally monotone, if T is monotone on H and for any (y, v) ∈ H × H,

〈v− u, y− x〉 ≥ 0, ∀(x, u) ∈ Graph(T) indicates (y, v) ∈ Graph(T).

Lemma 1 ([17]). Let A : H → 2H be a maximally monotone operator, and B : H → H be a
monotone Lipschitz continuous operator. Then A + B is maximally monotone.

Lemma 2 ([18]). Let {tn} be a of nonnegative real sequence satisfying

tn+1 ≤ (1− βn)tn + βndn + $n, ∀x, y ∈ H,

where {βn}, {dn} and {$n} satisfying the conditions:

(i) {βn} ⊂ (0, 1) , ∑∞
n=1 βn = ∞;

(ii) limsupn→∞dn ≤ 0;
(iii) $n ≥ 0 with ∑∞

n=1 $n < ∞.

Then limn→∞tn = 0.

Lemma 3 ([19]). Let C be a nonempty closed convex subset of H and T : C → C be a nonexpansive
mapping. Then, the mapping I − T is demiclosed at zero, i.e., if xn ⇀ x and (I − T)xn → 0, then
x ∈ Fix(T).
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3. Main Results

We mainly introduce our new algorithms and analyze their convergence in this section.
Let H be a real Hilbert space. The following assumptions will be needed throughout
the paper:

(A1) A : H → 2H is maximally monotone.
(A2) B : H → H is monotone and L-Lipschitz continuous.
(A3) F : H → H is ξ-strongly monotone and k-Lipschitz continuous.
(A4) G : H → H is γ-inverse strongly monotone.
(A5) Ω := Φ ∩ G−1(0) 6= ∅, where Φ is the solution set of (1).

To solve (2), we construct a auxiliary problem:

Find x ∈ H, such that 0 ∈ A(x) + B(x) + αωG(x) + αF(x), (3)

for each α > 0 and 0 < ω < 1 , the solution of the problem (3) denoted by xα.

Lemma 4. Under the assumptions (A1)–(A4), for each α > 0 and 0 < ω < 1, the problem (3) has
a unique solution xα.

Proof. Since the properties of A, B, G, and F in the hypothesis, we can conclude that
A + B + αωG + αF is strongly monotone. It is well known that strong monotone operators
have unique solutions (see [20]). Therefore, the problem (3) has a unique solution xα.

Lemma 5. The net {xα} is bounded.

Proof. For each p ∈ Ω and α > 0, we have 0 ∈ Ap + Bp, Gp = 0 and 0 ∈ Axα + Bxα +
αωGxα + αFxα. Thus,

−αFxα ∈ Axα + Bxα + αωGxα,

and
0 ∈ Ap + Bp + αωGp.

Using the monotonic property of A, B and G, we derive

〈p− xα, αFxα〉 ≥ 0. (4)

By (4) and the ξ-strong monotonicity, it follows that

〈p− xα, Fp〉 = 〈p− xα, Fxα〉+ 〈p− xα, Fp− Fxα〉
≥ ξ‖p− xα‖2.

(5)

Consequently (5) and the Cauchy-Schwarz inequality, we find ‖Fp‖‖p− xα‖ ≥ ξ‖p−
xα‖2, then ‖p− xα‖ ≤ ‖Fp‖/ξ, we get

‖xα‖ ≤ ‖p‖+ ‖p− xα‖

≤ ‖p‖+ ‖Fp‖
ξ

.

So the net {xα} is bounded.

Lemma 6. For all α1, α2 ∈ (0, 1), there exists M > 0 such that,

‖xα1 − xα2‖ ≤
|α2 − α1|

α1α2
M.
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Proof. According to the assumption, xα1 , xα2 are solutions of the problem (3), let us suppose
that 0 < α2 < α1 < 1. Then,

0 ∈ Axα1 + Bxα1 + αω
1 Gxα1 + α1Fxα1

and
0 ∈ Axα2 + Bxα2 + αω

2 Gxα2 + α2Fxα2 ,

which implies
−αω

1 Gxα1 − α1Fxα1 ∈ (A + B)xα1

and
−αω

2 Gxα2 − α2Fxα2 ∈ (A + B)xα2 .

By Lemma 1, we know that

〈xα1 − xα2 ,−α1Fxα1 − αω
1 Gxα1 + α2Fxα2 + αω

2 Gxα2〉 ≥ 0,

or, equivalently,

〈xα1 − xα2 , (α2 − α1)Fxα2〉+ 〈xα1 − xα2 , α1(Fxα2 − Fxα1)〉
+〈xα1 − xα2 , (αω

2 − αω
1 )Gxα2〉+ 〈xα1 − xα2 , αω

1 (Gxα2 − Gxα1)〉 ≥ 0.

The properties of G and F and the Cauchy-Schwarz inequality imply that

α1ξ‖xα1 − xα2‖2 ≤ (αω
2 − αω

1 )〈xα1 − xα2 , Gxα2〉+ (α2 − α1)〈xα1 − xα2 , Fxα2〉
≤ |αω

2 − αω
1 |‖xα1 − xα2‖‖Gxα2‖+ |α2 − α1|‖xα1 − xα2‖‖Fxα2‖

which equal to

‖xα1 − xα2‖ ≤
|αω

2 − αω
1 |‖Gxα2‖+ |α2 − α1|‖Fxα2‖

α1ξ
. (6)

The Lipschitz continuity of the mapping F and G imply they are bounded. Combining
the Lagrange’s mean-value theorem, we deduce that

|αω
2 − αω

1 | = αω
1 − αω

2 ≤ ωαω−1
2 (α1 − α2) ≤ ωα−1

2 (α1 − α2) ≤ α−1
2 (α1 − α2),

this together with (6), implies that

‖xα1 − xα2‖ ≤
|α2 − α1|

α1α2

‖Gxα2‖
ξ

+
|α2 − α1|

α1α2

‖Fxα2‖
ξ

≤ |α2 − α1|
α1α2

M, (7)

where M = 1
ξ supα∈(0,1){‖Gxα‖+ ‖Fxα‖}. Indeed, since F and G are Lipschitz continuous,

the net {‖Gxα‖} and {‖Fxα‖} is bounded. If 0 < α1 ≤ α2 < 1, we can also get the same
results.

Lemma 7. limα→0+ xα = x§.

Proof. According to the conclusion of Lemma 5, there exists a subsequence {xαm} of
the net {xα} such that xαm ⇀ x and αm → 0+ as m → ∞. From RVI, we have that
−Bxα − αωGxα − αFxα ∈ Axα. Let us take a point (u, v) in Graph(A + B), that is, v ∈
Au + Bu. Thus, we derive by the assumption (A1),

〈u− xα, v− Bu + Bxα + αωGxα + αFxα〉 ≥ 0.

Replace α with αm, we deduce from the monotonicity of B that
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0 ≤ 〈u− xαm , v− Bu + Bxαm + αω
mGxαm + αmFxαm〉

= 〈u− xαm , αω
mGxαm + αmFxαm〉+ 〈u− xαm , v〉 − 〈xαm − u, Bxαm − Bu〉

≤ 〈u− xαm , αω
mGxαm + αmFxαm〉+ 〈u− xαm , v〉. (8)

It obtains that the sequence {Fxαm} is bounded by the boundedness of the sequence
{xαm} and the Lipschitz continuity of F. Letting m→ ∞ in relation (8) and we infer that

〈u− x, v〉 ≥ 0, ∀(u, v) ∈ Graph(A + B),

x ∈ (A + B)−1(0). (9)

For every q ∈ Ω, 0 ∈ Aq + Bq and Gq = 0. By (3), we obtain

−αω
mGxαm − αmFxαm ∈ Axαm + Bxαm ,

due to the definition of A + B, we know that

〈xαm − q,−αω
mGxαm − αmFxαm〉 ≥ 0,

by the monotonicity of F,

αω
m〈Gxαm , xαm − q〉 ≤ αm〈Fxαm , q− xαm〉

≤ αm〈Fq, q− xαm〉,

which leads to
〈Gxαm , xαm − q〉 ≤ α1−ω

m 〈Fq, q− xαm〉 → 0. (10)

By the property of G, noting (10) and Gq = 0, we obtain

γ‖Gxαm‖2 = γ‖Gxαm − Gq‖2

= 〈Gxαm − Gq, xαm − q〉
≤ 〈Gxαm , xαm − q〉 → 0,

which yields that
lim

m→∞
Gxαm = 0.

For any ι ∈ (0, 2γ], Gι = I − ιG is nonexpansive obviously holds. Owing to Lemma 3,
we obtain that x ∈ Fix(Gι),

x ∈ G−1(0),

together with (9), implies
x ∈ Ω.

Noting (5), we obtain 〈Fp, p− xα〉 ≥ 0 for all p ∈ Ω. Letting α = αm → 0+, we have

〈Fp, p− x〉 ≥ 0, ∀p ∈ Ω.

By Minty lemma [21], we get

〈Fx, p− x〉 ≥ 0, ∀p ∈ Ω.
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Due to uniqueness of the solution x§ to the problem (2), we have x = x§. Since x is
any point in ωw(xα), ωw(xα) = {x§}, that is, the net {xα} converges weakly to x§. After
that, applying (5) for p = x§, we get

ξ‖x§ − xα‖2 ≤ 〈Fx§, x§ − xα〉. (11)

Taking limit in (11) as α→ 0+, we obtain

lim
α→0+

ξ‖x§ − xα‖2 ≤ lim
α→0+

〈Fx§, x§ − xα〉 = 0.

Thus, limα→0+ ‖x§ − xα‖ = 0.

Remark 1. αn can be chosen as αn = 1
np , where 0 < p < 1

2 .

Lemma 8. Under the condition (A2), the sequence {λn} generated by Algorithm 1 or Algorithm 2
is convergent and

lim
n→∞

λn = λ > 0.

To be more precise, we have λ ≥ min
{

λ1, µ
L
}
> 0.

Algorithm 1 Modified multi-steps inertial forward-backward splitting method with regu-
larization

Initialization: Let x0, x1 ∈ H be arbitrary, µ ∈ (0, 1), λ1 ∈ (0, (1− µ)γ) and set n := 1.
Choose a sequence {τn} ⊂ [0,+∞) such that ∑∞

n=1 τn = τ < ∞ and 0 < µ + λ1+τ
γ < 1.

Choose a sequence{αn} ⊂ [0,+∞) satisfying:

∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0, lim
n→∞

αn+1 − αn

αn+1α2
n

= 0.

For a given positive integer N, choose a sequence {εi,n} ⊂ [0,+∞) (i = 1, 2, . . . , N)
satisfying

lim
n→+∞

εi,n

αn
= 0.

Iterative steps: Calculate xn+1 as follows:
Step 1. Compute

wn = xn +
min{n,N}

∑
i=1

θi,n(xn−i+1 − xn−i),

where 0 ≤ θi,n ≤ θi for some θi ∈ R with

θi,n =

{
min

{
θi,

εi,n
‖xn−i+1−xn−i‖

}
, if xn−i+1 6= xn−i,

θi, otherwise.

Step 2. Compute

yn = Jλn A

(
wn − λn(B + αω

n G + αnF)wn

)
.

Step 3. Compute

xn+1 = yn − λn(Byn − Bwn + αω
n Gyn − αω

n Gwn),

and

λn+1 =

{
min

{
λn + τn, µ‖wn−yn‖

‖Bwn−Byn‖

}
, if Bwn 6= Byn,

λn + τn, otherwise.

Set n = n + 1 and go to Step 1.
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Algorithm 2 Modified multi-steps inertial proximal contraction method with regularization

Initialization: Let x0, x1 ∈ H be arbitrary, r ∈ (0, 2), β > 0, µ ∈ (0, 1), and λ1 ∈ (0, (1−
µ)γ) and set n := 1. Choose a sequence {τn} ⊂ [0,+∞) such that ∑∞

n=1 τn = τ < ∞ and
0 < µ + λ1+τ

γ < 1. Choose a sequence {αn} ⊂ [0,+∞) satisfying:

∞

∑
n=1

αn = ∞, lim
n→∞

αn = 0, lim
n→∞

αn+1 − αn

αn+1α2
n

= 0.

For a given positive integer N, choose a sequence {εi,n} ⊂ [0,+∞) (i = 1, 2, . . . , N)
satisfying

lim
n→∞

εi,n

αn
= 0.

Iterative steps: Calculate xn+1 as follows:
Step 1. Compute

wn = xn +
min{N,n}

∑
i=1

θi,n(xn−i+1 − xn−i),

where 0 ≤ θi,n ≤ θi for some θi ∈ R with

θi,n =

{
min

{
θi,

εi,n
‖xn−i+1−xn−i‖

}
, if xn−i+1 6= xn−i,

θi, otherwise.

Step 2. Compute

yn = Jλn A

(
wn − λn(B + αω

n G + αnF)wn

)
.

and

λn+1 =

{
min

{
λn + τn, µ‖wn−yn‖

‖Bwn−Byn‖

}
, if Bwn 6= Byn,

λn + τn, otherwise.

step 3. Computehn = wn − yn − λn

(
(Bwn − Byn) + αω

n (Gwn − Gyn)
)

,

φ(wn, yn) = 〈wn − yn, hn〉.

Step 4. Compute
xn+1 = wn − rβnhn,

where

βn =

{
φ(wn ,yn)
‖hn‖2 , if ‖hn‖ 6= 0,

β, otherwise.

Set n = n + 1 and go to Step 1.

Proof. Since
‖Bwn − Byn‖ ≤ L‖wn − yn‖,

in the case of Bwn 6= Byn,

µ‖wn − yn‖
‖Bwn − Byn‖

≥ µ‖wn − yn‖
L‖wn − yn‖

=
µ

L
.

By induction, can draw the sequence {λn} has the lower bound min
{

λ1, µ
L
}

. Since the
computation of λn+1, we can get

λn+1 ≤ λn + τn,
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that is
λn+1 − λn ≤ τn.

Let [a]+ represent max{a, 0} for all a ∈ R. And we know τn ≥ 0, then

[λn+1 − λn]+ ≤ τn.

Because ∑∞
n=1 τn < ∞, obviously

∞

∑
n=1

[λn+1 − λn]+ < ∞.

Besides [a]+ = 1
2 a + 1

2 |a|, we infer

|λn+1 − λn| = 2[λn+1 − λn]+ − λn+1 + λn,

then,
k

∑
n=1
|λn+1 − λn| = 2

k

∑
n=1

[λn+1 − λn]+ − λk+1 + λ1.

Since {λn} has the lower bound min
{

λ1, µ
L
}

, we know λk+1 > 0. So we have

k

∑
n=1
|λn+1 − λn| < 2

k

∑
n=1

[λn+1 − λn]+ + λ1,

furthermore,
∞

∑
n=1
|λn+1 − λn| < ∞.

Therefore, {λn} is convergent.

Theorem 1. If the conditions (A1)–(A5) hold, x§ is the unique solution of problem (2) and the
sequence {xn} is generated by Algorithm 1, then xn converges strongly to x§.

Proof. Setting sn = Byn − Bwn + αω
n Gyn − αω

n Gwn,

‖xn+1 − xαn‖2 = ‖yn − λnsn − xαn‖2

= ‖yn − xαn‖2 + λ2
n‖sn‖2 − 2λn〈yn − xαn , sn〉. (12)

Since xαn is the solution of (3), we get

xαn = Jλn A

(
xαn − λn(Bxαn + αω

n Gxαn + αnFxαn)

)
,

and Jλn A is firmly nonexpansive,

〈yn − xαn , wn − xαn − λn(Bwn + αω
n Gwn + αnFwn

−Bxαn − αω
n Gxαn − αnFxαn)〉 ≥ ‖yn − xαn‖2,

which implies

〈yn − xαn , wn − xαn〉 − λn〈yn − xαn , Bwn + αω
n Gwn − Bxαn − αω

n Gxαn〉
−αnλn〈yn − xαn , Fwn − Fxαn〉 ≥ ‖yn − xαn‖2. (13)

Since the monotony of B and G, we find

λn〈yn − xαn , Byn − Bxαn + αω
n Gyn − αω

n Gxαn〉 ≥ 0, (14)



Mathematics 2023, 11, 1469 10 of 21

combining (13) and (14), we derive

λn〈yn − xαn , Byn − Bwn + αω
n Gyn − αω

n Gwn〉
≥ 〈yn − xαn , xαn − wn〉+ αnλn〈yn − xαn , Fwn − Fxαn〉+ ‖yn − xαn‖2,

or, equivalently,

〈yn − xαn , sn〉

≥ 1
λn
〈yn − xαn , xαn − wn〉+ αn〈yn − xαn , Fwn − Fxαn〉

+
1

λn
‖yn − xαn‖2. (15)

Combining (12) and (15), we get that

‖xn+1 − xαn‖2 ≤ λ2
n‖sn‖2 − 2〈yn − xαn , xαn − wn〉
− 2αnλn〈yn − xαn , Fwn − Fxαn〉 − ‖yn − xαn‖2, (16)

and the fact of

2〈yn − xαn , xαn − wn〉 = ‖yn − wn‖2 − ‖wn − xαn‖2 − ‖xαn − yn‖2, (17)

imply that

‖xn+1 − xαn‖2 ≤ ‖xαn − wn‖2 − ‖wn − yn‖2 + λ2
n‖sn‖2

−2αnλn〈yn − xαn , Fwn − Fxαn〉. (18)

Since

λ2
n‖sn‖2 = λ2

n‖Byn − Bwn‖2 + λ2
nα2ω

n ‖Gyn − Gwn‖2

+2λ2
nαω

n 〈Byn − Bwn, Gyn − Gwn〉

≤ λ2
nµ2

λ2
n+1
‖wn − yn‖2 +

λ2
nα2ω

n
γ2 ‖wn − yn‖2 +

2λ2
nµαω

n
γλn+1

‖wn − yn‖2

≤
(

µλn

λn+1
+

λ1 + τ

γ

)2

‖wn − yn‖2. (19)

Let t1, t2 and t3 be three positive numbers such that

2ξ − kt1 − t2 − t3 > 0.

By virtue of Lemma 8, αn → 0 and εi,n
αn
→ 0, there exists n0 ≥ 1, ∀n ≥ n0 such that

1− αnλnk
t1
−
(

µλn

λn+1
+

λ1 + τ

γ

)2

> 0,

1− t3αnλn > 0,
N

∑
i=1

εi,n ≤ t3λnαn.
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Because F is strongly monotone,

〈yn − xαn , Fwn − Fxαn〉
= 〈wn − xαn , Fwn − Fxαn〉+ 〈yn − wn, Fwn − Fxαn〉
≥ ξ‖wn − xαn‖2 − k‖wn − xαn‖‖yn − wn‖

≥ ξ‖wn − xαn‖2 − kt1

2
‖wn − xαn‖2 − k

2t1
‖yn − wn‖2

=

(
ξ − kt1

2

)
‖wn − xαn‖2 − k

2t1
‖yn − wn‖2. (20)

In views of (18)–(20), we get

‖xn+1 − xαn‖2

≤
(
1− αnλn(2ξ − kt1)

)
‖wn − xαn‖2

−
(

1− αnλnk
t1
−
(

λ1 + τ

γ
+

µλn

λn+1

)2)
‖wn − yn‖2. (21)

which implies,

‖xn+1 − xαn‖2 ≤
(
1− αnλn(2ξ − kt1)

)
‖wn − xαn‖2, ∀n ≥ n0. (22)

By Lemma 6, for all n ≥ n0, we have

‖xn+1 − xαn+1‖
2

= 2〈xαn − xαn+1 , xn+1 − xαn〉+ ‖xαn − xαn+1‖
2 + ‖xn+1 − xαn‖2

≤ 2‖xαn − xαn+1‖‖xn+1 − xαn‖+ ‖xαn+1 − xαn‖2 + ‖xn+1 − xαn‖2

≤ 1
t2αnλn

‖xαn − xαn+1‖
2 + t2αnλn‖xn+1 − xαn‖2 + ‖xn+1 − xαn+1‖

2

+‖xαn − xαn+1‖
2

=

(
1 +

1
t2αnλn

)
‖xαn − xαn+1‖

2 + (1 + t2αnλn)‖xn+1 − xαn‖2

≤
(

1 +
1

t2αnλn

)(
αn+1 − αn

αnαn+1

)2

M2 + (1 + t2αnλn)‖xn+1 − xαn‖2, (23)

where M appears in Lemma 6. Substituting (23) into (22), for all n ≥ n0, we deduce

‖xn+1 − xαn+1‖
2

≤ (1 + t2αnλn)
(
1− αnλn(2ξ − kt1)

)
‖wn − xαn‖2

+

(
1 +

1
t2αnλn

)(
αn+1 − αn

αnαn+1

)2

M2

= (1− (2ξ − kt1 − t2)αnλn − (2ξ − kt1)t2α2
nλ2

n)‖wn − xαn‖2

+

(
1 +

1
t2αnλn

)(
αn+1 − αn

αnαn+1

)2

M2

≤ (1− (2ξ − kt1 − t2)αnλn)‖wn − xαn‖2

+
(1 + t2αnλn)(αn+1 − αn)2

t2λnα3
nα2

n+1
M2. (24)
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In the view of, for all n ≥ n0,

‖wn − xαn‖2

= ‖xn +
N

∑
i=1

θi,n(xn−i+1 − xn−i)− xαn‖2

≤
(
‖xn − xαn‖+

N

∑
i=1

θi,n‖xn−i+1 − xn−i‖
)2

= ‖xn − xαn‖2 +
N

∑
i=1

θ2
i,n‖xn−i+1 − xn−i‖2

+2 ∑
1≤i<j≤N

θi,nθj,n‖xn−i+1 − xn−i‖‖xn−j+1 − xn−j‖

+2
N

∑
i=1

θi,n‖xn − xαn‖‖xn−i+1 − xn−i‖

≤
(

1 +
N

∑
i=1

εi,n

)
‖xn − xαn‖2 +

N

∑
i=1

ε2
i,n +

N

∑
i=1

εi,n + 2 ∑
1≤i<j≤N

εi,nεj,n

=

(
1 +

N

∑
i=1

εi,n

)
‖xn − xαn‖2 + εn

≤ (1 + t3αnλn)‖xn − xαn‖2 + εn, (25)

where εn = ∑N
i=1 ε2

i,n + ∑N
i=1 εi,n + 2 ∑1≤i<j≤N εi,nεj,n. The condition of {εi,n} implies that

limn→∞
εn
αn

= 0. Substituting (25) into (24), for all n ≥ n0,

‖xn+1 − xαn+1‖
2

≤ (1− (2ξ − kt1 − t2)αnλn)(1 + t3αnλn)‖xn − xαn‖2

+
(1 + t2αnλn)(αn+1 − αn)2

t2λnα3
nα2

n+1
M2 + εn

≤ (1− (2ξ − kt1 − t2 − t3)αnλn)‖xn − xαn‖2

+
(1 + t2αnλn)(αn+1 − αn)2

t2λnα3
nα2

n+1
M2 + εn

= (1− (2ξ − kt1 − t2 − t3)αnλn)‖xn − xαn‖2

+(2ξ − kt1 − t2 − t3)αnλn
(1 + t2αnλn)(αn+1 − αn)2

(2ξ − kt1 − t2 − t3)t2λ2
nα4

nα2
n+1

M2 + εn

≤ (1− ϕn)‖xn − xαn‖2 + ϕn M′
(

αn+1 − αn

αn+1α2
n

)2

+ εn

= (1− ϕn)‖xn − xαn‖2 + ϕnζn,

where ϕn = (2ξ − kt1 − t2 − t3)αnλn, M′ = supn∈N

{
(1+t2αnλn)M2

(2ξ−kt1−t2−t3)t2λ2
n

}
is positive and

ζn = M′
( αn+1−αn

αn+1α2
n

)2
+ εn

ϕn
. Because the constraints of {λn} and {αn}, we know that ϕn → 0,

∑∞
n=1 ϕn = ∞, and ζn → 0. We deduce from Lemma 2 that ‖xn − xαn‖2 → 0 as n→ ∞.

Theorem 2. If the conditions (A1)–(A5) hold, x§ is the unique solution of problem (2) and the
sequence {xn} is generated by Algorithm 2, then xn converges strongly to x§.

Proof. We have limn→∞ 1 − µλn
λn+1
− λ1+τ

γ = 1 − µ − λ1+τ
γ > 0 by Lemma 8, so for all

n ≥ n0, there exists δ > 0 and n0 ≥ 1 such that 1− µλn
λn+1
− λ1+τ

γ > δ > 0. We can also
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obtain limn→∞ 1 + µλn
λn+1

+ λ1+τ
γ = 1 + µ + λ1+τ

γ > 0, then
{

1 + µλn
λn+1

+ λ1+τ
γ

}
is bounded.

We will use the letter V to denote supn∈N

{
1 + µλn

λn+1
+ λ1+τ

γ

}
, obviously V > 0.

In the remainder proof, we assume that n ≥ n0. Setting sn = Byn − Bwn + αω
n Gyn −

αω
n Gwn, then

‖hn‖
≥ ‖wn − yn‖ − λn‖Bwn − Byn‖ − λnαω

n ‖Gwn − Gyn‖

≥ ‖wn − yn‖ −
µλn

λn+1
‖wn − yn‖ −

λ1 + τ

γ
‖wn − yn‖

=

(
1− µλn

λn+1
− λ1 + τ

γ

)
‖wn − yn‖

≥ δ‖wn − yn‖.

In the meantime,

‖hn‖
≤ ‖wn − yn‖+ λn‖sn‖
≤ ‖wn − yn‖+ λn(‖Bwn − Byn‖+ αω

n ‖Gwn − Gyn‖)

≤
(

1 +
µλn

λn+1
+

λ1 + τ

γ

)
‖wn − yn‖

≤ V‖wn − yn‖. (26)

For any n ≥ n0, wn = yn is equivalent to hn = 0. Since

φ(wn, yn)

= 〈wn − yn, wn − yn + λnsn〉
= ‖wn − yn‖2 − 〈wn − yn, λn(Bwn − Byn) + αω

n λn(Gwn − Gyn)〉

≥ ‖wn − yn‖2 − µλn

λn+1
‖wn − yn‖2 − λ1 + τ

γ
‖wn − yn‖2

=

(
1− µλn

λn+1
− λ1 + τ

γ

)
‖wn − yn‖2

≥ δ‖wn − yn‖2, (27)

combining (26) and (27), if hn 6= 0, then

βn =
φ(wn, yn)

‖hn‖2 ≥ δ

V2 > 0,

hence βn ≥ min
{

β, δ
V2

}
> 0. Then observe that

‖xn+1 − xαn‖2

= ‖wn − xαn‖2 − rβnhn

= ‖wn − xαn‖2 + r2β2
n‖hn‖2 − 2rβn〈wn − xαn , hn〉. (28)

By the definition of βn,
φ(wn, yn) = βn‖hn‖2,

which and (28) imply

‖xn+1 − xαn‖2 = ‖wn − xαn‖2 + r2βnφ(wn, yn)− 2rβn〈wn − xαn , hn〉. (29)
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By the definition of hn,

φ(wn, yn) = ‖wn − yn‖2 + λn〈wn − yn, sn〉, (30)

and

〈wn − xαn , hn〉
= 〈wn − xαn , wn − yn〉+ λn〈wn − yn, sn〉+ λn〈yn − xαn , sn〉. (31)

Substituting (30) and (31) into (29), we infer

‖xn+1 − xαn‖2 = ‖wn − xαn‖2 + r2βn‖wn − yn‖2 − (2− r)rβnλn〈wn − yn, sn〉
− 2rβnλn〈yn − xαn , sn〉 − 2rβn〈wn − xαn , wn − yn〉.

(32)

And then, by the properties of B and G, we infer that

〈wn − yn, sn〉 = −〈wn − yn, Bwn − Byn〉 − αω
n 〈wn − yn, Gwn − Gyn〉

≥ −
(

µ

λn+1
+

1
γ

)
‖wn − yn‖2. (33)

Using the same method in the Theorem 1, we get

‖xn+1 − xαn‖2

≤
(

1− rβnαnλn(2ξ − kt1)

)
‖wn − xαn‖2

−rβn

(
2− r− (2− r)λn

(
µ

λn+1
+

1
γ

)
− αnkλn

t1

)
‖wn − yn‖2

≤
(

1− rβnαnλn(2ξ − kt1)

)
‖wn − xαn‖2

−rβn

(
(2− r)

(
1− µ

λn+1
− λ1 + τ

γ

)
− αnkλn

t1

)
‖wn − xαn‖2

≤
(

1− rβnαnλn(2ξ − kt1)

)
‖wn − xαn‖2

−rβn

(
(2− r)η − αnkλn

t1

)
‖wn − xαn‖2.

where t1 ∈ (0, 2ξ
k ). Cause αn → 0, we assume (2− r)η − αnkλn

t1
> 0. Hence

‖xn+1 − xαn‖2

≤
(

1− rβnαnλn(2ξ − kt1)

)
‖wn − xαn‖2.

The remaining proofs are the same as Theorem 1.

4. Numerical Experiments

Three examples are given to show the performances of our algorithms. When the coef-
ficients of inertia are equal to zero, let us use MFBMR and MPCMR for Algorithms 1 and 2,
respectively. We denote Algorithm 1 for N = 1, 2, 3 by MIFBMR, 2-MMIFBMR and 3-
MMIFBMR, respectively. Similarly denote Algorithm 2 for N = 1, 2, 3 by MIPCMR, 2-
MMIPCMR and 3-MMIPCMR, respectively. All the programmes are written in Matlab 9.0
and performed on PC Desktop Intel(R) Core(TM) i5-1035G1 CPU @ 1.00 GHz 1.19 GHz,
RAM 16.0 GB.
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Example 1. Suppose H = R. Let A : R→ 2R be a mapping defined as

Ax :=
{

1
4

x
}

, ∀x ∈ R,

and B : R→ R as

Bx := x arctan x− 1
2

ln(1 + x2) +
π

2
x, ∀x ∈ R.

Set mapping G : R→ R as

Gx := x− sin x, ∀x ∈ R.

It is obvious that A is maximally monotone. We can prove that B is monotone and Lipschitz
continuous. We know G is 1

2 -inverse strongly monotone by calculation. Let F = 0.4I.
Choose θi = 0.1,x0 = 1 and εi,n = n−2 for MIFBMR, 2-MMIFBMR, 3-MMIFBMR,

MIPCMR, 2-MMIPCMR and 3-MMIPCMR. Choose x1 = 1, ω = 0.6, λ1 = 0.08, µ = 0.6,
τn = 0.1(n + 1)−4 and αn = n−1/3 for each algorithm. Choose r = 1, β = 2 for MPCMR,
MIPCMR, 2-MMIPCMR, and 3-MMIPCMR. It is obvious that Ω = {0} and x§ = 0 is the only
one solution of problem (2). The numerical results of this example are represented in Figures 1 and 2.

0 10 20 30 40 50 60 70 80 90

Number of Iterations

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

E
n
=

‖x
n
−
x
§
‖

MFBMR
MIFBMR
2-MMIFBMR
3-MMIFBMR

Figure 1. Comparison of MFBMR, MIFBMR, 2-MMIFBMR and 3-MMIFBMR in Example 1.
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‖x
n
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x
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MIPCMR
2-MMIPCMR
3-MMIPCMR

Figure 2. Comparison of MPCMR, MIPCMR, 2-MMIPCMR and 3-MMIPCMR in Example 1.

Example 2. Let H = Rs. Let F = I. Let A : Rs → 2R
s

be defined by

Ax := {Jx}, ∀x ∈ Rs,

where J is an upper triangular matrix whose nonzero elements are all 1 in Rs×s. Let B : Rs → Rs

be a mapping defined as
Bx := Ex, ∀x ∈ Rs,

where
E = CCT + S + D,

here C is a matrix, S is a skew-symmetric matrix and D is a diagonal matrix whose diagonal entries
are positive. They all in Rs×s. Therefore E is positive definite. Obviously, B is monotone and
Lipschitz continuous. Define G : Rs → Rs as

Gx := x− 1
‖Q‖Qx, ∀x ∈ Rs,

where Q is a nonzero matrix in Rs×s. We know G is 1
2 -inverse strongly monotone by calculation.

Choose x0 = (1, 1, · · · , 1)T, εi,n = n−2 and θi = 0.1 for MIFBMR, 2-MMIFBMR, 3-
MMIFBMR, MIPCMR, 2-MMIPCMR and 3-MMIPCMR. Choose x1 = (1, 1, · · · , 1)T, ω = 0.5,
µ = 0.5, λ1 = 0.2, τn = 0.1(n + 1)−4 and αn = n−1/4 for each algorithm. Choose r = 1,
β = 2 for MPCMR, MIPCMR, 2-MMIPCMR and 3-MMIPCMR. All the diagonal elements of
D are arbitrary in (0, 2), the elements of C, S and Q are generated randomly in (−2, 2), (−2, 2)
and (0, 1), respectively. It is obvious that Ω = {(0, 0, · · · , 0)T} and hence the solution of (2)
x§ = (0, 0, · · · , 0)T is unique. The numerical results are represented in Figures 3 and 4.
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Figure 3. Comparison of MFBMR, MIFBMR, 2-MMIFBMR and 3-MMIFBMR in Example 2 with
s = 10.
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Figure 4. Comparison of MPCMR, MIPCMR, 2-MMIPCMR and 3-MMIPCMR in Example 2 with
s = 10.
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Example 3. Let H = R2. Let A : R2 → 2R
2

be a mapping defined as

A(u, v)T :=
{(

2 −5
−5 13

)
(u, v)T

}
, ∀(u, v)T ∈ R2,

B : R2 → R2 be a mapping defined as

B(u, v)T := (u + v + sin u,−u + v + sin v)T, ∀(u, v)T ∈ R2,

and F : R2 → R2 be a mapping defined as

F(u, v)T := (2u + 2v + sin u,−2u + 2v + sin v)T, ∀(u, v)T ∈ R2.

Define G : R2 → R2 as

G(u, v)T :=
3

28

(
1 −1
−1 1

)
(u, v)T, ∀(u, v)T ∈ R2.

We can claim that B is monotone and
√

10-Lipschitz continuous, F is 1-strongly monotone
and
√

26-Lipschitz continuous. We know G is 2-inverse strongly monotone by calculation. Choose
θi = 0.1,x0 = (1, 1)T and εi,n = n−2 for MIFBMR, 2-MMIFBMR, 3-MMIFBMR, MIPCMR,
2-MMIPCMR and 3-MMIPCMR. Choose x1 = (1, 1)T, ω = 0.8, λ1 = 0.05, µ = 0.2, τn =
0.1(n + 1)−6 and αn = n−2/5 for each algorithm. Choose r = 1, β = 2 for MPCMR, MIPCMR,
2-MMIPCMR and 3-MMIPCMR. It is obvious that Ω = {(0, 0)T} and x§ = (0, 0)T is the only
solution of problem (2). The numerical results are represented in Figures 5–8.
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Figure 5. Comparison of MFBMR, MIFBMR, 2-MMIFBMR and 3-MMIFBMR in Example 3.
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Figure 6. Comparison of MPCMR, MIPCMR, 2-MMIFBMR and 3-MMIPCMR in Example 3.
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Figure 7. Comparison of 2-MMIFBMR and 2-MMIPCMR in Example 3.
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Figure 8. Comparison of 3-MMIFBMR and 3-MMIPCMR in Example 3.

Remark 2. In Algorithms 1 and 2, the values of L, k and ξ are not necessary to be known.

5. Conclusions

We have introduce two improved regularized algorithms with multi-step inertia to
solve the variational inclusion and null point problem in Hilbert spaces. Then we can get
strong convergence without using the inverse strongly monotone assumption. Another
advantage of our algorithms is that the stepsizes do not need to use the Lipschitz constant of
the operator. In addition, the values of k, L, and ξ are not needed in the calculation process,
and the choice of αn seems harsh but is actually available, such as αn = n−p, 0 < p < 1/2.
Finally, the feasibility and effectiveness of our algorithms can be seen in the figures of
the numerical experiments. After this, a question is how to get strong convergence under
weaker conditions. We will discuss and study this issue in the future.

Author Contributions: Conceptualization, M.L.; Methodology, Y.W. and B.J.; Validation, Y.W., M.L.
and C.Y.; Formal analysis, Y.W.; Investigation, M.L. and C.Y.; Resources, C.Y. and B.J.; Data curation,
C.Y. and B.J.; Writing—original draft, M.L.; Writing—review & editing, B.J.; Project administration,
Y.W., M.L. and C.Y.; Funding acquisition, Y.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant no.
11671365).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no competing interest.

References
1. Combettes, P.L.; Wajs, V.R. Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 2005, 4, 1168–1200.

[CrossRef]
2. Daubechies, I.; Defrise, M.; De Mol, C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.

Comm. Pure Appl. Math. 2004, 57, 1413–1457. [CrossRef]
3. Duchi, J.; Singer, Y. Efficient online and batch learning using forward backward splitting. J. Mach. Learn. Res. 2009, 10, 2899–2934.

http://doi.org/10.1137/050626090
http://dx.doi.org/10.1002/cpa.20042


Mathematics 2023, 11, 1469 21 of 21

4. Raguet, H.; Fadili, J.; Peyré, G. A generalized forward-backward splitting. SIAM J. Imaging Sci. 2013, 6, 1199–1226. [CrossRef]
5. Dilshad, M.; Aljohani, A.F.; Akram, M.; Khidir, A.A. Yosida approximation iterative methods for split monotone variational

inclusion problems. J. Funct. Space 2022, 2022, 3667813. [CrossRef]
6. Abubakar, J.; Kumam, P.; Garba, A.I.; Abdullahi, M.S.; Ibrahim, A.H.; Sitthithakerngkiet, K. An inertial iterative scheme for

solving variational inclusion with application to Nash-Cournot equilibrium and image restoration problems. Carpathian J. Math.
2021, 37, 361–380. [CrossRef]

7. Okeke, C.C.; Izuchukwu, C.; Mewomo, O.T. Strong convergence results for convex minimization and monotone variational
inclusion problems in Hilbert space. Rend. Circ. Mat. Palermo Ser. 2 2020, 69, 675–693. [CrossRef]

8. Lions, P.L.; Mercier, B. Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 1979, 16, 964–979.
[CrossRef]

9. Tseng, P. A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 2000, 38,
431–446. [CrossRef]

10. He, B.S. A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 1997, 35, 69–76.
[CrossRef]

11. Zhang, C.; Wang, Y. Proximal algorithm for solving monotone variational inclusion. Optimization 2018, 67, 1197–1209. [CrossRef]
12. Hieu, D.V.; Anh, P.K.; Ha, N.H. Regularization proximal method for monotone variational inclusions. Netw. Spat. Econ. 2021, 21,

905–932. [CrossRef]
13. Song, Y.; Bazighifan, O. Modified inertial subgradient extragradient method with regularization for variational inequality and

null point problems. Mathematics 2022, 10, 2367. [CrossRef]
14. Moudafi, A.; Oliny, M. Convergence of a splitting inertial proximal method for monotone operators. J. Comput. Appl. Math. 2003,

155, 447–454. [CrossRef]
15. Wang, Y.; Yuan, M.; Jiang, B. Multi-step inertial hybrid and shrinking Tseng’s algorithm with Meir-Keeler contractions for

variational inclusion problems. Mathematics 2021, 9, 1548. [CrossRef]
16. Cholamjiak, P.; Hieu, D.V.; Muu, L.D. Inertial splitting methods without prior constants for solving variational inclusions of two

operators. Bull. Iran. Math. Soc. 2022, 48, 3019–3045. [CrossRef]
17. Wang, Z.; Long, X.; Lei, Z.; Chen, Z. New self-adaptive methods with double inertial steps for solving splitting monotone

variational inclusion problems with applications. Commun. Nonlinear Sci. Numer. Simul. 2022, 2022, 106656. [CrossRef]
18. Jiang, B.; Wang, Y.; Yao, J.C. Multi-step inertial regularized methods for hierarchical variational inequality problems involving

generalized Lipschitzian mappings. Mathematics 2021, 9, 2103. [CrossRef]
19. Wang, Y.; Wu, X.; Pan, C. The iterative solutions of split common fixed point problem for asymptotically nonexpansive mappings

in Banach spaces. Fixed Point Theory Appl. 2020, 2020, 18. [CrossRef]
20. Chang, S.S. The Mann and Ishikawa iterative approximation of solutions to variational inclusions with accretive type mappings.

Comput. Math. Appl. 1999, 37, 17–24. [CrossRef]
21. Cottle, R.W.; Yao, J.C. Pseudo-monotone complementarity problems in Hilbert space. J. Optim. Theory Appl. 1992, 75, 281–295.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/120872802
http://dx.doi.org/10.1155/2022/3665713
http://dx.doi.org/10.37193/CJM.2021.03.01
http://dx.doi.org/10.1007/s12215-019-00427-y
http://dx.doi.org/10.1137/0716071
http://dx.doi.org/10.1137/S0363012998338806
http://dx.doi.org/10.1007/s002459900037
http://dx.doi.org/10.1080/02331934.2018.1455832
http://dx.doi.org/10.1007/s11067-021-09552-7
http://dx.doi.org/10.3390/math10142367
http://dx.doi.org/10.1016/S0377-0427(02)00906-8
http://dx.doi.org/10.3390/math9131548
http://dx.doi.org/10.1007/s41980-022-00682-3
http://dx.doi.org/10.1016/j.cnsns.2022.106656
http://dx.doi.org/10.3390/math9172103
http://dx.doi.org/10.1186/s13663-020-00686-w
http://dx.doi.org/10.1016/S0898-1221(99)00109-1
http://dx.doi.org/10.1007/BF00941468

	Introduction
	Preliminaries
	Main Results
	Numerical Experiments
	Conclusions
	References

