
Citation: Ebrahimi, F.; Ezzati, H. A

Machine-Learning-Based Model for

Buckling Analysis of Thermally

Affected Covalently Functionalized

Graphene/Epoxy Nanocomposite

Beams. Mathematics 2023, 11, 1496.

https://doi.org/10.3390/

math11061496

Academic Editors: Elena Benvenuti

and Paolo Mercorelli

Received: 17 December 2022

Revised: 6 March 2023

Accepted: 14 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Machine-Learning-Based Model for Buckling Analysis of
Thermally Affected Covalently Functionalized Graphene/Epoxy
Nanocomposite Beams
Farzad Ebrahimi * and Hosein Ezzati

Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University,
Qazvin 34148-96818, Iran
* Correspondence: febrahimy@eng.ikiu.ac.ir

Abstract: In this paper, a machine-learning model is utilized to estimate the temperature-dependent
moduli of neat, thermally reduced graphene and covalently functionalized graphene/epoxy nanocom-
posites. In addition, the governed mathematical expressions have been used to solve the buckling
problem of beams fabricated from such nanocomposites in the presence of a thermal gradient. In
order to do so, an energy-based method including the shear deformable beam hypothesis is used.
The beam structure is rested on the Winkler–Pasternak substrate. The reported verifications demon-
strate the impressive precision of the presented ML model, as well as the buckling response of the
under-study structures. Finally, in the framework of some numerical case studies, the impact of
several parameters on the buckling of nanocomposite beams is depicted. The results of this study
delineate that temperature has a vital role in the determination of the critical buckling load that the
nanocomposite structures can endure.

Keywords: machine learning; functionalized graphene nanocomposites; thermal buckling; shear
deformable beam
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1. Introduction

Researchers’ capabilities for the study, development, and production of new and
improved materials lie before efficient and, at the same time, accurate simulation meth-
ods. One of these novel ways is artificial intelligence which can take simulations to the
next level. Over the past few years, machine learning (ML), which is a sub-category of
artificial intelligence, has offered scientists and engineers new ways of interacting with
data gathered from their studies. Scientists whose field of inquiry is the study of material
properties, especially, can benefit from ML-based methods to predict a material’s behavior
based on a sufficient amount of data obtained from experimental studies. Furthermore,
carbon-based nanocomposite (NC) materials have gained exceptional attention from the
aerospace, mechanical, and other industries due to their beneficial mechanical properties.
Research shows advantageous mechanical, thermal, and electrical characteristics in such
carbonic nanocomposites. It is worth mentioning that these materials are often made by
dispersing carbon-based reinforcements to a polymeric resin. Herein, a series of scientific
objectives that have been met in the past is presented: The graphene oxide (GO) disper-
sion effect on the mechanical properties of graphene/epoxy composites was carried out
by Tang et al. [1] using an experimental approach. Song et al. [2] investigated the high
temperature effect on graphene oxide’s structure and adsorption properties with flowing
argon. The Raman stereoscopy method was implemented by Yadav and Cho [3] to enhance
the mechanical and thermal properties of polyurethane nanocomposites by incorporating
functionalized graphene nanoplates (f-GNP). In another experimental research performed
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by Naebe et al. [4], graphene nanoplates (GNPs) were covalently functionalized in order
to improve their bonding with the epoxy resin. Their investigation showed an increase
in flexural strength and elastic modulus compared with GO due to the more consistent
dispersion of functionalized graphene (FG). Furthermore, Chandrasekaran et al. [5] studied
the addition of carbon-nanofiller-polymer-based epoxies and their effect on the fracture
toughness and failure mechanism of the resultant NC. In another attempt, the impact of
adding graphene platelets (GPLs) to a polymeric matrix on NC’s fracture toughness was
analyzed by Ahmadi-Moghadam and Taheri [6]. In addition, Sun et al. [7] developed
empirical equations relating the mechanical properties of GO nanocomposites and their
working temperature.

On top of the aforementioned experimental studies, numerous studies have been
conducted about the static and dynamic responses of carbon-nanofiller-reinforced NCs
with the use of a theoretical framework. For instance, Khoei and Khorrami [8] utilized
a molecular dynamics analysis to assess the ultimate stress, Young modulus, and shear
modulus of graphene oxide and compare the results with those of pure graphene. More-
over, Lin et al. [9] discussed the temperature-dependent Young’s modulus of graphene
oxide incorporated in polymer composites using molecular dynamics simulations. The
natural frequencies of a multi-layer polymer NC reinforced with various GPL distributions
were derived by Feng et al. [10]. In another study carried out by Kitipornchai et al. [11],
GPLs were dispersed in the matrix with three different patterns, and, as the result, the free
vibration and buckling of such functionally graded nanocomposites were assessed. Yas and
Samadi [12] studied the buckling and free vibration response of beams fabricated from four
types of carbon nanotube (CNT) distributions resting on an elastic foundation. By utilizing
the principle of virtual work, Barati and Zenkour [13] were able to clarify the post-buckling
behavior of graphene-platelet-reinforced nanocomposite (GPLRNC) beams with an im-
perfect porous geometry. Thereafter, Shen et al. [14] examined the nonlinear frequency
response of graphene-reinforced nanocomposite (GRNC) beams with different types of
distribution patterns along with the media’s thickness. In another attempt, Yang et al. [15]
succeeded in solving the thermal-bending problem of both circular and annular plates
made of GPLRNCs with the use of the three-dimensional elasticity concept. By using
the framework of the first-order shear deformation theory, Song et al. [16] succeeded in
deriving both the bending and buckling responses of the GPLRNC plates. Concerned
about the influence of porosities in the NC plates reinforced with GPLs, Yang et al. [17]
surveyed the buckling and free vibration characteristics of such NC plates. In another
endeavor, Yang et al. [18] studied the critical buckling response of GPLRNC plates by
distributing the GPLs uniformly in each layer of multilayer plates. Moreover, the effects
of a non-uniform magnetic field on the vibrational behavior of GO-reinforced nanocom-
posite (GORNC) beams were carried out by Ebrahimi et al. [19], utilizing a higher-order
trigonometric beam model. Moayedi et al. [20] probed an analytical investigation on the
thermal buckling answer of the GPLRNC cylindrical micro-panel. They used a higher-order
shear deformable theory for obtaining the stress and strain response of the mentioned NC
panels. In another research gathered by Mao and Zhang [21], piezoelectric plates reinforced
with GPLs were subjected to both axial load and electric potential to study the buckling
and post-buckling characteristics of such piezoelectric plates. Recently, machine-learning
methods were implemented by Amini et al. [22] in order to derive the relationship be-
tween the elasticity moduli and the working temperature of various types of GORNCs.
By doing so, they were able to obtain the critical buckling response of the GORNC beam
with different GO weight fractions. Another paper regarding the buckling problem of
GRNC beams developed by Yas and Rahimi [23] took into account the effects of the thermal
environment and the existence of porosities in the NC. In addition, Shokrgozar et al. [24]
deployed an analytical study on the dynamic and static response of a cylindrical micro-shell
reinforced with GPLs covered with a viscoelastic foundation subjected to axial load. The
dynamic behavior of GPL-reinforced porous plates with elastic boundary conditions was
analyzed by Liu et al. [25]. Moreover, Qian et al. [26] probed the influence of the addition
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of both functionalized and non-functionalized single-wall carbon nanotubes on the elastic
modulus and tensile strength of incorporated glass/epoxy nanocomposites. With the use
of an unconstrained higher-order theory, Eyvazian et al. [27] were able to determine the
natural frequencies of cylindrical sandwich shells reinforced by GPLs. Lately, a thermal
buckling analysis of GRNC beams with a negative thermal expansion coefficient using the
Ritz method was carried out by Zhao et al. [28]. Furthermore, Jiang et al. [29] proposed a
three-dimensional interface theory to develop a compatible multiscale model in order to
examine the scaling law of the nanocomposites’ effective moduli. Regarding the nanocom-
posite structures from ML-based approaches, TT Le [30] developed a model to predict the
tensile strength of polymer CNTs using a database gathered from the literature. Moreover,
Garg et al. [31] utilized a Gaussian process regression-based surrogate model as well as
a finite element model to accurately evaluate the stiffness matrix of functionally graded
nanoplates. In addition, a surrogate machine-learning model trained with MD models of
functionalized CNT epoxy was developed by Rahman et al. [32] to precisely predict the
CNT’s pullout force.

To the authors’ best knowledge, even though numerous studies have been conducted
about the mechanical properties of NC materials and structures, nonetheless, there is no
paper relating the mechanical characteristics of NC materials to its operational environment
by utilizing artificial intelligence to further improve the efficiency and accuracy of the
simulations. The main reason for this inquiry is the copious resources and amount of time
that experimental studies require, along with the expensive hardware that conventional
simulation methods need. This ensuing research is an attempt to link the mechanical
properties of three types of NC materials with their working conditions. Motivated to make
a bridge between theoretical relations and the experimental data, we utilized machine-
learning methods to determine the relationship between an NC’s Young’s modulus and
its temperature. Using these established mathematical relations derived for each NC type,
we were able to easily access the Young’s moduli of NC types in any desired tempera-
ture and ascertain the critical buckling load of three types of beams fabricated from neat
epoxy, graphene-oxide-reinforced nanocomposite (GORNC), and functionalized graphene-
reinforced nanocomposite (FGRNC) in a thermal environment. Here, we undertake the
buckling analysis using a higher-order shear deformation theory. Moreover, the beam
structure is rested on a medium with incorporated linear and shear springs. Moreover, the
presented results regarding both moduli estimation and critical buckling load calculations
are validated with previous research in order to show the precision of the presented model.
Thereafter, a series of depicted reports are expressed to show the effects of different variants
on the buckling behavior of NC beams.

2. Theory & Formulation
2.1. Problem Definition

Herein, the temperature dependency of GORNC, FGRNC, and neat epoxy will be
derived using the experimental data gathered from the literature. Next, by utilizing the
principle of virtual work, the buckling equations of beam-type elements will be obtained.
In the end, an analytical solution will be presented to extract the critical buckling load
of the simply-supported boundary conditions on each edge of the structure. Graphene
reinforcements are distributed uniformly in the epoxy and the beam, as presented in
Figure 1, embedded on a Winkler–Pasternak foundation. Moreover, the beam-type element
used in the study has a length L, width b, and thickness of h.

2.2. Estimation of the Temperature-Dependent Young’s Moduli

Although there are more simple ways to fit a curve to the experimental data, without
the use of ML methods, the resultant expression would not be close enough to properly use
the outcome for assessing the Young’s modulus. For this reason, a machine-learning model
based on regression was developed to extract an analytical expression for the estimation
of the Young’s moduli at any desired temperature. In order to do so, we derived the
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experimental data reported by Naebe et al. [4]. The mentioned research has presented the
variation of the moduli versus temperature raise for FG and GO nanocomposites. The
reported weight fraction of the nanosized reinforcements is 0.1%. Figure 2 shows the
Young’s moduli of three types of material extracted experimentally by Naebe et al. [4].
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After deriving a sufficient amount of data points from Figure 2, an ML-based regression
procedure using multiple polynomial and sigmoid functions was initiated to obtain the best
expression describing the dependency of Young’s moduli on temperature. At the first stage
of development, we used some polynomial and sigmoid functions in order to fit a curve
to the experimental data. Afterwards, ML is deployed to reach appropriate estimation
coefficients, as well as the proper number of terms for maximum accuracy. The model uses
the standard deviation and the mean of the data for its initial guesses; after 50,000 tries, it
presented the optimum value for each coefficient and the number of terms. The expression
is as follows:

E = α1T+α2T2 + α3T3 + α4
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(1)

where E is the Young’s modulus, αi are the estimation coefficients reported in Table 1 for
each material type, and T is the desired temperature. Moreover, the term C indicates the
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initial value of each of the types. For Equation (1), there is the assumption that there are no
outliers in the reported experimental data, and that the temperature below and above the
values reported are in continuous form. Of the 300+ points extracted from the experimental
data, 77% was used to train the model, whilst the rest of the data was used to validate the
outcome of this methodology. For an evaluation of the results, the root mean relative error
(MRE) and R-squared (R2) were implemented. Using the MRE, we found how close the
regression line is to the experimental data, and it can be calculated using the following
formula [33]:

MRE =
∑n

i=1(

∣∣∣∣yi−
−
yi

∣∣∣∣
−
yi

)

n
(2)

where n is the number of data points, and yi and
−
y i are the experimental and the predicted

data, respectively. An algorithm can be authenticated with these two methods (i.e., MRE
and R2) when the value of R2 is very close to the perfect state of 1. In addition to validating
the proposed algorithm, the value of MRE should be intensely less that the values of the
data points. As shown in Table 2, the validity of the presented algorithm is confirmed by
the values of both MRE and R2.

Table 1. The estimation coefficients of different material types.

Neat epoxy (C = 2121.54893)

α1 α2 α3 α4 α5 α6
7.80627389 −1.81533262 × 10−1 5.99054633 × 10−4 −9.41097233 × 101 −1.87784478 × 102 −1.82985862 × 102

α7 α8 α9 α10 α11
−8.19707494 × 101 −1.86225844 × 102 −1.30992530 × 102 −6.71379619 × 101 −8.64014610 × 101

Epoxy/Graphene (C = 2394.51308)

α1 α2 α3 α4 α5 α6
4.33776820 −1.66278050 × 10−1 6.11193348 × 10−4 −2.42975958 × 101 −7.63626419 × 101 −1.33970188 × 102

α7 α8 α9 α10 α11
−2.37603975 × 102 −3.43333229 × 102 −2.32259096 × 102 −1.12062166 × 102 −3.60855758 × 101

Epoxy/Functionalized graphene (C = 2968.22288)

α1 α2 α3 α4 α5 α6
−1.22978891 × 101 2.27421386 × 10−2 1.09216658 × 10−5 1.61387358 × 101 −1.34988115 × 101 −1.25826021 × 101

α7 α8 α9 α10 α11
−1.15675331 × 101 −9.50302118 × 101 −2.01753507 × 102 −5.76713858 × 102 −6.21085483 × 102

Table 2. R2 and MRE values for training and test datasets of the materials.

Material
R2 MRE

Training Dataset Test Dataset Training Dataset Test Dataset

Neat epoxy 0.9997 0.9994 0.0006 0.0006
Epoxy/Graphene 0.9997 0.9996 0.0006 0.0005
Epoxy/Functionalized
graphene 0.9992 0.9987 0.0007 0.0006

Figure 3 show the error distributions for the Young’s moduli of the three types of
materials under study. As it is demonstrated in this plot, the errors can be negligible
when compared to the actual value of the Young’s moduli. Furthermore, Table 3 shows
the proximity of the moduli calculated by the regressed model and those reported in the
literature. Therefore, the proposed expression can accurately estimate the Young’s moduli
of nanocomposites at any desired temperature.
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Table 3. Comparison of the estimated and experimental values of the Young’s moduli for the studied
material types.

Neat Epoxy Epoxy/Graphene Epoxy/Functionalized Graphene

Temp Actual [4] Fitted Actual [4] Fitted Actual [4] Fitted

40 2180.7 2179.3 2337.5 2341.5 2514.1 2513.4
50 2131.5 2129.0 2273.8 2274.4 2410.7 2411.5
60 2066.2 2067.3 2186.8 2188.1 2313.0 2314.6
70 1980.0 1977.9 2089.1 2090.4 2217.3 2222.5
80 1902.4 1886.5 1986.6 1986.5 2135.7 2135.7
90 1784.8 1785.8 1874.5 1877.6 2054.4 2053.6
100 1678.6 1683.4 1774.4 1776.5 1985.2 1976.8
110 1485.6 1483.7 1647.3 1648.5 1918.8 1921.1
120 1185.5 1181.7 1457.9 1459.0 1840.1 1839.8
130 741.7 740.3 848.0 847.2 1707.8 1707.5
140 402.4 407.0 317.4 317.3 1121.0 1112.7
150 214.3 213.6 164.8 170.9 159.4 160.1
160 156.7 160.0 150.2 139.3 97.7 111.4
170 124.1 126.4 135.5 133.3 65.9 72.4
180 120.4 120.7 139.1 146.4 54.8 39.0

As shown in Figure 4 and Tables 1–3, the results of our modeling are in excellent
agreement with the experimental results reported by Naebe et al. [4]. It is obvious that
the model presented is capable of estimating the elasticity moduli for the mentioned
nanocomposites with high precision. Therefore, it is reasonable to use the expression
obtained from this modeling instead of the experimental data in order to accelerate the
analysis of the mechanical behaviors of such nanocomposites in thermal environments for
future studies.



Mathematics 2023, 11, 1496 7 of 13

Mathematics 2023, 11, x FOR PEER REVIEW 7 of 14 
 

 

the mechanical behaviors of such nanocomposites in thermal environments for future 
studies. 

  

 

 

Figure 4. Comparison of the experimental data for the Young’s moduli of neat epoxy, epoxy/G, and 
epoxy/FG reported by Naebe et al. [4] with the fitted curves. 

2.3. The Governing Equation for Thermally Affected Buckling Problem 
In order to solve the buckling problem of a beam, using Hamilton’s principle is a 

suitable method. For the sake of brevity, the derivation process will not be expanded in 
this paper and the thorough procedure can be found in the literature. In this section, the 
governing equations needed to solve the buckling problem in the presence of the temper-
ature gradient of the refined shear deformable beam will be presented. These partial dif-
ferential equations have been obtained on the basis of the principle of virtual work. The 
equations of motion have been developed in the framework of a Hamiltonian approach. 
Afterward, the elastic stress–strain relations of the nanocomposite materials were re-
viewed in order to extract the fundamental elastic equations of such solids. Finally, the 
governing equations of motion can be expressed as [34,35]: 

Figure 4. Comparison of the experimental data for the Young’s moduli of neat epoxy, epoxy/G, and
epoxy/FG reported by Naebe et al. [4] with the fitted curves.

2.3. The Governing Equation for Thermally Affected Buckling Problem

In order to solve the buckling problem of a beam, using Hamilton’s principle is a
suitable method. For the sake of brevity, the derivation process will not be expanded
in this paper and the thorough procedure can be found in the literature. In this section,
the governing equations needed to solve the buckling problem in the presence of the
temperature gradient of the refined shear deformable beam will be presented. These partial
differential equations have been obtained on the basis of the principle of virtual work. The
equations of motion have been developed in the framework of a Hamiltonian approach.
Afterward, the elastic stress–strain relations of the nanocomposite materials were reviewed
in order to extract the fundamental elastic equations of such solids. Finally, the governing
equations of motion can be expressed as [34,35]:

A
∂2u
∂x2 − B

∂3wb

∂x3 − Bs
∂3ws

∂x3 = 0 (3)
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B
∂3u
∂x3 − D

∂4wb

∂x4 − Ds
∂4ws

∂x4 + kw(wb + ws)−
(

kp − NT
)∂2(wb + ws)

∂x2 = 0 (4)

Bs
∂3u
∂x3 − Ds

∂4wb

∂x4 − Hs
∂4ws

∂x4 + As
∂2ws

∂x2 + kw(wb + ws)−
(

kp − NT
)∂2(wb + ws)

∂x2 = 0 (5)

where u, wb, and ws are the longitudinal displacement, bending, and shear deflection,
respectively. Moreover, the terms A, B, Bs, D, Ds, Hs, and As are the cross-sectional
rigidities that can be defined as mentioned in Ebrahimi and Barati [34], and Ebrahimi and
Dabbagh [35]. Moreover, kw and kp denote the Winkler–Pasternak elastic coefficients of
the medium which are under the beam-type element. Finally, NT stands for the thermal
loading produced from the existence of a uniform temperature gradient. In more detail,
an arbitrary point of the nanocomposite beam is assumed to be subjected to a uniform
temperature raise (i.e., ∆T = T − T0; where T is the local and T0 is the initial temperature).
Any complementary information about the derivation of the above expressions, as well
as the mentioned variants, along with their mathematical representation, can be found by
referring to [34,35].

3. Analytical Solution

There are numerous methods for solving mechanical problems analytically. Here, we
used Navier’s solution to extract the critical buckling load of the beam under the conditions
previously stated. The corresponding boundary conditions for a simply-supported beam
can be illustrated as:

wb = ws = 0,
∂2wb
∂x2 =

∂2ws

∂x2 = 0 at x = 0, L (6)

Here, we are assuming that the beam’s sides cannot move; moreover, they are pre-
sumed to be immovable ends. Now, the following solution functions can be applied to the
displacement fields to satisfy the above-mentioned boundary condition:

u(x) =
∞

∑
n=1

Uncos
(nπx

L

)
(7)

wb(x) =
∞

∑
n=1

Wbnsin
(nπx

L

)
(8)

ws(x) =
∞

∑
n=1

Wsnsin
(nπx

L

)
(9)

where, Un, Wbn, and Wsn are referred to as unknown Fourier coefficients. By inserting the
Equations (7)–(9) in Equations (3)–(5), the following relation can be obtained:

[K]3×3


Un

Wbn
Wsn

 = {0} (10)

in which [K] is the stiffness matrix and


Un

Wbn
Wsn

 is the displacement vector. To solve for the

critical buckling value, the determinant of the stiffness matrix will be set to zero. Once this
mathematical operation is performed, the critical buckling load of the simply-supported
beam can be derived.

4. Results and Discussion

In this part, a sequence of illustrations will be represented to look into the influence
of various terms on the buckling behaviors of beam structures made from neat epoxy,
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GORNC, and FGRNC. First off, we validate the presented methodology by comparing the
mechanical responses obtained from our modeling with those reported in the literature.
To do so, the results from this study are set side by side with those reported by Yas and
Samadi [12] in Table 4. Based on this comparison, it is evident that the method presented in
this paper to predict the buckling characteristics of NC beams is valid.

Table 4. Comparison of the dimensionless critical buckling load of (C-C) CNTRNC beams (L/h = 15).

Volume Fraction of CNT, Reference

V*
CNT Yas and Samadi [12] Present

0.12 0.213958 0.213564
0.17 0.344251 0.342843
0.28 0.455602 0.460245

Now, the effects of various types of reinforcements on the fundamental buckling mode
(i.e., first mode) of the NC beams will be investigated. In order to better understand the
numerical studies, first, the dimensionless form of the critical buckling load and foundation
coefficients are presented as [22]:

Ncr = Nb L2

EFG I
, Kw = kw

L4

EFG I
, Kp = kp

L2

EFG I
, I =

bh3

12
(11)

in which Ncr is the dimensionless buckling load, and I denotes the second moment of area.
Figure 5 illustrates the change in the buckling loads of the NCs versus the temperature
raise. It is worth mentioning that the weight fractions of both GO and FG dispersed in the
matrix are considered to be 1%. It can be realized that with the increase in temperature, the
buckling load of the nanocomposite beam decreases. This phenomenon occurs because of
the softening impact that the temperature gradient has on the stiffness of the nanocomposite
system. Since the stiffness of a material has a direct relation to its buckling load, the
buckling load fluctuates with the increment of temperature. Another case revealed by
Figure 5 is that, near 30 degrees (i.e., room temperature), the buckling load of the FG-
reinforced nanocomposite beam is more compared to the GO-reinforced and neat epoxy
composites. However, the FG-reinforced beam has the most drastic drop in buckling load
as the temperature increases. After that, the second most drastic decrease belongs to the
beam made from the GO-reinforced nanocomposite, and the beam fabricated from pure
epoxy has the lowest buckling load reduction. The main reason for the buckling load’s
fluctuation with the temperature raise is the negative value of the coefficient of thermal
expansion (CTE) for graphene.

As the graphene mixes in the matrix, which has a positive value of CTE, it has a reduc-
tion effect on the CTE of the whole mixture. Hence, the lower weight fraction of graphene
in the composite results in a higher CTE compared to the high concentration of graphene
reinforcement. Therefore, when the composite system is set to work in environments with
high temperatures, it is preferable to use lesser-weight fractions of FG or GO.

Figure 6 is depicted with the goal of studying the impact of both the slenderness ratio
of the beam and the temperature gradients on the stability behaviors of the FGRNC beam.
Based on this figure, with the rise of the slenderness ratio of the beam, the dimensionless
buckling load declines non-linearly. This behavior can be explained by the more flexible
geometry of the beam types that comes along as the slenderness ratio rises. The ensuing
stiffness, which has an inverse relationship with flexibility, decreases gradually. Hence,
as discussed earlier, the value of the buckling load abates with the reduction of stiffness.
However, this downturn can be much harsher as the temperature gradient increments.
Moreover, if the slenderness ratio of the nanocomposite beam reaches its critical value, the
buckling load can even go as low as zero (i.e., the neutral stable state).
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Figure 7 describes the change in the dimensionless buckling load of the NC beam
against the Winkler coefficient for a number of temperature gradients. According to this
plot, the buckling load is heavily dependent on the value of the Winkler coefficient. It is
obvious that the stability limit of the beam can be enlarged by resting the structure on
an elastic substrate. The amplifying effect of the Winkler coefficient on the continuous
system’s equivalent stiffness can explain this trend. In addition, it is shown by this diagram
that the rise in temperature can result in the reduction of the dimensionless buckling load.
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In another examination illustrated in Figure 8, the impact of both the Pasternak coeffi-
cient and temperature raise on the critical buckling load of the nanocomposite beam was
studied. It is clear that by assigning higher values to the Pasternak coefficient, the structure
gains more power and can tolerate more static loads. The reasoning for this behavior was
unraveled in the previous paragraph; hence, it will not be explained here again. As it is
the same as the former inquiry, it is comprehensible that, when the nanocomposite beam is
subjected to thermal loading, by aggrandizing the thermal gradient, the buckling load will
decrease gradually. It is interesting to point out the impact of both foundation parameters
and compare them to one another. The critical buckling load can be incremented by a factor
of two, by increasing the Winkler coefficient from zero to 100. However, the same effect can
be generated by altering the Pasternak coefficient from zero to 10. Therefore, the Pasternak
coefficient has more influence on the matter than the Winkler coefficient.
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5. Conclusions

This study was motivated to present a continuous analytical function to accurately
estimate the Young’s moduli of FG-reinforced nanocomposites at any desired temperature.
Regression in the form of an ML model was utilized to extract the appropriate estimation
coefficients for the proposed polynomial and sigmoid functions. Based on this study, it is
recommended that further investigations for these materials take advantage of this mathe-
matical expression for faster and more accurate results. The presented model can be used
by finite element software for scientific and engineering endeavors. The ensuing developed
model was put to work to determine the thermo-elastic stability of nanocomposite beams
using Hamilton’s principle. Afterwards, the Navier’s solution was implemented to solve
the governing PDEs and derive the stiffness and mass matrices. By setting determinant of
the stiffness matrix, the critical buckling load was derived. Then, a comparison between the
critical buckling load of FGRNCs and GORNCs was conducted. It was also realized that
the beams become more flexible when exposed to higher values of a temperature raise. In
conclusion, the FGRNC was shown to have a greater elastic modulus compared to GORNC.
However, the temperature raise had a more drastic effect on the FGNRC because of the neg-
ative value of CTE. Hence, this research recommends implementing lower weight fractions
of graphene reinforcements when the structure is subjected to immense thermal loading.
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