
Citation: Loisel, S.; Minier, C. On the

Devylder–Goovaerts Conjecture in

Ruin Theory. Mathematics 2023, 11,

1501. https://doi.org/10.3390/

math11061501

Academic Editors: Francisco

Chiclana, Sergei Petrovskii, Matjaz

Perc, Antonio Di Crescenzo and

Marjan Mernik

Received: 16 January 2023

Revised: 11 March 2023

Accepted: 14 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

On the Devylder–Goovaerts Conjecture in Ruin Theory
Stéphane Loisel * and Charles Minier

Laboratoire de Sciences Actuarielle et Financière, Institut de Science Financière et d’Assurances, Université
Claude Bernard Lyon 1, Univ Lyon, 50 Avenue Tony Garnier, F-69007 Lyon, France; charles.minier41@gmail.com
* Correspondence: stephane.loisel@univ-lyon1.fr

Abstract: The Devylder–Goovaerts conjecture is probably the oldest conjecture in actuarial mathe-
matics and has received a lot of attention in recent years. It claims that ruin with equalized claim
amounts is always less likely than in the classical model. Investigating the validity of this conjecture
is important both from a theoretical aspect and a practical point of view, as it suggests that one always
underestimates the risk of insolvency by replacing claim amounts with the average claim amount a
posteriori. We first state a simplified version of the conjecture in the discrete-time risk model when
one equalizes aggregate claim amounts and prove that it holds. We then use properties of the Pareto
distribution in risk theory and other ideas to target candidate counterexamples and provide several
counterexamples to the original Devylder–Goovaerts conjecture.

Keywords: ruin theory; Devylder–Goovaerts conjecture; equalized claim amounts; applied
probability; insurance

MSC: 91G05

1. Introduction

The Devylder–Goovaerts conjecture is probably the oldest conjecture in actuarial
science. In the classical ruin model in finite time, three sources of uncertainty may be
considered: uncertainty on the number of claims, on the average claim amount, as well
as on the heterogeneity between claim amounts. Sometimes, one claim might dominate
the others, while in other times all claim amounts may be close to the average. It seems
natural to think that adverse events, such as ruin, become less likely when one source of
uncertainty is removed. Concerned with the third source of uncertainty, Devylder and
Goovaerts [1] stated that ruin is always less or equally likely than in the classical risk model
when claim amounts are equalized.

Their conjecture has recently received some attention in the literature. Using stop-loss
order and Schur convexity, Robert [2] proved a kind of weaker version of the conjecture:
the integral of the ruin probability (when the initial reserve belongs to a right-unbounded
interval) is reduced when claim amounts are equalized. Kazi-Tani et al. [3] showed
that the conjecture held asymptotically when the number of claims tended to infinity
using a diffusion approximation of both risk models. They proved that the corresponding
renormalized processes converged in distribution to Gaussian processes satisfying quite
simple SDEs. Kim et al. [4] provided a stronger version of the Devylder–Goovaerts
conjecture and showed that the conjecture held when the number of claims was equal to
three. Actually, the authors established sufficient conditions for the conjecture to be true for
a given finite number of claims n, and proved the case n = 3. They also acknowledged that
for a fixed n ≥ 4, the proof would be hard and difficult to make by hand. However, they
announced they intended to try it with the help of a symbolic computation supported by
computer programming.

In this paper, we first note that a simplified version of the conjecture holds true in
discrete time (when the uncertainty about claim occurrence times is neutralized). We then

Mathematics 2023, 11, 1501. https://doi.org/10.3390/math11061501 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061501
https://doi.org/10.3390/math11061501
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math11061501
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061501?type=check_update&version=1

Mathematics 2023, 11, 1501 2 of 10

use the properties of the Pareto distribution in risk theory to select the area where one
should look first for a counterexample. We identify a counterexample when the claim
amounts are Pareto distributed. We also show that it is possible to find counterexamples
when claim amounts are light-tailed or with bounded support, as well as with positive
safety loading.

The paper is organized as follows: In Section 2, we describe the model with equalized
claim amounts and show that the conjecture holds true in discrete time. In Section 3, we
explain how to look for counterexamples. In Section 4, we provide one first counterexample
and explain how to find other ones. The code of our program is provided in Appendix A.

2. The Model with Equalized Claim Amounts

Let us consider the classical risk model with a finite time horizon T > 0: an insurer
has initial surplus u ≥ 0, receives premium continuously at rate c > 0, and pays for claims.
The aggregate claim amount up to time t is represented by a compound Poisson process
(St)t≥0,

St =
Nt

∑
k=1

Xk,

where the Poisson process (Nt)≥0 represents the number of claims up to time t and Xk,
k ≥ 1, corresponds to the kth claim amount. In the classical model, the Xk’s, k ≥ 1, are
independent and identically distributed, and independent from (Nt)t≥0. The finite-time
ruin probability in the continuous time classical model is defined as

ψ(u, T) = P(∃t ≤ T, u + ct− St < 0).

In the equalized model, each claim amount is replaced with the average claim amount on
the period [0, T]. The aggregate claim amount becomes

Seq(t) = Nt
X1 + · · ·+ XNT

NT

when NT > 0 and zero otherwise. The finite-time ruin probability when claim amounts are
equalized is defined as

ψeq(u, T) = P
(
∃t ≤ T, u + ct− Seq

t < 0
)

.

The Devylder–Goovaerts conjecture states that for all u ≥ 0,

ψeq(u, T) ≤ ψ(u, T).

Before looking at counterexamples (in the original, continuous-time setting used by De-
vylder and Goovaerts), let us note that a simplified version of the conjecture holds in the
discrete-time risk model when one equalizes the aggregate claim amounts.

In the discrete-time classical risk model with finite time horizon M ≥ 1, we have
S0 = 0, and the surplus process at time 1 ≤ i ≤ M is defined as u + ci− S(i), where

S(i) = Y1 + · · ·+ Yi

is the aggregated claim amount up to time i and Yj is the aggregated claim amount on
period j ≤ i. The Yj’s are independent and identically distributed. The discrete-time ruin
probability is

ψd(u, M) = P(∃1 ≤ i ≤ M, u + ci− S(i) < 0).

When aggregate claim amounts are equalized, the aggregate claim amount up to time i ≥ 1
becomes

Seq(i) = i
Y1 + · · ·+ YM

M
,

Mathematics 2023, 11, 1501 3 of 10

and the ruin probability is then defined as

ψ
eq
d (u, M) = P(∃1 ≤ i ≤ M, u + ci− Seq(i) < 0).

Proposition 1. A weak version of the Devylder–Goovaerts conjecture holds true in the discrete-time
risk model described above: for u ≥ 0 and M ≥ 1, we have

ψ
eq
d (u, M) ≤ ψd(u, M).

Proof. Consider the discrete-time model described above. Note that

1− ψ
eq
d (u, M) = P

(
S(M)

M
≤ u + c, . . . , M

S(M)

M
≤ u + cM

)
.

We have

1− ψ
eq
d (u, M) = P(S(M) ≤ uM + cM, . . . , S(M) ≤ u + cM) = P(S(M) ≤ u + cM).

As
1− ψd(u, M) = P(S(1) ≤ u + c, . . . , S(M) ≤ u + cM),

we therefore have
1− ψ

eq
d (u, M) ≥ 1− ψd(u, M)

and
ψ

eq
d (u, M) ≤ ψd(u, M)

for u ≥ 0.

3. Identifying Counterexamples in the Continuous-Time Risk Model

Coming back to the original (continuous-time) conjecture, there are several reasons
to doubt its validity. The first one is that many results about stochastic orderings hold for
convex orderings but not at the first order. This probably pushed Robert [2] to look for a
proof of another result, involving the integral of the ruin probability.

Moreover, the value at risk is not subadditive and is known to be superadditive for
Pareto distributions with α parameter less than 1 and quantile levels close to 1. This implies
that for such claim size distributions, we can hope that the first claim X1 is often larger
than (X1 + · · ·+ XNT)/NT , and that ruin after the first claim is more likely in the classical
model than when claim amounts are equalized (with stochastic occurrence times, as we
have seen that the conjecture is true in the discrete-time model).

Furthermore, we know that if u goes to infinity and c is fixed, in the classical model
with Pareto distributed claim amounts, given that ruin occurs, everything asymptotically
behaves as if ruin is caused by one large claim, whose time of occurrence is uniformly
distributed on the time interval [0, T]. Therefore, if we want to favor early ruin (to take
advantage of the superadditivity of the value at risk for Pareto distributions with α ≤ 1),
we should keep u relatively small and take c large enough to escape from zero fast (and
therefore favor early ruin) and to make the asymptotic regime valid fast enough. Note that
u needs to be positive as both ruin probabilities are equal when u = 0.

4. The Counterexamples

After several attempts, a counterexample was obtained for u = 0.001, λ = 1, T = 0.1,
c = 10, 000, α = 0.95, and β = 10. Note that the cumulative distribution function of the
Pareto (α, β) distribution at point x > 0 considered here is given by

F(x) = 1−
(

β

x + β

)α

.

Mathematics 2023, 11, 1501 4 of 10

Using a computer with 192 cores and n = 1014 simulations, we obtained in approximately
640 min that ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)−ψeq(u) = −2.46014× 10−8 <
0 with an asymptotic confidence interval (95%) equal to 2.66903× 10−9. We repeated the
experience with different seeds 10 times. Here are the results obtained:

ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.11128× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66906× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.3067× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66907× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.29491× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66908× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.0385× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66907× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.19286× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66906× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.18805× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66906× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.165× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66905× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.04824× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66905× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.23203× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66904× 10−9.
ψ(u) = 0.00518464, ψeq(u) = 0.00518466, ψ(u)− ψeq(u) = −2.31037× 10−8 < 0 with an
asymptotic confidence interval equal to 2.66903× 10−9.

Our code is given in the Appendix A for reproducibility purposes and is available at
the bottom of the following webpage: https://sites.google.com/view/stephaneloisel/
recherche/papiers (accessed on 13 March 2023). We checked that we could reproduce the
results of Devylder and Goovaerts [1] with our program.

As expected, the ruin probabilities ψ(u) and ψeq(u) were very close to each other
(sharing the same first digits). However, for each of the 11 seeds considered here (See
Table 1), the estimated equalized ruin probability was larger than the 95% confidence
interval upper bound of the classical ruin probability. We could therefore conclude that the
conjecture appeared to be false for the set of parameters used for these computations.

Table 1. Results obtained for 11 different seeds.

ψ(u) ψeq(u) ψ(u)− ψeq(u) Asymptotic
Confidence Interval

0.00518464 0.00518466 −2.46014× 10−8 2.66903× 10−9

0.00518464 0.00518466 −2.11128× 10−8 2.66906× 10−9

0.00518464 0.00518466 −2.3067× 10−8 2.66907× 10−9

0.00518464 0.00518466 −2.29491× 10−8 2.66908× 10−9

0.00518464 0.00518466 −2.0385× 10−8 2.66907× 10−9

0.00518464 0.00518466 −2.19286× 10−8 2.66906× 10−9

0.00518464 0.00518466 −2.18805× 10−8 2.66906× 10−9

0.00518464 0.00518466 −2.165× 10−8 2.66905× 10−9

0.00518464 0.00518466 −2.04824× 10−8 2.66905× 10−9

0.00518464 0.00518466 −2.23203× 10−8 2.66904× 10−9

0.00518464 0.00518466 −2.31037× 10−8 2.66903× 10−9

https://sites.google.com/view/stephaneloisel/recherche/papiers
https://sites.google.com/view/stephaneloisel/recherche/papiers

Mathematics 2023, 11, 1501 5 of 10

Note that we could have replaced the Pareto distribution with a distribution where the
probability mass of the interval (u + cT,+∞) was transferred to point u + cT + 1 without
changing anything to the results. This would have provided a counterexample with a
distribution with finite support (and finite mean), as only the part of distribution related to
[0, u + cT] matters. In a similar way, one could have replaced the Pareto tail after u + cT
with an equivalent exponential tail without altering results.

Regarding the heart of the claim size distribution, as both the ruin probability and the
ruin probability with equalized claim amounts are continuous with respect to the claim size
distribution, it is possible to find a counterexample with mixed-Erlang distributed claim
amounts, as the class of mixture of Erlang distributions is dense in the class of continuous
and positive distributions (see Tijms [5]).

It is also possible to find infinitely many counterexamples by slightly varying the
parameters of the model. For instance, alternative counterexamples were obtained for the
following sets of values:

u = 0.001, λ = 1, T = 1, c = 100,000, α = 0.01, β = 0.01.
u = 0.01, λ = 1, T = 1, c = 100,000, α = 0.01, β = 0.1.
u = 0.001, λ = 1, T = 1, c = 10,000, α = 1, β = 10.
u = 0.1, λ = 1, T = 1, c = 10,000, α = 0.1, β = 10.

These first counterexamples have one common point: the net profit condition is not
satisfied as α ≤ 1, which implies that claim amounts have infinite mean. However, as
mentioned above, there is a priori no reason why counterexamples would only occur for a
negative safety loading, as the infinite mean can be replaced by a finite-mean model without
altering the computations. Using our previous numerical analysis, we were eventually able
to identify a counterexample to the conjecture for a model with a positive safety loading.
The parameters were u = 0.001, λ = 1, T = 1, c = 10 000, α = 1.0011, and β = 10. For this
model, we had E(X1) = 10/(1.0011− 1) = 9090.91 and the safety loading was therefore
close to 10%.

5. Conclusions

In this paper, we showed that the original Devylder–Goovaerts conjecture did not
hold. In addition to the theoretical interest of the identified counterexamples, this study
also brought new practical implications: ignoring one source of uncertainty did not always
reduce risk when it was measured by the finite-time ruin probability. However, it was not
easy to identify counterexamples, as the finite-time ruin probability with equalized claim
amounts was very often smaller than the classical finite-time ruin probability. Moreover,
we showed that a simplified version of the conjecture held in a discrete-time framework
(with the limit that only aggregated claim amounts were equalized, which did not exactly
correspond to the discrete-time version of the original conjecture). It would therefore be
interesting to identify additional assumptions that make the revised conjecture valid. We
showed in this paper that it was not enough to restrict the conjecture to a positive safety
loading. We leave this problem for further research.

Author Contributions: Conceptualization, S.L.; Software, C.M. All authors have read and agreed to
the published version of the manuscript.

Funding: Research chair “Actuariat Durable et Risques Climatiques” funded by Milliman Paris.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was realized within the framework of the Research Chair Actuariat
Durable et Risques Climatiques, supported by Milliman Paris, as well as the research chair DAMI/N-
INA, sponsored by BNP Paribas Cardif. The authors thank Philippe Picard and Claude Lefèvre
for numerous discussions related to this conjecture, as well as Alexis Bienvenue for his help with
programming.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2023, 11, 1501 6 of 10

Appendix A. Script of the Program

include < s t d i o . h>
include < s t d l i b . h>
include <math . h>
include < a s s e r t . h>
include <cuda . h>
include <cuda_runtime . h>
include <curand_kernel . h>
include <time . h>
include <stdexcept >

include <helper_cuda . h>

def ine U 0 .001 \\ value which should be modified
def ine T 1 \\ value which should be modified
def ine lambda 1 \\ value which should be modified
def ine t h e t a 0 . 0 1 \\ value which should be modified
def ine alpha 0 . 0 1 \\ value which should be modified
def ine c 100000 \\ value which should be modified

def ine MU 1/lambda

def ine NTMAX 1000000

def ine N_SIMUL 1000000000000000

__global__ void initRNG (curandState * const rngStates ,
const unsigned i n t seed)
{
// Determine thread ID
unsigned i n t t i d = blockIdx . x * blockDim . x + threadIdx . x ;

// I n i t i a l i s e the RNG
curand_in i t (seed , t id , 0 , &r n g S t a t e s [t i d]) ;
}

__device__ i n l i n e double ran_exponent ia l (curandState &s t a t e , double mu)
{
re turn (−mu* log (curand_uniform_double(& s t a t e))) ;
}

__device__ i n l i n e double ran_pareto (curandState &s t a t e ,
double a , double b)
{
re turn (b * (pow (curand_uniform_double(& s t a t e) , −1 / a) −1)) ;
}

__global__ void monte_carlo (curandState * const rngStates ,
long long i n t * d_resu l t s ,
long long i n t n_simul) {

unsigned i n t t i d = blockIdx . x * blockDim . x + threadIdx . x ;

double temps ;
double entrees , cmoy_seuil0 , cmoy_seuil ;
i n t n ;
double cc ;
double ccc ;
i n t r_eq ;
i n t r_base ;

f o r (long long i n t i_s imul =0; i_simul <n_simul ; i_s imul ++) {
temps =0;
n=0;
cc =0;
ccc = 0 ;
r_eq =0;

Mathematics 2023, 11, 1501 7 of 10

r_base =0;
cmoy_seuil = 0 ;
do {
// random time step
temps += ran_exponent ia l (r n g S t a t e s [t i d] , MU) ;
i f (temps<T) {
i f (n >= NTMAX) {
p r i n t f (" T a i l l e i n s u f f i s a n t e pour l e vecteur des dates . . . \ n ") ;
// e x i t (1) ;
}
// s imulates and adds an amount of a claim

cc += ran_pareto (r n g S t a t e s [t i d] , alpha , t h e t a) ;
// checks i f there i s a ruin
e n t r e e s = U + temps * c ;
i f (e n t r e e s < cc) {
r_base =1;
}
n++;
// updates the threshold f o r the equal ized process so as to
// determine a case of ruin
cmoy_seuil0 = e n t r e e s / n ;
i f (n == 1 || cmoy_seuil0 < cmoy_seuil) {
cmoy_seuil = cmoy_seuil0 ;
}
}
} while (temps<T) ;

i f (n>0) {
// computes the average of the amounts of the cla ims
ccc = cc/n ;

i f (ccc > cmoy_seuil) {
r_eq = 1 ;
}
}

// updates the counts of ruin f o r each of the 4 cases
i f (r_eq > 0) {
i f (r_base > 0) {
d _ r e s u l t s [4 * t i d +2]++; // both process ruined
} e l s e {
d _ r e s u l t s [4 * t i d]++ ; // only the c l a s s i c a l process i s ruined
}
} e l s e {
i f (r_base >0) {
d _ r e s u l t s [4 * t i d +1]++; // only the equal ized process i s ruined
} e l s e {
d _ r e s u l t s [4 * t i d +3]++; // n e i t h e r i s ruined
}
}
}
}

i n t main (i n t argc , const char * * argv) {

using std : : runt ime_error ;
using std : : invalid_argument ;

t ime_t debut = time (NULL) ;
char * value = 0 ;

unsigned i n t seed = 1234 ;

i n t n_blocks = 1024 ;
i n t n_threads_per_block = 1 ;

i n t deviceCount = 0 ;
cudaError_t cudaResult = cudaSuccess ;

Mathematics 2023, 11, 1501 8 of 10

// by d e f a u l t s p e c i f y GPU Device == 0
i n t device = 0 ;

// Get number of a v a i l a b l e devices
cudaResult = cudaGetDeviceCount(&deviceCount) ;

i f (cudaResult != cudaSuccess) {
p r i n t f (" could not get device count .\n ") ;
throw runtime_error (" cudaGetDeviceCount ") ;
}

// −−device n

i f (getCmdLineArgumentString (argc , argv , " device " , &value)) {
device = (i n t) a t o i (value) ;

i f (device >= deviceCount) {
p r i n t f (" i n v a l i d t a r g e t device s p e c i f i e d on command l i n e
(device %d does not e x i s t) . \ n " , device) ;
throw invalid_argument (" device ") ;
}
} e l s e {
device = gpuGetMaxGflopsDeviceId () ;
}

p r i n t f (" Device : %d\n " , device) ;

// −−seed n

i f (getCmdLineArgumentString (argc , argv , " seed " , &value)) {
// Check requested seed i s va l id
seed = (unsigned i n t) a t o i (value) ;

i f (seed == 0) {
p r i n t f (" s p e c i f i e d seed (%d) i s inval id , must be non−zero .\n " , seed) ;
throw invalid_argument (" seed ") ;
}
}

p r i n t f (" Seed : %u\n " , seed) ;

// s e t s number of blocks and threads from the device p r o p e r t i e s

cudaDeviceProp d e v i c e P r o p e r t i e s ;
cudaResult = cudaGetDevicePropert ies (& deviceProper t ies , device) ;

i f (cudaResult != cudaSuccess) {
p r i n t f (" cound not get device p r o p e r t i e s f o r device %d.\n " , device) ;
throw runtime_error (" cudaGetDevicePropert ies ") ;
}

n_threads_per_block =
s t a t i c _ c a s t <unsigned int >(d e v i c e P r o p e r t i e s . maxThreadsPerBlock) ;

n_blocks = 10 * d e v i c e P r o p e r t i e s . multiProcessorCount ;

p r i n t f (" Blocs : %d\n " , n_blocks) ;
p r i n t f (" Threads par bloc : %d\n " , n_threads_per_block) ;

i n t n_threads=n_blocks * n_threads_per_block ;

long long i n t n_simul=N_SIMUL ;

// −−sims n

i f (getCmdLineArgumentString (argc , argv , " sims " , &value)) {
n_simul = a t o l l (value) ;
i f (n_simul <100) {

Mathematics 2023, 11, 1501 9 of 10

// i f i t i s smal ler than 100 , we take the power of 10
long long i n t x =1;
f o r (i n t i =0 ; i <n_simul ; i ++) x * = 1 0 ;
n_simul=x ;
}
}

long long i n t n_simul_par_thread = n_simul/n_threads ;
n_simul = n_simul_par_thread * n_threads ;
p r i n t f (" S imulat ions : %l l d \n " , n_simul) ;

// −−

// s e l e c t device

cudaResult = cudaSetDevice (device) ;
i f (cudaResult != cudaSuccess) {
p r i n t f (" cound not s e l e c t device %d.\n " , device) ;
throw runtime_error (" cudaSetDevice ") ;
}

// i n i t RNGs

curandState * d_rngStates = 0 ;
cudaResult = cudaMalloc ((void **)& d_rngStates ,
n_threads * s i z e o f (curandState)) ;
i f (cudaResult != cudaSuccess) {
p r i n t f (" cound not a l l o c a t e RNG s t a t e memory f o r device %d.\n " , device) ;
throw runtime_error (" cudaAllocate ") ;
}
initRNG<<<n_blocks , n_threads_per_block >>>(d_rngStates , seed) ;

// a l l o c a t e r e s u l t s memory

long long i n t * d _ r e s u l t s ;
cudaResult = cudaMalloc ((void **)& d_resu l t s ,
s i z e o f (long long i n t) * 4 * n_threads) ;
i f (cudaResult != cudaSuccess) {
p r i n t f (" cound not a l l o c a t e r e s u l t s memory f o r device %d.\n " , device) ;
throw runtime_error (" cudaAllocate ") ;
}

// c a l l Monte Carlo s imulat ions

monte_carlo <<<n_blocks , n_threads_per_block >>>(d_rngStates , d_resul t s ,
n_simul_par_thread) ;

// get back r e s u l t s

long long i n t * r e s u l t s = (long long *) malloc (s i z e o f (long long i n t) * 4
* n_threads) ;

cudaResult = cudaMemcpy (r e s u l t s , d_resu l t s ,
s i z e o f (long long i n t) * 4 * n_threads , cudaMemcpyDeviceToHost) ;
i f (cudaResult != cudaSuccess) {
p r i n t f (" cound not get back r e s u l t s f o r device %d.\n " , device) ;
throw runtime_error (" cudaMemcpy ") ;
}

// sum r e s u l t s up

f o r (i n t n=1; n<n_threads ; n++) {
f o r (i n t i =0 ; i <4 ; i ++) {
r e s u l t s [i] += r e s u l t s [i +n * 4] ;
}
}

// output s t a t s

Mathematics 2023, 11, 1501 10 of 10

p r i n t f ("EQ + BASE + DEUX + AUCUN = %l l d + %l l d + %l l d + %l l d \n " ,
r e s u l t s [0] , r e s u l t s [1] , r e s u l t s [2] , r e s u l t s [3]) ;
p r i n t f (" P (ruine_base) = %g\n " , ((double) (r e s u l t s [1] + r e s u l t s [2])) / n_simul) ;
p r i n t f (" P (ruine_eq) = %g\n " , ((double) (r e s u l t s [0] + r e s u l t s [2])) / n_simul) ;
p r i n t f (" E (ruine_eq − ruine_base) = %g\n " ,
((double) (r e s u l t s [0] − r e s u l t s [1])) / n_simul) ;
double esp = ((double) (r e s u l t s [0] − r e s u l t s [1])) / n_simul ; \\ conf idence i n t e r v a l
double esp2 = ((double) (r e s u l t s [0] + r e s u l t s [1])) / n_simul ; \\ conf idence i n t e r v a l
p r i n t f (" E (ruine_eq − ruine_base) = %g +/− %g\n " ,
esp , 1 . 9 6 * s q r t ((esp2 −esp * esp)/ n_simul)) ; \\ conf idence i n t e r v a l
p r i n t f (" Secondes ecoulees : %d\n " , time (NULL) − debut) ;
}

References
1. De Vylder, F.; Goovaerts, M. Homogeneous risk models with equalized claim amounts. Insur. Math. Econ. 2000, 26, 223–238.

[CrossRef]
2. Robert, C. On the de Vylder and Goovaerts conjecture about ruin for equalized claims. J. Appl. Probab. 2014, 51, 874–879.

[CrossRef]
3. Ankirchner, S.; Blanchet-Scalliet, C.; Kazi-Tani, N. The De Vylder-Goovaerts conjecture holds true within the diffusion limit. J.

Appl. Probab. 2019, 56, 546–557. [CrossRef]
4. Kim, B.; Kim, J.; Kim, J. De Vylder and Goovaerts’ conjecture on homogeneous risk models with equalized claim amounts. Insur.

Math. Econ. 2021, 101, 186–201. [CrossRef]
5. Tijms, H. Stochastic Models: An Algorithmic Approach; John Wiley & Sons: New York, NY, USA, 1994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0167-6687(99)00055-4
http://dx.doi.org/10.1239/jap/1409932679
http://dx.doi.org/10.1017/jpr.2019.33
http://dx.doi.org/10.1016/j.insmatheco.2021.07.007

	Introduction
	The Model with Equalized Claim Amounts
	Identifying Counterexamples in the Continuous-Time Risk Model
	The Counterexamples
	Conclusions
	Script of the Program
	References

