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Abstract: We define a new quantile regression model based on a reparameterized exponentiated
odd log-logistic Weibull distribution, and obtain some of its structural properties. It includes as sub-
models some known regression models that can be utilized in many areas. The maximum likelihood
method is adopted to estimate the parameters, and several simulations are performed to study the
finite sample properties of the maximum likelihood estimators. The applicability of the proposed
regression model is well justified by means of a gastric carcinoma dataset.

Keywords: censored data; hazard function; odd log-logistic Weibull; statistical reparameterization;
survival function

MSC: 62G08; 62N02; 62E15

1. Introduction

For survival data, the outcome variable is usually the time until the occurrence of an
event of interest. A common characteristic of this type of data is the presence of censoring,
that is, when the event of interest is not observed for some subjects before the study
is finished. Furthermore, this variable depends on one or more explanatory variables
(covariables), which have characteristics of the sample under study. Cox’s proportional
hazards and accelerated failure time (AFT) models are two common tools in time-to-event
modeling. The first class of models has the strong assumption of proportional risks, which
is often invalid, so the effects of the covariables on the risk function are examined which
can lead to difficult interpretations. The second class assumes that an association exists
between the predictors and the survival time, permitting a direct interpretation of the
effects of the covariables on lifetimes.

Nevertheless, these methods can fail to capture the heterogeneity of the effects of the
covariables. In this respect, the quantile regression (QR) (Koenker and Bassett [1]) can
be an alternative to these models, enabling evaluation of the heterogeneous effects of the
predictors via analysis of different quantiles. This method involves modeling the quantiles
of the survival time and links them to the covariables, providing some advantages, such as:

• Possible identification and inference under the heterogeneous effects of the covari-
ables for different quantiles, thus supplying more complete information about the
covariables and more flexibly controlling for the heterogeneity caused by them;

• Flexibility regarding the assumption of proportional risks;
• Provision of a direct interpretation of the results, that is, between the survival time

and the covariables of interest;
• Possible analysis of different quantiles, allowing identification of the different effects

of the covariables on individuals with different risks; and
• Robustness with respect to outliers in the regression models.

Mathematics 2023, 11, 1518. https://doi.org/10.3390/math11061518 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061518
https://doi.org/10.3390/math11061518
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-1985-8141
https://orcid.org/0000-0003-3999-7402
https://orcid.org/0000-0002-3052-6551
https://orcid.org/0000-0003-1073-0114
https://doi.org/10.3390/math11061518
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061518?type=check_update&version=1


Mathematics 2023, 11, 1518 2 of 20

Originally, the QR methods are based on minimizing weighted absolute residuals [1]
without any probability distribution, and the estimation of the parameters occurs by means
of linear programming algorithms.

Although this approach is very flexible, some challenges such as: (i) the quantile
crossing, that is, when two or more estimated quantile curves cross or overlap, causing
difficulty in interpretability; and (ii) the drawback of the inability to apply parametric
inference tools led to the search for other methods. Regarding the quantile crossing problem,
we can verify alternative methods, such as: semiparametric models [2], the support vector
(SV) regression approach [3], and a joint quantile estimation approach [4,5]. The weighted
absolute residuals estimators coincide with the maximum likelihood estimators (MLEs),
when the response follows a skewed Laplace distribution, so the initial association of a
continuous distribution to the QR models was based on it (Koenker and Machado [6]).

In the context of censored data, an extensive bibliography can be mentioned, for exam-
ple: Peng and Huang [7] developed a QR approach for survival data subject to conditionally
independent censoring, Wang and Wang [8] proposed a locally weighted censored QR ap-
proach following the redistribution-of-mass idea and employed a local reweighing scheme.
Zarean et al. [9] used the censored QR for determining overall survival and risk factors in
esophageal cancer. Yang [10] presented a new approach for censored QR estimation, and
Du et al. [11] developed estimation procedures for partially linear QR models, where some of
the responses were censored by another random variable. Further, Xue et al. [12] addressed
these limitations by using both simulated examples and data from National Wilms Tumor
clinical trials to illustrate proper interpretation of the censored QR model and the differences
and advantages of the model compared to the Cox proportional hazard model. Hong et al. [13]
provided a practical guide for using QR for right-censored outcome data with covariates of low
or high dimensionality, and De Backer et al. [14] studied a novel approach for the estimation of
quantiles when facing potential right-censoring of the responses. Recently, De Backer et al. [15]
investigated a new procedure for estimating a linear QR with possibly right-censored responses;
Qiu et al. [16] considered the QR model for survival data with missing censoring indicators;
Yazdani et al. [17] introduced the QR approach for modelling failure time and investigated the
covariate effects for different quantiles; Peng [18] provided a comprehensive review of statis-
tical methods for performing QR with different types of survival data; Hsu et al. [19] studied
regression models for interval censored data using quantile coefficient functions via a set of
parametric basis functions; He et al. [20] provided a unified analysis of the smoothed sequential
estimator and its penalized counterpart for increasing dimensions in censored QR; and Wei [21]
introduced a discussion about QR for censored data in haematopoietic cell transplant research.
Note that all these articles cited in the QR with censored data did not use parametric models or
use the skewed Laplace distribution (see [17]), whose estimators coincide.

Subsequently, other distributions were proposed by re-parameterizing them in terms of
the quantile function (qf). Recent papers involving models for non-censored data based on
other distributions can be mentioned: log-extended exponential-geometric [22]; Birnbaum–
Saunders [23,24]; discrete generalized half-normal [25]; transmuted unit-Rayleigh [26];
unit-Burr-XII [27]; unit-Chen [28]; log-symmetric [29]; arcsecant hyperbolic Weibull [30];
and Dagum and Singh–Maddala [31] distributions. However, there is a relative lack in the
literature of models for censored data in the parametric context: generalized Gompertz [32]
and skew-t [33].

It is well known that the hazard rate function can assume different forms, which has
led to the proposal of a large number of new distributions with the purpose of obtaining
greater flexibility of data modeling, for example, Ref. [34]. In this sense, we introduce a
QR regression model based on a reparameterized, exponentiated, odd log-logistic Weibull
(EOLLW) distribution. It has two extra shape parameters, thus enabling the modeling of
different forms of hazard rate functions, as well as data with positive or negative symmetric
or asymmetric bimodal shapes, making it an alternative to the mixture models commonly
used in the presence of bimodality. Another important feature of the new QR model is
that it has as special cases: the exponentiated Weibull and odd log-logistic Weibull QR
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models. A detailed discussion of the theoretical foundations is given in analysis of survival
data with concrete applications. The maximum likelihood method is adopted, and several
simulations evaluate the behavior of these estimators under some scenarios. Additionally,
we show that the model can establish functional relations of the covariables with other
parameters, including scale and kurtosis, besides the quantile parameter.

The paper is structured as follows. Section 2 introduces a reparametrization of the
EOLLW distribution based on quantiles. Section 3 addresses some mathematical proper-
ties. The proposed QR regression model, and some classic inference methods to estimate
the parameters are addressed in Section 4. Some simulations are reported in Section 5.
Section 6 provides a real application for the new regression model. Section 7 ends with a
brief conclusion.

2. The Reparameterized EOLLW Distribution

Let G(x; η) be a parent cumulative distribution function (cdf) and g(x; η) = dG(x; η)/dx
be its associated probability density function (pdf), both functions of a parameter vector η. The
cdf of the exponentiated odd log-logistic (EOLL-G) family is given by (Alizadeh et al. [35])
(for x ∈ R)

F(x; ν, λ, η) =
G(x; η)νλ

{G(x; η)ν + [1− G(x; η)]ν}λ
, (1)

where ν > 0 and λ > 0 are two extra shape parameters.
The pdf corresponding to Equation (1) has the form

f (x; ν, λ, η) =
ν λ g(x; η) G(x; η)νλ−1[1− G(x; η)]ν−1

{G(x; η)ν + [1− G(x; η)]ν}λ+1 . (2)

Henceforth, let X ∼ EOLL-G(ν, λ, η) be a random variable with density function (2).
The EOLL-G family reduces to the OLL-G class when λ = 1 (Gleaton and Lynch [36]),

and to the exponentiated (Exp-G) family (Mudholkar et al., [37]) when ν = 1. Clearly, it
becomes the parent G(x; η) when ν = λ = 1.

The EOLLW distribution is defined from (2) by taking the parent Weibull

G(x; γ, σ) = 1− exp
[
−
( x

γ

)σ]
and g(x; γ, σ) =

σ

γσ
xσ−1 exp

[
−
( x

γ

)σ]
, x > 0, (3)

respectively, where η = (γ, σ), γ > 0 is a scale parameter, and σ > 0 is a shape parameter.
The cdf of the random variable X ∼ EOLLW(ν, λ, γ, σ) follows from Equations (1) and (3)

F(x; ν, λ, γ, σ) =

{
1− exp

[
− ( x

γ )
σ
]}νλ[{

1− exp
[
− ( x

γ )
σ
]}ν

+
{

exp
[
− ( x

γ )
σ
]}ν]λ

, x > 0. (4)

Based on Equations (2) and (3), the pdf of X becomes

f (x; ν, λ, γ, σ) =
ν λ σ xσ−1 { exp

[
− ( x

γ )
σ
]}ν {1− exp

[
− ( x

γ )
σ
]}νλ−1

γσ
[{

1− exp
[
− ( x

γ )
σ
]}ν

+
{

exp
[
− ( x

γ )
σ
]}ν]λ+1 , x > 0. (5)

The hazard rate function corresponding to (5) is h(x; ν, λ, γ, σ) = f (x; ν, λ, γ, σ)/[1−
F(x; ν, λ, γ, σ)].

By inverting (1), the qf of X reduces to

x = Q(q) = QW

{
q1/(νλ)

q1/(νλ) + (1− q1/λ)1/ν

}
, 0 < q < 1, (6)



Mathematics 2023, 11, 1518 4 of 20

where QW(q) = G−1(p; γ, σ) (p ∈ (0, 1)) is the qf of the Weibull distribution, namely

G−1(p; γ, σ) = γ[− log(1− p)]1/σ. (7)

Thus, we rewrite the τth quantile (6) as

x = Q(q) = γ

{
− log

[
(1− q1/λ)1/ν

q1/(νλ) + (1− q1/λ)1/ν

]}1/σ

. (8)

We can easily obtain the quartiles: first quartile (Q(0.25)), median (Q(0.5)), and third
quartile (Q(0.75)).

We define a reparametrization of the pdf (5) as a function of the τth quantile (6), where
the scale γ becomes

γ = µ

{
− log

[
(1− τ1/λ)1/ν

τ1/(νλ) + (1− τ
1
λ )1/ν

]}−1/σ

, (9)

µ > 0 is the location, and τ ∈ (0, 1)th is the quantile of X (assumed known).
By substituting (9) into Equation (4), the reparameterized cdf of X reduces to

F(x; ν, λ, µ, σ) =

[
1− exp

{
− w( x

µ )
σ
}]νλ{[

1− exp
{
− w( x

µ )
σ
}]ν

+
[

exp
{
− w( x

µ )
σ
}]ν}λ

, (10)

where w(τ, λ, ν) = − log
{
(1− τ

1
λ )1/ν/[τ1/(νλ) + (1− τ1/λ)1/ν]

}
.

By simple differentiation, the reparameterized pdf of X has the form

f (x; ν, λ, µ, σ) =
ν λ σ xσ−1 w exp

{
− w( x

µ )
σ
}ν[1− exp

{
− w( x

µ )
σ
}]νλ−1

µσ
{[

1− exp
{
− w( x

µ )
σ
}]ν

+
[

exp
{
− w( x

µ )
σ
}]ν}λ+1 . (11)

Henceforth, we redefine X ∼ EOLLW(ν, λ, µ, σ, τ) as a random variable with pdf (11),
where τ ∈ (0, 1) is fixed. Figure 1 displays plots of the pdf of X for some τ values, thus
showing its asymmetry and bimodality.
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Figure 1. Plots of the pdf of X for some τ values: (a) ν = 2, λ = 0.4, µ = 5, σ = 4, (b) ν = 0.4, λ = 0.90,
µ = 1.2, σ = 3, (c) ν = 0.4, λ = 1.5, µ = 1.2, σ = 2.9.

The qf of X is obtained by replacing (9) in Equation (8)

x = Q(q) = µ

[
log
(

(1−q1/λ)1/ν

q1/(νλ)+(1−q1/λ)1/ν

)/
log
(

(1−τ1/λ)1/ν

τ1/(νλ)+(1−τ1/λ)1/ν

)]1/σ

, 0 < q < 1. (12)
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3. Structural Properties

Some known properties of the reparameterized EOLLW distribution are given below:

(A) Equation (11) gives limx→∞ f (x; ν, λ, γ, σ) = 0. Furthermore (Rodrigues et al. [38]),

lim
x→0+

f (x; ν, λ, γ, σ) =


∞, νλ < 1/σ,

w/µσ, νλ = 1/σ,

0, νλ > 1/σ,

where w(τ, λ, ν) is defined in Section 2.
(B) The point (x, f (x)) is called a critical point of f if x is in the domain of f , and either

f ′(x) = 0 or f ′(x) do not exist. Since f in (11) is differentiable, f ′(x) always exists in
its domain. Differentiating f (x) in (11) and setting it equal to zero, its critical points
are the roots of (Rodrigues et al. [38])

T′′(x)
[T′(x)]2

=
(ν + 1)Tν(x) + (1− νλ)

T(x)[1 + Tν(x)]
, (13)

where T(x) = G(x) [1 − G(x)]−1, T′(x) = g(x) [1 − G(x)]−2, T′′(x) = g′(x) [1 −
G(x)]−2 + 2g2(x) [1 − G(x)]−3, and g(x) and G(x) are given in (3). Every critical
point where f reaches a maximum (resp., minimum) value is called the mode (resp.,
minimum point). Using the intermediate value theorem, it is simple to verify that, for
νλ > 1/σ, Equation (13) has at least one root in (0, ∞) (see Appendix A).

(C) If σ = 1 and ν > 0 is an integer, the pdf of X is (Rodrigues et al. [38])

1. decreasing or decreasing–increasing–decreasing for νλ < 1;

2. unimodal for νλ > 1.

Note that Figure 1a (ν = 2, λ = 0.4) shows the unimodality of the OELLW pdf when
νλ < 1 and σ = 4 > 1. We emphasize that the values of the parameters in Figure 1a
do not satisfy the hypothesis of the result C(2), so it does not contradict this one.

(D) For 0 < ν 6 1, the pdf of X is (Rodrigues et al. [38])

1. decreasing or decreasing–increasing–decreasing for νλ < σ−1;

2. decreasing or uni/bimodal or decreasing–increasing–decreasing for νλ = σ−1.

(E) If X ∼ EOLLW(ν, λ, γ, σ) and 0 < ν 6 1, the pdf of X is uni- or bimodal for νλ > σ−1

(Rodrigues et al. [38]).
Note that Figure 1b (ν = 0.4, λ = 0.90) and Figure 1c (ν = 0.4, λ = 1.5) are consistent
with this result, because bimodality is obtained and νλ > σ−1 is satisfied for both cases.

(F) If D has the Type I Dagum distribution (Dagum [39]), say D ∼ DAGUM(ν, 1, λ),
the cdf of X ∼ EOLL-G(ν, λ, γ, σ) in (10) can be written as

F(x; ν, λ, µ, σ) = P[D 6 T(x)] = P
[

G−1
(

D
1 + D

; η

)
6 x

]
. (14)

Consequently,

X = G−1
(

D
1 + D

)
is a stochastic representation for X.

(G) The cdf (10) satisfies the identity

F(x) = P
[

G−1
(

1
1 + B

)
> x

]
,

where B = 1/D, D ∼ DAGUM(ν, 1, λ) and G(x) is as given in Item (B).
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(H) We writeA = {(ν, λ) ∈ (0, ∞)2 : (1 + ν)t2ν + ν2(1 + λ)tν+1 + [ν2(1 + λ) + ν(1− λ) +
2]tν + (1− νλ) > 0, ∀t > 0} (see Rodrigues et al. [38]).

1. If (ν, λ) ∈ A and σ = 1, the hrf of X is increasing.

2. Let ν2(1 + λ) + ν(1− λ) + 2 > 0, νλ > 1, and ν > 0 be an integer. For example,
take the ν > 1 integer and λ > ν−1.

(a) If there exists 0 < x∗ < ν/γ such that h′(x∗) = 0, the hrf of X has a bathtub
(BT) shape.

(b) If there does not exist 0 < x∗ < ν/γ such that h′(x∗) = 0, the hrf of X
is increasing.

3. Let ν2 + 3ν − 1 > 0, νλ = 1, and ν > 0 be an integer. For example, take
0 < ν < (

√
13− 3)/2 and λ > nu−1. Under the conditions of Item (a) [Item (b)],

the hrf of X has a BT (increasing) shape.

(I) The EOLLW density transitions from heavy-tailed to light-tailed (Rodrigues et al. [38]).

3.1. Other Properties
3.1.1. Existence of Moments

The tail of the density of X follows from (14),

P(X > x) = P[D > T(x)], D ∼ DAGUM(ν, 1, λ),

where T(x) = exp[(x/γ)σ]− 1. Markov’s inequality gives

P[D > T(x)] 6
E(D)

T(x)
=

λΓ(1− 1
ν )Γ(1 +

1
ν )

T(x)
, ν > 1.

Hence,

P(X > x) 6
λΓ(1− 1

ν )Γ(1 +
1
ν )

T(x)
, ν > 1. (15)

Having an upper bound on the tail of the distribution, we proceed to bound the
moments of X. This will prove its existence.

Based on the known formula E(Xp) = p
∫ ∞

0 xp−1
P(X > x)dx (for X > 0 and p > 0),

the inequality holds:

E(Xp)
(15)
6 pλΓ

(
1− 1

ν

)
Γ
(

1 +
1
ν

) ∫ ∞

0

xp−1

T(x)
dx, p > 0, ν > 1,

= pλΓ
(

1− 1
ν

)
Γ
(

1 +
1
ν

)γp

σ

∫ ∞

0

y(p/σ)−1

exp(y)− 1
dy,

where y = exp[(x/γ)σ].
From the Riemann zeta function ζ(s) = ∑∞

n=1 n−s = [Γ(s)]−1
∫ ∞

0 zs−1[exp(z)− 1]−1dz,
Re(s) > 1, where Γ(s) =

∫ ∞
0 xs−1 e−xdx is the gamma function, we obtain

E(Xp) 6
pλγp

σ
Γ
(

1− 1
ν

)
Γ
(

1 +
1
ν

)
Γ
( p

σ

)
ζ
( p

σ

)
< ∞, p > σ.

Thus, for ν > 1 and p > σ, the existence of the pth moment of X (for any p > 0)
is guaranteed.
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3.1.2. Gini’s Mean Difference

Given the random variables X1, · · · , Xn, the Gini mean difference (GMD) is defined as

GMDn =
1(
n
2

) ∑
16i<j6n

E(|Xi − Xj|), (16)

provided the involved expectations exist. The GMD is a very useful measure of variability
in the presence of non-normality.

(a) If X1, · · · , Xn is a sequence of independent and identically distributed (iid) random
variables, the classical GMD (La Haye and Zizler [40]) is GMD = E(|X1 − X2|).
From Proposition 3 of Vila et al. [41], the GMD for a random sample X1, · · · , Xn of the
EOLLW model is

GMD =
∫ 1

0
(2u− 1)F−1

X1
(u)du, (17)

where

F−1
X1

(u) = µ

[
ln
(

(1−u1/λ)1/ν

u1/(νλ)+(1−u1/λ)1/ν

)/
ln
(

(1−τ1/λ)1/ν

τ1/(νλ)+(1−τ1/λ)1/ν

)]1/σ

.

Note that analytically, the GMD (17) for the OELLW model is difficult to obtain.
Vila et al. [41] provided the following upper bound (2/

√
3)
√

Var(X1) for the GMD.
(b) If X ∼ EOLLW(νi, λi, γi, σi), and X1, · · · , Xn is a sample not necessarily independent

nor identically distributed, the following inequality for the GMD (16) follows from
Vila et al. [41]

GMDn 6
1(
n
2

) ∑
16i<j6n

[√
(
√

Var(Xi)−
√

Var(Xj)ρi,j)2 + Var(Xj)(1− ρ2
i,j) + |ς|

]
,

where ς = E(Xi)−E(Xj) and ρi,j = Corr(Xi, Xj), for i, j = 1, . . . , n.

Under constraints νi > 1 and σi < 1, the moments of Xi ∼ EOLLW(νi, λi, γi, σi)
(i = 1, . . . , n) always exist (see Section 3.1.1). Then, the mean E(Xi), variance Var(Xi),
and correlations ρi,j = Corr(Xi, Xj) (for i, j = 1, . . . , n) also exist. Hence, for both cases (a)
and (b), we can deduce non-trivial upper bounds (then its existence) of the GMD for the
EOLLW model.

4. The EOLLW QR Model for Censored Data

A new regression model is defined from the reparametrized EOLLW density (11), and
two systematic components for the parameters µi and σi (for i = 1, . . . , n)

µi(τ) = exp
{

v>i β1(τ)
}

and σi(τ) = exp
{

v>i β2(τ)
}

, (18)

where β1(τ) = (β10, β11, · · · , β1p)
> and β2(τ) = (β20, β21, · · · , β2p)

> are unknown pa-
rameter vectors, and v>i = (vi1, · · · , vip) is the explanatory variable vector. Thus, the
heteroscedasticity is modeled via σ.

The EOLLW QR model is defined by Equations (11) and (18), where ν and λ are
unknown constants, and it has as special models:

• Rhe exponentiated Weibull (EW) QR model for ν = 1;
• the odd log-logistic Weibull (OLLW) QR model for λ = 1;
• and the Weibull QR model for ν = λ = 1.

Consider a sample (x1, δ1, v1), · · · , (xn, δn, vn) of independent observations, where
each random response is defined by xi = min{Xi, Ci}, δi = IXi≤Ci (censoring indicator),
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where I(·) denotes the indicator function. We consider non-informative censoring and the
observed lifetimes and censoring times are independent given vi. Let F and C be the sets
of individuals for which xi is the lifetime or censoring time, respectively. Conventional
likelihood estimation techniques can be applied here. The log-likelihood function for the
vector θ = (β>1 (τ), β>2 (τ), ν, λ)> from model (18) has the form

`(θ) = ∑
i∈F

`i(θ) + ∑
i∈C

`
(c)
i (θ),

where `i(θ) = log[ f (xi)], `
(c)
i (θ) = log[S(xi)], f (xi) is the density (11), S(xi) = 1− F(xi)

is the survival function, and F(xi) is the cdf (10) of Xi. The total log-likelihood function for
θ can be expressed as

`(θ) = r† log(ν λ w) + ∑
i∈F

log[σi(τ)] + ∑
i∈F

[σi(τ)− 1] log(xi) + ν ∑
i∈F

log(ui) +

(ν λ− 1) ∑
i∈F

log(1− ui)−∑
i∈F

σi(τ) log[µi(τ)]− (19)

(λ + 1) ∑
i∈F

log[(1− ui)
ν + uν

i ] + ∑
i∈C

log

[
1− (1− ui)

ν λ

[(1− ui)ν + uν
i ]

λ

]
,

where

w(ν, λ, τ) = − log

(
(1− τ

1
λ )

1
ν

τ
1

νλ + (1− τ
1
λ )

1
ν

)
, ui = exp

{
−w(ν, λ, τ)

[
xi

µi(τ)

]σi(τ)
}

,

and r† is the number of uncensored observations (failures).
The gamlss package in R [42] is used to find the maximum likelihood estimate θ̂ of θ.

This package comes from the general class of generalized additive models for location, scale
and shape (GAMLSS) (Rigby and Stasinopoulos [43]). These models allow all parameters of
a distribution to be modeled as a function of covariates, such as non-parametric, parametric
and/or additive smooth functions. Furthermore, they do not have the restriction that the
response distribution belongs to a given family such as the exponential family. The package
basically has two algorithms: CG (Cole and Green [44]) and RS (Rigby and Stasinopou-
los [43]), whose acronyms come from the names of the authors. These algorithms are stable
and do not require precise initial values to guarantee convergence. For this reason, we
work with the RS algorithm with initial values for β1(τ) and β2(τ) obtained from the fitted
Weibull QR model (ν = λ = 2). Compared to the CG algorithm, RS is faster for larger
datasets and does not use the expected value of cross derivatives, which can be useful
when these values are equal to zero. For more details of the algorithms, see [43].

The codes for the reparametric EOLLW distribution in the GAMLSS framework are
available at https://github.com/gabrielamrodrigues/EOLLW_quantiles (accessed on 10
February 2023). Following this approach, different regression models can be constructed by
incorporating non-parametric smoothing functions, random effects, or other additive terms to
the predictors.

Under conditions that are fulfilled for the parameter vector θ in the interior of the
parameter space but not on the boundary, the asymptotic distribution of

√
n(θ̂− θ) is

multivariate normal N2p+2(0, K(θ)−1), where K(θ) is the information matrix. The asymp-
totic covariance matrix K(θ)−1 of θ̂ can be approximated by the inverse of the (2p + 2)×
(2p + 2) observed information matrix −L̈(θ). The approximate multivariate normal distri-
bution N2p+2(0,−L̈(θ)−1) for θ̂ can be used in the classical way to construct approximate
confidence regions for some parameters in θ.

We can use the likelihood ratio (LR) statistic for comparing some sub-models with
the EOLLW QR model. We consider the partition θ = (θT

1 , θT
2 )

T , where θ1 is the subset of
parameters of interest and θ2 is the subset of remaining parameters. The LR statistic for

https://github.com/gabrielamrodrigues/EOLLW_quantiles
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testing the null hypothesis H0 : θ1 = θ
(0)
1 versus the alternative hypothesis H1 : θ1 6= θ

(0)
1

is given by w∗ = 2{`(θ̂) − `(θ̃)}, where θ̃ and θ̂ are the estimates under the null and
alternative hypotheses, respectively. The statistic w is asymptotically (as n→ ∞) distributed
as χ2

k , where k is the dimension of the subset of parameters θ1 of interest.
The standard maximum likelihood techniques can be adopted for the proposed regres-

sion, such as the quantile residuals (qri) (Dunn and Smyth [45]), namely

qri = Φ−1

{
(1− ûi)

ν̂ λ̂

[(1− ûi)ν̂ + ûν̂
i ]

λ̂

}
, (20)

where

ûi = exp

{
−ŵ(ν̂, λ̂, τ)

[
xi

µ̂i(τ)

]σ̂i(τ)
}

, ŵ(ν̂, λ̂, τ̂) = − log

(
(1− τ̂

1
λ̂ )

1
ν̂

τ̂
1

ν̂λ̂ + (1− τ̂
1
λ̂ )

1
ν̂

)
,

µ̂i(τ) = exp
{

v>i β̂1(τ)
}

, σ̂i(τ) = exp
{

v>i β̂2(τ)
}

,

and Φ(·)−1 is the inverse cumulative standard normal distribution.

5. Simulation Study

A simulation study is carried out to verify the accuracy of the MLEs in the EOLLW QR
model for the quartiles τ = 0.25, 0.50 and 0.75, and approximate censoring percentages 0%, 10%
and 50%. Just one covariate v1 ∼Binomial (1, 0.5) is included in the systematic components:

µi = exp(β10 + β11v1i), σi = exp(β20 + β21v1i), νi = exp(β30), and λi = exp(β40),

For each combination, N = 1000 replicas of sizes n = 100, 300 and 500 are generated.
The true values used are: β10 = 1.5, β11 = −1.32, β20 = 0.5, β21 = 0.2, β30 = 1.1 and
β40 = 1.4.

The inverse transformation method is used to generate the lifetimes x1, · · · , xn from
the EOLLW(µi, σi, ν, λ, τ) distribution, and the censoring times c1, · · · , cn are determined
from a uniform distribution (0, k), where k controls the censoring percentages. For each
scenario, the Average Estimates (AEs), Biases and Mean Square Errors (MSEs) of the MLEs
are calculated from:

AE(θ̂) =
1
N

N

∑
i=1

θ̂i, Bias(θ̂) =
1
N

N

∑
i=1

(θ̂i − θi), MSE(θ̂) =
1
N

N

∑
i=1

(θ̂i − θi)
2, (21)

where θ̂
>
= (β̂10, β̂11, β̂20, β̂21, β̂30, β̂40). The software R is used and Algorithm 1 presents

the simulation steps.
Tables 1–3 report the findings. For all scenarios, the AEs converge to the true parameter

values, and the biases and MSEs decrease when n increases. These facts indicate that
the consistency of the estimators hold. In addition, this behavior is verified even for
high censoring percentages. We also found the empirical coverage probabilities (CPs)
corresponding to the 95% confidence intervals calculated from the simulations. Table 4
reports CPs values which approach to the nominal level.
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Algorithm 1: Simulation study
Input : τ: quantile

n: sample size
β10, β11, β20, β21, β30, β40: parameter initial values
k: controls censoring percentage
n.par: number of parameters
r: number of replicates

theta = matrix(0, r, n.par)
i = 1
while i ≤ r do

v1i ∼ Binomial (n, 1, 0.5)
µi = exp(β10 + β11v1i)
σi = exp(β20 + β21v1i)
νi = exp(β30)
λi = exp(β40)
x∗i ∼ EOLLW (n, µi, σi, νi, λi, τ) from Equation (12)
ci ∼ Uniform (n, 0, k)
δ= vector of zeros
x= vector of zeros
if ci ≤ x∗i then

xi = ci
δi = 0

else
xi = x∗i
δi = 1

end
Fit the model
if Model converges then

theta[i, ] = Parameter estimates
i = i + 1

else
i = i

end
end
Calculate AEs, BIASES and MSEs from Equation (21).

Table 1. Simulation results from the fitted EOLLW QR model for τ = 0.25.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.5017 0.0017 0.0006 1.5010 0.0010 0.0002 1.5015 0.0015 0.0001
β11 −1.32 −1.3208 −0.0008 0.0009 −1.3195 0.0005 0.0003 −1.3204 −0.0004 0.0002
β20 0.50 0.4713 −0.0287 0.3744 0.4689 −0.0311 0.0811 0.4661 −0.0339 0.0647
β21 0.20 0.2026 0.0026 0.0232 0.1983 −0.0017 0.0072 0.1996 −0.0004 0.0043
β30 1.10 0.9322 −0.1678 0.6286 1.1410 0.0410 0.1523 1.1606 0.0606 0.1208
β40 1.40 2.1725 0.7725 2.2507 1.3820 −0.0180 0.2594 1.3228 −0.0772 0.1726

10%

β10 1.50 1.5019 0.0019 0.0006 1.5007 0.0007 0.0002 1.5012 0.0012 0.0001
β11 −1.32 −1.3213 −0.0013 0.0010 −1.3199 0.0001 0.0003 −1.3205 -0.0005 0.0002
β20 0.50 0.5107 0.0107 0.3516 0.4687 −0.0313 0.0775 0.4664 −0.0336 0.0663
β21 0.20 0.1998 −0.0002 0.0251 0.1992 −0.0008 0.0080 0.1955 −0.0045 0.0046
β30 1.10 0.8796 −0.2204 0.6288 1.1319 0.0319 0.1517 1.1640 0.0640 0.1210
β40 1.40 2.1030 0.7030 1.7695 1.4245 0.0245 0.3137 1.3198 −0.0802 0.1713
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Table 1. Cont.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

50%

β10 1.50 1.5083 0.0083 0.0024 1.5015 0.0015 0.0006 1.5005 0.0005 0.0003
β11 −1.32 −1.3262 −0.0062 0.0029 −1.3208 −0.0008 0.0007 −1.3202 −0.0002 0.0004
β20 0.50 0.7797 0.2797 0.3705 0.5016 0.0016 0.1765 0.4869 −0.0131 0.0922
β21 0.20 0.1276 −0.0724 0.0767 0.1830 −0.0170 0.0197 0.1865 −0.0135 0.0127
β30 1.10 0.5845 −0.5155 0.6681 1.0430 −0.0570 0.3344 1.1165 0.0165 0.1563
β40 1.40 2.1757 0.7757 1.6396 1.6131 0.2131 0.6815 1.4305 0.0305 0.2805

Table 2. Simulation results from the fitted EOLLW QR model for τ = 0.50.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.5018 0.0018 0.0005 1.5007 0.0007 0.0002 1.5010 0.0010 0.0001
β11 −1.32 −1.3213 −0.0013 0.0008 −1.3197 0.0003 0.0003 −1.3205 −0.0005 0.0002
β20 0.50 0.5026 0.0026 0.3890 0.4834 −0.0166 0.0697 0.4664 −0.0336 0.0700
β21 0.20 0.2076 0.0076 0.0202 0.2042 0.0042 0.0066 0.2006 0.0006 0.0039
β30 1.10 0.9111 −0.1889 0.6434 1.1457 0.0457 0.1317 1.1694 0.0694 0.1291
β40 1.40 2.1463 0.7463 2.2571 1.3320 −0.0680 0.2332 1.3050 −0.0950 0.1874

10%

β10 1.50 1.5016 0.0016 0.0007 1.5004 0.0004 0.0002 1.5005 0.0005 0.0001
β11 −1.32 −1.3203 −0.0003 0.0010 −1.3197 0.0003 0.0004 −1.3200 −0.0000 0.0002
β20 0.50 0.5788 0.0788 0.2982 0.4814 −0.0186 0.0787 0.4676 −0.0324 0.0666
β21 0.20 0.2037 0.0037 0.0236 0.2032 0.0032 0.0082 0.1994 −0.0006 0.0046
β30 1.10 0.8421 −0.2579 0.5646 1.1418 0.0418 0.1473 1.1686 0.0686 0.1223
β40 1.40 1.9985 0.5985 1.5804 1.3647 −0.0353 0.2598 1.3109 −0.0891 0.1954

50%

β10 1.50 1.5040 0.0040 0.0033 1.4995 −0.0005 0.0007 1.4996 −0.0004 0.0004
β11 −1.32 −1.3213 −0.0013 0.0036 −1.3185 0.0015 0.0008 −1.3191 0.0009 0.0005
β20 0.50 0.8284 0.3284 0.4059 0.5002 0.0002 0.2775 0.4885 −0.0115 0.1185
β21 0.20 0.1409 −0.0591 0.0730 0.1852 −0.0148 0.0195 0.1931 −0.0069 0.0127
β30 1.10 0.5795 −0.5205 0.6660 1.0593 −0.0407 0.4554 1.1395 0.0395 0.1775
β40 1.40 2.0447 0.6447 1.4838 1.5840 0.1840 0.6743 1.3576 −0.0424 0.2460

Table 3. Simulation results from the fitted EOLLW QR model for τ = 0.75.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

0%

β10 1.50 1.4978 −0.0022 0.0006 1.4974 −0.0026 0.0002 1.4982 −0.0018 0.0001
β11 −1.32 −1.3202 −0.0002 0.0011 −1.3189 0.0011 0.0004 −1.3200 −0.0000 0.0002
β20 0.50 0.4999 −0.0001 0.4778 0.5031 0.0031 0.0630 0.4692 −0.0308 0.0629
β21 0.20 0.2057 0.0057 0.0187 0.1994 −0.0006 0.0064 0.2003 0.0003 0.0038
β30 1.10 0.9645 −0.1355 0.7290 1.1483 0.0483 0.1149 1.1851 0.0851 0.1136
β40 1.40 2.0572 0.6572 2.0673 1.3201 −0.0799 0.2256 1.2860 −0.1140 0.1613

10%

β10 1.50 1.4968 −0.0032 0.0008 1.4973 −0.0027 0.0003 1.4981 −0.0019 0.0002
β11 −1.32 −1.3207 −0.0007 0.0011 −1.3192 0.0008 0.0004 −1.3200 −0.0000 0.0003
β20 0.50 0.5707 0.0707 0.3092 0.5012 0.0012 0.0666 0.4817 −0.0183 0.0553
β21 0.20 0.2045 0.0045 0.0233 0.2046 0.0046 0.0069 0.2004 0.0004 0.0043
β30 1.10 0.9004 −0.1996 0.5399 1.1452 0.0452 0.1179 1.1760 0.0760 0.0991
β40 1.40 1.9765 0.5765 1.7309 1.3391 −0.0609 0.2326 1.2787 −0.1213 0.1641
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Table 3. Cont.

% θ True Value
n = 100 n = 300 n = 500

AEs Biases MSEs AEs Biases MSEs AEs Biases MSEs

50%

β10 1.50 1.4909 −0.0091 0.0037 1.4949 −0.0051 0.0010 1.4953 −0.0047 0.0007
β11 −1.32 −1.3134 0.0066 0.0043 −1.3177 0.0023 0.0011 −1.3172 0.0028 0.0007
β20 0.50 0.8283 0.3283 0.5621 0.5214 0.0214 0.2210 0.5234 0.0234 0.0790
β21 0.20 0.1300 −0.0700 0.0778 0.1920 −0.0080 0.0184 0.1904 −0.0096 0.0120
β30 1.10 0.6175 −0.4825 0.8154 1.0842 −0.0158 0.3476 1.1419 0.0419 0.1129
β40 1.40 2.0680 0.6680 1.6198 1.5014 0.1014 0.6340 1.3051 −0.0949 0.1893

Table 4. CPs for the 95% nominal level from the fitted EOLLW QR regression model when τ = 0.25,
0.50 and 0.75 and approximate censoring percentages 0%, 10% and 50%.

τ θ
0% (n) 10% (n) 50% (n)

(100) (300) (500) (100) (300) (500) (100) (300) (500)

0.25

β10 0.939 0.946 0.957 0.948 0.951 0.947 0.922 0.949 0.953
β11 0.954 0.949 0.959 0.946 0.942 0.966 0.937 0.951 0.946
β20 0.973 0.974 0.965 0.972 0.981 0.969 0.962 0.975 0.981
β21 0.948 0.955 0.956 0.946 0.957 0.954 0.937 0.961 0.954
β30 0.980 1.000 1.000 0.978 0.998 1.000 0.954 0.981 0.993
β40 0.990 0.999 0.991 0.993 0.999 0.993 0.996 0.998 1.000

0.50

β10 0.950 0.947 0.952 0.940 0.935 0.951 0.907 0.939 0.968
β11 0.950 0.939 0.956 0.947 0.937 0.950 0.913 0.933 0.996
β20 0.969 0.972 0.959 0.955 0.977 0.962 0.959 0.975 0.973
β21 0.959 0.967 0.964 0.953 0.948 0.957 0.945 0.956 0.998
β30 0.986 0.999 1.000 0.970 0.999 1.000 0.941 0.976 0.995
β40 0.986 0.999 0.987 0.995 0.999 0.995 0.995 0.996 0.989

0.75

β10 0.950 0.956 0.963 0.941 0.959 0.958 0.895 0.955 0.938
β11 0.946 0.956 0.959 0.954 0.958 0.963 0.914 0.964 0.949
β20 0.952 0.968 0.966 0.952 0.974 0.969 0.939 0.972 0.991
β21 0.968 0.969 0.965 0.962 0.968 0.968 0.936 0.970 0.959
β30 0.980 0.999 1.000 0.979 1.000 1.000 0.952 0.987 0.996
β40 0.980 0.999 0.989 0.991 0.998 0.996 0.986 0.993 0.999

6. Application to Gastric Cancer Data

Gastric cancer is the 5th most common cancer worldwide. There are more than one
million new cases of this cancer every year, and it ranked as the 2nd leading cause of mor-
tality from cancer in the world. We consider a survival dataset of patients suffering from
gastric adenocarcinoma treated by surgery at Helsinki University Hospital in Finland [46]
(available at https://doi.org/10.5061/dryad.hb62394, accessed on 29 November 2022 [47]),
which contains 301 individuals with approximate censoring of 60%. Here we consider
two covariables. The first corresponds to the classification of Lauren (Figure 2a). Various
pathological classifications of the disease exist, but that of Lauren is the most common.
Originally developed in the 1960s, the classification system adopted cell structural com-
ponents to separate the patients in three types: well differentiated (non-cardia/intestinal),
poorly differentiated (cardia/diffuse), and mixed disease [48]. Based on histology, the two
leading types of gastric cancer are diffuse and intestinal [49]. These two types are reflected
in the dataset. The second covariable corresponds to the presence of distant metastasis (M1
disease) (Figure 2b). Many patients diagnosed with gastric cancer present distant metasta-
sis, implying a very poor prognosis, generally indicating prophylactic rather than curative
treatment ([50,51]). The objective here is to verify the effects of the covariables in different
quantiles, so as to obtain a more complete view of this dataset. Table 5 gives a descriptive
summary, which includes the mean times, median times and times for the first and third

https://doi.org/10.5061/dryad.hb62394
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quartiles. We can observe differences for the Lauren classification covariate: between the
quantiles, the average time, and the Lauren 1 and Lauren 2 levels. However, we note subtle
differences for the presence of distant metastases covariate. Then, the variables considered
are (i = 1, . . . , 301):

• xi survival time (in years);
• censi: censoring indicator (0 = censored, 1 = observed);
• v1i: Lauren classification (1 = intestinal, 2 = diffuse), defined by a dummy variable

(0 = intestinal, 1 = diffuse);
• v2i: Presence of distant metastases (pm) (1 = yes, 0 = no)

(a) (b)
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Figure 2. Kaplan-Meier survival curves for gastric cancer data: (a) Lauren classification; (b) Presence
of distant metastases.

Table 5. Descriptive analysis of gastric cancer data.

0.25 0.50 0.75 Mean

Lauren 1 4.33 8.57 10.18 7.73
Lauren 2 8.32 11.08 13.30 10.39

Pm 0 7.15 9.66 11.90 9.24
Pm 1 10.06 10.06 10.06 8.48

Regression Model

We compare the EOLLW QR model with the nested OLLW, Exp-W and Weibull models
under three systematic components:

M0 =

{
µ(τ) = exp[β10(τ)]

σi(τ) = exp[β20(τ)];

M1 =

{
µ(τ) = µ(τ) = exp[β10(τ) + β11(τ)v1i + β12(τ)v2i]

σi(τ) = exp[β20(τ)];

M2 =

{
µ(τ) = exp[β10(τ) + β11(τ)v1i + β12(τ)v2i]

σi(τ) = exp[β20(τ) + β21(τ)v1i + β22(τ)v2i].

We consider the following quantiles: τ = 0.10, 0.25, 0.50, 0.75 and 0.90. Table 6 reports
the Akaike information criterion (AIC) values for the fitted QR regression models. The
EOLLW QR model under structureM2 gives the lowest values for these quantiles.
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Table 6. AIC values for some fitted QR models to gastric cancer data.

Model
τ

0.10 0.25 0.50 0.75 0.90

M0

EOLLW 755.3104 760.6965 755.1712 755.1715 755.1759
OLLW 773.1060 773.1021 773.1010 773.1017 773.1011
Exp-W 759.9144 759.0376 758.4132 757.2295 757.9724
Weibull 813.5743 813.5743 813.5744 813.5744 813.5746

M1

EOLLW 755.2259 755.1844 755.1742 755.1753 755.1778
OLLW 774.2566 774.2433 774.2239 774.2288 774.2294
Exp-W 762.3150 761.8464 761.2808 760.9295 938.5430
Weibull 811.0754 811.0752 811.0754 811.0755 811.0756

M2

EOLLW 750.3085 750.1898 750.1712 750.1812 750.1930
OLLW 769.1151 769.1514 769.2313 769.2891 769.3191
Exp-W 755.8550 755.7825 755.7881 755.8164 768.3938
Weibull 797.4298 797.4352 797.4666 797.5064 797.5421

Table 7 gives three likelihood ratio (LR) statistics (p-values in parentheses), thus
indicating that the EOLLW QR model under structureM2 is better than the others. Thus,
we can consider this model as the predictive model.

Table 7. LR statistics for the ELLOW QR model under structureM2 and some τ values for the gastric
cancer data.

τ

Models Hypotheses 0.10 0.25 0.50 0.75 0.90

EOLLW vs. OLLW H0 : λ = 1 vs. H1 : H0 is false 20.80(<0.001) 20.95(<0.001) 21.06(<0.001) 21.10(<0.001) 21.12(<0.001)
EOLLW vs. Exp-W H0 : ν = 1 vs. H1 : H0 is false 7.54(0.006) 7.58(0.005) 7.61(0.005) 7.63(0.005) 20.20(<0.001)
EOLLW vs. Weibull H0 : λ = ν = 1 vs. H1 : H0 is false 51.12(<0.001) 51.24(<0.001) 51.29(<0.001) 51.28(<0.001) 51.34(<0.001)

Figure 3 displays the MLEs and the corresponding confidence intervals along with
the interval [0.01, 0.99], and Table 8 gives the MLEs and their standard errors (SEs) for the
quantiles τ = 0.10, 0.25, 0.50, 0.75 and 0.90 at the significance level of 5%. The following
facts can be mentioned:

• The effect of the Lauren classification 2 in comparison with 1 is decreasing along
the quantiles and its confidence interval shows significant estimates for all quantiles.
These results corroborate with those point quantiles reported in Table 8.

• The effect of the presence of distant metastasis is rising along the quantiles. Its
confidence interval includes zero in the interval [0.25, 0.75), thus indicating that the
covariable is not significant for these quantiles. These results can be noted by the
non-significant p-values for τ = 0.25 and 0.50.

• For the parameters β21 and β22, the estimates are significant for both quantiles, thus
indicating that those covariables influence the variability of the survival times.

• The estimates corresponding to the shape parameters β30 and β40 are also significant
for all quantiles.
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Figure 3. Point estimates and 95% confidence intervals for the parameters versus τ from the fitted
ELLOW QR model under structureM2 for the gastric cancer data.

Table 8. Estimation findings from the ELLOW QR model under structureM2 and τ = 0.10, 0.25, 0.50,
0.75 and 0.90 for the current data.

τ θ MLEs SEs p-Values

0.10

β10 0.372 0.050 <0.01
β11 0.691 0.066 <0.01
β12 −1.100 0.206 <0.01
β20 −0.165 0.022 <0.01
β21 0.269 0.036 <0.01
β22 −0.652 0.113 <0.01
β30 2.092 0.016 <0.01
β40 −2.043 0.017 <0.01

0.25

β10 1.322 0.050 <0.01
β11 0.468 0.066 <0.01
β12 −0.350 0.210 0.096
β20 −0.226 0.037 <0.01
β21 0.271 0.057 <0.01
β22 −0.670 0.176 <0.01
β30 2.159 0.026 <0.01
β40 −2.054 0.028 <0.01

0.50

β10 1.990 0.050 <0.01
β11 0.308 0.066 <0.01
β12 0.211 0.212 0.320
β20 −0.245 0.061 <0.01
β21 0.269 0.078 <0.01
β22 −0.679 0.131 <0.01
β30 2.178 0.034 <0.01
β40 −2.056 0.037 <0.01

0.75

β10 2.362 0.050 <0.01
β11 0.220 0.066 <0.01
β12 0.533 0.213 0.013
β20 −0.239 0.077 <0.01
β21 0.266 0.088 <0.01
β22 −0.682 0.105 <0.01
β30 2.172 0.034 <0.01
β40 −2.054 0.036 <0.01

0.90

β10 2.565 0.050 <0.010
β11 0.172 0.066 0.010
β12 0.710 0.213 <0.01
β20 −0.231 0.077 <0.01
β21 0.264 0.087 <0.01
β22 −0.684 0.094 <0.01
β30 2.165 0.033 <0.01
β40 −2.053 0.034 <0.01
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Residual Analysis

Figures 4–8 provide the normal probability plots of the qri’s in Equation (20) under
structureM2 for some quantiles. They reveal that the EOLLW QR model is the best among
the fitted models. Further, they approximately follow a standard normal distribution, thus
indicating adequate fits. Figure 9 shows the index plot of the qri’s for the EOLLW QR model
under structureM2. There are few points outside the interval [−3, 3] for both quantiles,
and a random pattern around zero which show that these models are very adequate to the
current data.
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Figure 4. QQ plots for qri’s from some fitted regression models under structureM2 and τ = 0.10.
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Figure 5. QQ plots for the qri’s from some fitted regression models under structureM2 and τ = 0.25.
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Figure 6. QQ plots for the qri’s from some fitted regression models under structureM2 and τ = 0.50.



Mathematics 2023, 11, 1518 17 of 20

EOLLW OLLW EW Weibull

−2 0 2 −2 0 2 −2 0 2 −2 0 2

−2

0

2

Theoretical quantile

S
a

m
p

le
 q

u
a

n
ti
le

Figure 7. QQ plots for the qri’s from some regression models under structureM2 and τ = 0.75.

EOLLW OLLW EW Weibull

−2 0 2 −2 0 2 −2 0 2 −2 0 2

−2

0

2

Theoretical quantile

S
a

m
p

le
 q

u
a

n
ti
le

Figure 8. QQ plots for the qri’s from some regression models under structureM2 and τ = 0.90.

(a) (b) (c) (d) (e)

Figure 9. Index plots for the qri’s from some regression models under structureM2: (a) τ = 0.10;
(b) τ = 0.25; (c) τ = 0.50; (d) τ = 0.75; (e) τ = 0.90.

7. Concluding Remarks

We introduced a new quantile regression model for censored data based on the
reparametrization of the exponentiated log-logistic odd Weibull (EOLLW) distribution
in terms of quantiles with two systematic components. We presented some mathematical
properties of the reparametrized EOLLW distribution. The proposed quantile regression
model is an important extension of other regression models and can be a valuable addition
to the survival analysis area. The new regression model also serves as a good alternative for
the analysis of lifetime data and may be more flexible than the exponentiated Weibull, odd
log-logistic Weibull and Weibull models. Several simulations were performed for different
parameter settings, sample sizes and censoring percentages, to assess the accuracy of the
maximum likelihood estimators. The usefulness of the new model was also proved by
means of a gastric cancer dataset.
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Appendix A

Here, for the EOLLW model, we verify (11), Equation (13) has at least one zero under
the restriction νλ > 1/σ.

Indeed, if G(x; γ, σ) and g(x; γ, σ) are as in (3), Equation (13) can be written as

L(z) ≡
(

2− 1
σ

)[
1− exp(−z)

z

]
− ν

[exp(z)− 1]ν − λ

[exp(z)− 1]ν + 1
− 1 = 0, where z =

(
x
γ

)σ

.

L’Hospital’s rule gives

lim
z→0+

L(z) =
(

2− 1
σ

)
− ν(−λ)− 1 = 1 + νλ− 1

σ
> 0

and

lim
z→∞
L(z) = −(ν + 1) < 0,

since νλ > 1/σ. Further, L is continuous in (0, ∞), and by the intermediate value theorem,
there is a c ∈ (0, ∞) such that L(c) = 0. In other words, Equation (13) has at least one zero
if νλ > 1/σ.
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