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Abstract: A conjecture of Cai–Zhang–Shen for figurate primes says that every integer k > 1 is the
sum of two figurate primes. In this paper, we give an equivalent proposition to the conjecture. By
considering extreme value problems with constraints about the conjecture in the cases of odd and
even integers and using the method of Lagrange multipliers, the Cardano formula for cubic equations,
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1. Introduction

Since 18th century, the so-called Goldbach’s binary conjecture has been known, which
says that every even number greater than two can be written as the sum of two primes.
This problem has received attention from many mathematicians, but, unfortunately, it is
still unsolved up to the present day; see Apostol [1], Chen [2], Oliveira e Silva, Herzog and
Pardi [3], Pan and Pan [4], and Wang [5].

A binomial coefficient of the form
(

pr

s

)
is called a figurate prime, where p is a prime,

and r ≥ 1 and s ≥ 0 are integers. The collection of figurate primes includes one, all primes,
and their powers, see [6]. It is well known that numbers of figurate primes and usual primes
not larger than x have the same density. In 2015, Cai, Zhang and Shen in [7] proposed a
conjecture (we call it Cai–Zhang–Shen conjecture):

every integer k > 1 is the sum of two figurate primes

and pointed out that the conjecture is true for integers up to 107. In this paper, we will
discuss the conjecture and confirm that it is true.

Denote the characteristic function of figurate primes i by δ(i), i.e., δ(i) = 1, when i is a
figurate prime; δ(i) = 0, when i is not a figurate prime. We claim that the Cai–Zhang–
Shen conjecture for every integer k ≥ 3 is equivalent to

k−1

∑
i=1

δ(i)δ(k− i) > 0, k ≥ 3. (1)

In fact, if (1) holds, then there exists i such that

δ(i)δ(k− i) > 0,

that is, δ(i) = δ(k− i) = 1, which implies that i and k− i are figurate primes, and the sum
is k. Cai–Zhang–Shen conjecture is true. Conversely, if Cai–Zhang–Shen conjecture is true,
that is, every integer k can be expressed as the sum of two figurate primes i and k− i, then
δ(i)δ(k− i) > 0 by δ(i) = δ(k− i) = 1, i.e., (1) is proved.
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We can also give the equivalent descriptions for odd and even integers, respec-
tively. Let

In = {i|δ(i) = 1 for some integer i = 1, 2, . . . , n− 1},

and by l the number of figurate primes not be greater than n− 1. We always let

l > 104.

For odd integer k = 2n− 1, we take N > 2n− 1 satisfying δ(N) = 0. Then, Cai–Zhang–
Shen conjecture is equivalent to

∑
i∈In

δ(i)δ(2n− 1− i) + δ(N)2 > 0, n ≥ 3. (2)

For even integer k = 2n, Cai–Zhang–Shen conjecture is equivalent to

∑
i∈In

δ(i)δ(2n− i) + δ(n)2 > 0, n ≥ 3. (3)

The main result of the paper is

Theorem 1. Cai–Zhang–Shen conjecture is true.

We will divide odd integers and even integers to prove Theorem 1. The detailed proof
is given only in the case of odd integers, which can be similarly obtained in the case of
even integers. Based on the properties satisfied by the characteristic function of the figurate
primes, we introduce the objective function f (x) (x ∈ R2l+1), and two constraints g(x) = 0
and h(x) = 0. By testing that the set A constructed by constraints is bounded, and the
Jacobi determinant of two functions g(x) and h(x) is not 0, and then using the method
of Lagrange multipliers, one shows f (x) > 0 on the set A. Under the assumption that
Cai–Zhang–Shen conjecture is not true, the contradiction is obtained.

We emphasize the difficulties here: one is how to select the applicable objective
function and constraints, especially the constraints, and the other is how to prove f (x) > 0
on A. Here, the application of the Cardano formula is successful.

Since Cai–Zhang–Shen conjecture is equivalent to (1), we have from Theorem 1 that

Corollary 1. (1) holds.

This paper is organized as follows. The proof of Theorem 1 (odd integers) is given
in Section 2. We introduce the objective function f (x) and two constraints g(x) = 0 and
h(x) = 0. Using the method of Lagrange multipliers, one solves the minimum point of f (x)
on A and infers f (x) > 0 on A. Under the assumption that Cai–Zhang–Shen conjecture is
not true, the contradiction is derived. Therefore, Theorem 1 (odd integers) is proved. Two
propositions used in Section 2 are proved in Section 3. In Section 4, we prove Theorem 1
(even integers). Since the proof is similar to the previous sections, we only describe the
related extreme value problem with constraints and omit the details. Some conclusions are
given in Section 5.

At the end of this section, let us state the method of Lagrange multipliers (e.g., refer
to [8]) which will be used. For seeking the maximum and minimum values of f (x)(x ∈ Rn)
with constraints

gi(x) = 0 (i = 1, 2, · · · , m, m < n)

(assuming that these extreme values exist and the rank of Jacobian matrix

∂(g1, · · · , gm)

∂(x1, · · · , xn)



Mathematics 2023, 11, 1532 3 of 13

of gi(x) (i = 1, 2, · · · , m) is m):

(a) Find all x ∈ Rn, λ1, · · · , λm ∈ R such that

∂ f
∂xi

+ λ1
∂g1

∂xi
+ · · ·+ λm

∂gm

∂xi
= 0, i = 1, · · · , n,

gi(x) = 0, i = 1, 2, · · · , m,

where x is the stationary point and λ1, · · · , λm are multipliers;

(b) Evaluate f at all the points x that result from (a). The largest of these values is the
maximum value of f , and the smallest is the minimum value of f .

2. Proof of Theorem 1 (Odd Integers)

The following is the Cardano formula for cubic equations:

Lemma 1. Given the equation
y3 + 3py + 2q = 0,

if D = p3 + q2 > 0, then there is a real solution

y = u+ + u−,

where

u+ =
(
−q +

√
D
)1/3

, u− =
(
−q−

√
D
)1/3

.

Proof of Theorem 1 (odd integers). Suppose that Cai–Zhang–Shen conjecture for odd in-
tegers is not true, namely there exists an odd integer 2n− 1 such that 2n− 1 can not be
expressed as the sum of two figurate primes. Denote figurate primes not larger than n− 1
by i1, i2, · · · , il (i1 < i2 < · · · < il), and so

In = {i1, i2, · · · , il},

and δ(i1) = 1, δ(i2) = 1, · · · δ(il) = 1; let

P = (δ(i1), · · · , δ(il), δ(2n− 1− il), · · · , δ(2n− 1− i1), δ(N)),

i.e., components of P are of

δ(i1) = · · · = δ(il) = 1, δ(2n− 1− i1) = · · · = δ(2n− 1− il) = δ(N) = 0,

Clearly, P ∈ R2l+1.
We introduce a function on R2l+1:

f (x) = ∑
i∈In

xix2n−1−i + sx2
N , (4)

where
s =

3
8

l
1
3 .

Since P satisfies
∑

i∈In

(
δ(i)2+δ(2n− 1− i)2

)
+ εδ(N) = l,

∑
i∈In

δ(i)δ(2n− 1− i) + γδ(N)3 +
1
2

εδ(N) = 0,
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we define two functions on R2l+1:

g(x) = ∑
i∈In

(
x2

i + x2
2n−1−i

)
+ εxN − l, (5)

h(x) = ∑
i∈In

xix2n−1−i + γx3
N +

1
2

εxN , (6)

where

ε =
3l

2
3

4
√

2
, γ = − 1

4
√

2
.

Consider the extreme values of f (x) with constraints

g(x) = 0 and h(x) = 0. (7)

Denote
A =

{
x ∈ R2l+1|g(x) = 0, h(x) = 0

}
. (8)

We describe two propositions whose proofs will be included in Section 3.

Proposition 1. The set A is bounded and closed in R2l+1.

Proposition 2. The rank of the Jacobian matrix for functions g(x) and h(x) on A is 2.

Remark 1. Under the assumption that CZS conjecture is not true, we see that P ∈ R2l+1 belongs
to A because P satisfies (7).

Remark 2. By Proposition 2, there are infinite points in A, since there are 2l − 1 independent
variables in A.

Remark 3. If Cai–Zhang–Shen conjecture is not true, then

δ(2n− 1− i) = δ(N) = 0 (i ∈ In)

and
f (P) = ∑

i∈In

δ(i)δ(2n− 1− i)+δ(N)2 = 0. (9)

We write the Lagrange function

Q(x, λ, µ) = f (x) + λg(x) + µh(x) (10)

and use the method of Lagrange multipliers to find all stationary points of f (x) on A, and
then prove

f (x) > 0 at these points,

which show

f (x) > 0 on A.

(1) For i ∈ In, we have{
Qxi = x2n−1−i + 2λxi + µx2n−1−i = 0,
Qx2n−1−i = xi + 2λx2n−1−i + µxi = 0,

(11)

i.e., {
2λxi + (1 + µ)x2n−1−i = 0,
(1 + µ)xi + 2λx2n−1−i = 0.
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The determinant of coefficients is∣∣∣∣ 2λ 1 + µ
1 + µ 2λ

∣∣∣∣ = (2λ)2 − (1 + µ)2, (12)

hence
(a1) (2λ)2 − (1 + µ)2 6= 0, xi = x2n−1−i = 0;
for

(2λ)2 − (1 + µ)2 = 0,

we have
(a2) λ 6= 0, 2λ = −(1 + µ), xi − x2n−1−i = 0;
(a3) λ 6= 0, 2λ = 1 + µ, xi + x2n−1−i = 0;
(a4) λ = 0, µ = −1, xi and x2n−1−i are arbitrary.

(2) For i = N, we have QxN = 2sxN + ελ + 3γµx2
N + 1

2 εµ = 0, so

3γµx2
N + 2sxN + ελ +

1
2

εµ = 0, (13)

and its discriminant is

∆ = (2s)2 − 12γµ

(
ελ +

1
2

εµ

)
; (14)

therefore,
(b1) µ = 0, 2sxN + ελ = 0 and xN = −ελ

2s ;
(b2) µ 6= 0, ∆ = 0, xN = − s

3γµ ;

(b3) µ 6= 0, ∆ > 0, xN = −2s+
√

∆
6γµ ;

(b4) µ 6= 0, ∆ < 0, xN = −2s−
√

∆
6γµ .

Remark 4. Note that P is not a stationary point. In fact, components of P do not satisfy (a1), (a2), (a3).
If P satisfies (a4), it knows µ = −1, which contradicts µ = 0 by (b1); it gives xN 6= 0 by (b2),
which contradicts the component δ(N) = 0 of P; if P satisfies (b3), then xN = −2s+

√
∆

6γµ = 0 and

2s =
√

∆, so −12γµ
(

ελ + 1
2 εµ
)
= 0 from (14), but −12γµ

(
ελ + 1

2 εµ
)
= −6γε 6= 0 by λ = 0

and µ = −1 in (a4), a contradiction; if P satisfies (b4), then xN = −2s−
√

∆
6γµ = 0 and 2s = −

√
∆,

and (2s)2 = ∆, it obtains −12γµ
(

ελ + 1
2 εµ
)
= 0 by (14), but −12γµ

(
ελ + 1

2 εµ
)
= −6γε 6= 0

by λ = 0 and µ = −1 in (a4), a contradiction. Hence, P does not satisfy (b1)–(b4), which shows
that P is not a stationary point.

Let us discuss all combinations of (a1)–(a4) and (b1)–(b4) and prove f (x) > 0 at all
stationary points.

Case (a1), (b1): Note that xi = x2n−1−i = 0 (i ∈ In) from (a1). Using

0 = g(x) = εxN − l,

it solves

xN =
l
ε
=

4
√

2
3

l
1
3 . (15)

Since
0 = h(x) = γx3

N +
ε

2
xN = xN

(
γx2

N +
ε

2

)
,

we have
xN = 0 or x2

N = − ε

2γ
=

3
2

l
2
3 . (16)

It is different from xN in (15), a contradiction.
Case (a1), (b2): It leads to a contradiction as in Case (a1), (b1).
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Case (a1), (b3): It leads to a contradiction as in Case (a1), (b1).
Case (a1), (b4): It leads to a contradiction as in Case (a1), (b1).
Case (a2), (b1): Noting 2λ = −(1 + µ) and xi = x2n−1−i by (a2), and µ = 0 by (b1),

we obtain λ = − 1
2 and also by (b1),

xN =
−ελ

2s
=

ε

4s
=

l
1
3

2
√

2
. (17)

Applying xi = x2n−1−i, we see

0 = g(x) = 2 ∑
i∈In

x2
i + εxN − l,

0 = 2h(x) = 2 ∑
i∈In

x2
i + 2γx3

N + εxN ,

and so
2γx3

N + l = 0,

then

xN =

(
−l
2γ

) 1
3
=
√

2l
1
3 . (18)

It is different from xN in (17), a contradiction.
Case (a2), (b2): In virtue of xi = x2n−1−i by (a2), similarly to Case (a2), (b1), we have

xN =

(
−l
2γ

) 1
3
=
√

2l
1
3 .

It follows that

f (x) = ∑
i∈In

x2
i + sx2

N ≥ sx2
N =

3
8

l
1
3

(√
2l

1
3

)2
=

3
4

l > 0.

Case (a2), (b3): We use xi = x2n−1−i to derive f (x) > 0 as in Case (a2), (b2).
Case (a2), (b4): We use xi = x2n−1−i to derive f (x) > 0 as in Case (a2), (b2).
Case (a3), (b1): It gives 2λ = 1+ µ and xi = −x2n−1−i by (a3) and µ = 0 by (b1); then,

λ = 1
2 and by (b1),

xN =
−ελ

2s
=
−ε

4s
= − l

1
3

2
√

2
. (19)

On the other hand, using xi = −x2n−1−i, it yields

0 = g(x) = 2 ∑
i∈In

x2
i + εxN − l,

0 = 2h(x) = −2 ∑
i∈In

x2
i + 2γx3

N + εxN ,

so
x3

N +
ε

γ
xN −

l
2γ

= 0. (20)

Since
3p =

ε

γ
, 2q = − l

2γ
,

and
p =

ε

3γ
, q =

−l
4γ

,
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we have from Lemma 1 and

D = p3 + q2 =

(
ε

3γ

)3
+

(
−l
4γ

)2
= −l2 + 2l2 = l2,

u+ =
(
−q +

√
D
) 1

3
=

(
l

4γ
+ l
) 1

3
=
(
−
√

2l + l
) 1

3 ,

u− =
(
−q−

√
D
) 1

3
=

(
l

4γ
− l
) 1

3
=
(
−
√

2l − l
) 1

3

that a real solution to (20) is

xN = u+ + u− =

(
−
(√

2− 1
) 1

3 −
(√

2 + 1
) 1

3
)

l
1
3 ≈ −2.087l

1
3 . (21)

It is different from xN in (19), a contradiction.
Case (a3), (b2): Noting xi + x2n−1−i = 0 by (a3), it follows as in Case (a3), (b1) that

xN =

(
−
(√

2− 1
) 1

3 −
(√

2 + 1
) 1

3
)

l
1
3 ≈ −2.087l

1
3 .

Using

0 = h(x) = ∑
i∈In

xix2n−1−i + γx3
N +

1
2

εxN ,

it implies

f (x) = −γx3
N −

1
2

εxN + sx2
N

= −
(
−1

4
√

2

)
(−2.087)3l − 1

2
3l

2
3

4
√

2
(−2.087)l

1
3 +

3
8

l
1
3 (−2.087)2l

2
3

= − (2.087)3

4
√

2
l +

3 · (2.087)
8
√

2
l +

3 · (2.087)2

8
l = 2.087l

(
− (2.087)2

4
√

2
+

3
8
√

2
+

3 · (2.087)
8

)
= 2.087l(−0.769 + 0.265 + 0.75) = 2.087l(−0.769 + 1.015) > 0.

Case (a3), (b3): It follows f (x) > 0 as in Case (a3), (b2).
Case (a3), (b4): It follows also f (x) > 0 as in Case (a3), (b2).
Case (a4), (b1): It knows µ = −1 by (a4), which contradicts µ = 0 by (b1).
Case (a4), (b2): Note by (a4) and (b2), we have µ = −1 and

xN = − s
3γµ

=
s

3γ
= − 1√

2
l

1
3 .

Using
h(x) = 0,

it derives

f (x) = −γx3
N −

1
2

εxN + sx2
N = − −1

4
√

2

(
−l

1
3

√
2

)3

− 1
2

3l
2
3

4
√

2

(
−l

1
3

√
2

)
+

3
8

l
1
3

(
−l

1
3

√
2

)2

= − 1
4
√

2
· l

2
√

2
+

3l
16

+
3
8
· l

2
= − l

16
+

3l
16

+
3l
16

> 0.

Case (a4), (b3): Notes λ = 0 and µ = −1 by (a4) and so ∆ = 0, which contradicts
∆ > 0 by (b3).

Case (a4), (b4): As in Case (a4), (b3), a contradiction also follows.
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Noting that A is a bounded closed set in R2l+1 and f (x) is continuous in R2l+1, we
know that f (x) achieves the minimum value on A. Summing up the above discussions, we
indeed prove that the minimum of f (x) on A is positive, and so

f (x) > 0, x ∈ A.

Since one supposes that Cai–Zhang–Shen conjecture is not true, it follows that f (x) > 0
(x ∈ A) from the above analysis and so

f (P) > 0

because of P ∈ A. However, it contradicts (9). Theorem 1 (odd integers) is proved.

3. Proofs of Propositions 1 and 2

Proof of Proposition 1. The closeness of A in (8) is evident. We divide two steps to prove
that A is bounded, i.e., first prove that, when the set {xN} constructed by components xN
of x ∈ A is bounded, it concludes that A is bounded; next, prove that the set {xN} must be
bounded by the contradiction.

Step 1. Suppose that the set {xN} is bounded; then, there exists a constant C > 0, such
that |xN | ≤ C. It uses g(x) = 0 to show

l

∑
j=1

(
x2

ij
+ x2

2n−1−ij

)
+ x2

N = x2
N − εxN + l ≤ C2 + εC + l.

Hence, A is bounded.
Step 2. Let us prove the boundedness of {xN} by the contradiction. Assume that

{xN} is unbounded; then, for any positive integer α, there exists xN,α in {xN}, such that
|xN,α| ≥ α. Thus, xN,α → ∞ as α → ∞. For convenience, we simply denote xN → ∞. It
follows from g(x) = 0 that

−εxN + l =
l

∑
j=1

(
x2

ij
+ x2

2n−1−ij

)
(22)

and xN → ∞ should be
xN → −∞,

so there exists one or several components in xij , x2n−1−ij(j = 1, 2, · · · , l) tending to ∞. We
consider the following subcases.

(1) If xi1 → ∞ and x2n−1−i1 , xij , x2n−1−ij(j = 2, · · · , l) are bounded, then we have x2
i1
→

+∞ and from (22) that

x2
i1 = −x2

2n−1−i1 −
l

∑
j=2

(
x2

ij
+ x2

2n−1−ij

)
− εxN + l := −εxN + C1, (23)

where C1 is finite, so
x2

i1
−xN

→ ε,

∣∣xi1

∣∣
(−xN)

1
2
→
√

ε.

It yields from h(x) = 0 that

xi1 x2n−1−i1 = −
l

∑
j=2

xij x2n−1−ij − γx3
N −

1
2

εxN := −γx3
N −

1
2

εxN + C2, (24)

where C2 is finite.
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When x2n−1−i1 = 0, we have by (24) that

0 = −γx3
N −

1
2

εxN + C2,

and the right-hand side tends to −∞ (noting γ < 0), a contradiction.
When x2n−1−i1 6= 0, it follows from (24) to see

xi1 x2n−1−i1

(−xN)
1
2

= −γ
x3

N

(−xN)
1
2
− 1

2
ε

xN

(−xN)
1
2
+

C2

(−xN)
1
2

= γ
(−xN)

3

(−xN)
1
2
+

1
2

ε
−xN

(−xN)
1
2
+

C2

(−xN)
1
2
→ −∞, (γ < 0)

but the left-hand side tends to ±
√

εx2n−1−i1 , a contradiction.
(2) If xi1 → ∞ and x2n−1−i1 → ∞ and xij , x2n−1−ij(j = 2, · · · , l) are bounded, then

x2
i1 + x2

2n−1−i1 → +∞,

It shows by (22) that

x2
i1 + x2

2n−1−i1 = −
l

∑
j=2

(
x2

ij
+ x2

2n−1−ij

)
− εxN + l := −εxN + C3, (25)

where C3 is finite, so
x2

i1
+ x2

2n−1−i1
−xN

→ ε > 0.

It gives from h(x) = 0 that

xi1 x2n−1−i1 = −
l

∑
j=2

xij x2n−1−ij − γx3
N −

1
2

εxN :=− γx3
N −

1
2

εxN + C4, (26)

where C4 is finite. We have by (26) that

xi1 x2n−1−i1
−xN

= −γ
x3

N
−xN

− 1
2

ε
xN
−xN

+
C4

−xN
= γ
−x3

N
−xN

+
1
2

ε
−xN
−xN

+
C4

−xN
→ −∞;

then,

+∞←
2
∣∣xi1 x2n−1−i1

∣∣
−xN

≤
x2

i1
+ x2

2n−1−i1
−xN

→ ε,

a contradiction.
(3) If xi1 → ∞ and xi2 → ∞ and x2n−1−i1 , x2n−1−i2 , xij , x2n−1−ij(j = 3, · · · , l) are bounded,

then
x2

i1 + x2
i2 → ∞

and, from (22),

x2
i1 + x2

i2 = −εxN − x2
2n−1−i1 − x2

2n−1−i2 −
l

∑
j=3

(
x2

ij
+ x2

2n−1−ij

)
+ l := −εxN + C5,

(27)
where C5 is finite. Hence,

x2
i1
+ x2

i2
−xN

→ ε,
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and ∣∣xi1

∣∣
−xN

=
x2

i1
−xN

1∣∣xi1

∣∣ ≤ x2
i1
+ x2

i2
−xN

1∣∣xi1

∣∣ → 0,

∣∣xi2

∣∣
−xN

=
x2

i2
−xN

1∣∣xi2

∣∣ ≤ x2
i1
+ x2

i2
−xN

1∣∣xi2

∣∣ → 0.

It follows by h(x) = 0 that

xi1 x2n−1−i1 + xi2 x2n−1−i2 = −
l

∑
j=3

xij x2n−1−ij − γx3
N −

1
2

εxN := −γx3
N −

1
2

εxN + C6, (28)

where C6 is finite, so

xi1 x2n−1−i1
−xN

+
xi2 x2n−1−i2
−xN

= −γ
x3

N
−xN

− 1
2

ε
xN
−xN

+
C6

−xN
= γ
−x3

N
−xN

+
1
2

ε +
C6

−xN
.

The left-hand side tends to 0, and the right-hand side tends to −∞, a contradiction.
The remaining cases can be treated similarly. Then, {xN}must be bounded.
Proposition 1 is proved.

Remark 5. (a) In the proof of Proposition 1, if xi1 → ∞ in (1) is changed to that one of
xi2 , · · · , xil , x2n−1−i1 , x2n−1−i2 , · · · , x2n−1−il tends to ∞; then, one can solve as in (1).

(b) As a generalized case of (2) in the proof of Proposition 1, if components xi, x2n−1−i(i ∈ In)
tend to ∞, then

∑
i∈In

(
x2

i + x2
2n−1−i

)
→ ∞.

It follows by g(x) = 0 that

∑
i∈In

(
x2

i + x2
2n−1−i

)
= −εxN − l,

so
∑

i∈In

(
x2

i + x2
2n−1−i

)
−xN

→ ε > 0.

We have from h(x) = 0 that

∑
i∈In

xix2n−1−i = −γx3
N −

1
2

εxN → −∞,

hence
∑

i∈In

xix2n−1−i

−xN
=
−γx3

N
−xN

− 1
2

ε
xN
−xN

→ −∞,

and by the Cauchy inequality,

+∞←

∣∣∣∣∣ ∑
i∈In

xix2n−1−i

∣∣∣∣∣
−xN

≤

(
∑

i∈In

x2
i

) 1
2
(

∑
i∈In

x2
2n−1−i

) 1
2

−xN
≤

(
∑

i∈In

(
x2

i + x2
2n−1−i

)) 1
2
(

∑
i∈In

(
x2

i + x2
2n−1−i

)) 1
2

−xN

=

∑
i∈I

(
x2

i + x2
2n−1−i

)
−xN

→ ε,

a contradiction.
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(c) To the generalized case of (3) in the proof of Proposition 1, if xi(i ∈ In) tends to ∞ and
x2n−1−i(i ∈ In) are bounded, then

∑
i∈In

x2
i → ∞ and ∑

i∈In

x2
2n−1−i is bounded.

It uses g(x) = 0 to have

∑
i∈In

x2
i = − ∑

i∈In

x2
2n−1−i − εxN + l,

and
∑

i∈In

x2
i

−xN
→ ε > 0.

It follows from h(x) = 0 that

∑
i∈In

xix2n−1−i = −γx3
N −

1
2

εxN → −∞,

and
∑

i∈In

xix2n−1−i

(−xN)
1
2

=
−γx3

N

(−xN)
1
2
− 1

2
ε

xN

(−xN)
1
2
→ −∞;

then, by the Cauchy inequality,

+∞←

∣∣∣∣∣ ∑
i∈In

xix2n−1−i

∣∣∣∣∣
(−xN)

1
2

≤

(
∑

i∈In

x2
i

) 1
2
(

∑
i∈In

x2
2n−1−i

) 1
2

(−xN)
1
2

→
√

ε

(
∑

i∈In

x2
2n−1−i

) 1
2

,

a contradiction.

Proof of Proposition 2. Let us apply the contradiction. Assume that the rank of the Jaco-
bian matrix for g(x) and h(x) is smaller than 2, then there exists κ 6= 0, such that

∇g(x) = κ∇h(x). (29)

For i ∈ In, it has gxi = 2xi, gx2n−1−i = 2x2n−1−i, hxi = x2n−1−i, hx2n−1−i = xi, and by
(29) that {

2xi = κx2n−1−i,
2x2n−1−i = κxi,

(30)

i.e.,
(

1−
(

κ
2
)2
)

xi = 0; then,

xi = 0 or κ = 2,−2.

For i = N, it follows gxN = ε, hxN = 3γx2
N + 1

2 ε, and by (29) that

3κγx2
N = −1

2
κε + ε. (31)

We can show that all cases above yield contradictions. Actually, when xi = 0, we have
x2n−1−i = 0 from 2x2n−1−i = κxi in (30), and so

0 = g(x) = εxN − l,

0 = h(x) = γx3
N +

1
2

εxN .

It yields a contradiction as in Case (a1), (b1).
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When κ = 2, we have from (30) and (31), respectively, that xi = x2n−1−i and

x2
N =

− 1
2 κε+ε
3κγ = −ε+ε

6γ = 0, i.e., xN = 0; then,

0 = h(x) = ∑
i∈In

x2
i ,

and
xi = x2n−1−i = 0,

so
0 = g(x) = −l < 0,

a contradiction.
When κ = −2, it yields from (30) and (31), respectively, that xi = −x2n−1−i and

x2
N =

ε + ε

−6γ
= − ε

3γ
= l

2
3 ;

then,
xN = ±l

1
3 . (32)

Using
0 = g(x) = 2 ∑

i∈In

x2
i + εxN − l,

0 = 2h(x) = −2 ∑
i∈In

x2
i + 2γx3

N + εxN ,

we have
2γx3

N + 2εxN − l = 0,

and obtain as in Case (a3), (b1) that

xN =

(
−
(√

2− 1
) 1

3 −
(√

2 + 1
) 1

3
)

l
1
3 .

It is different from xN in (32), a contradiction.
Proposition 2 is proved.

4. Proof of Theorem 1 (Even Integers)

For the even integers, supposing that the Cai–Zhang–Shen conjecture is not true, then
there exists an even integer 2n such that 2n can not be expressed as the sum of two figurate
primes. Let us take, respectively,

P = (δ(i1), · · · , δ(il), δ(n), δ(2n− il), · · · , δ(2n− i1)),

f (x) = ∑
i∈In

xix2n−i + sx2
n,

g(x) = ∑
i∈In

(
x2

i + x2
2n−i

)
+ εxn − l,

h(x) = ∑
i∈In

xix2n−i + γx3
n +

1
2

εxn.

Similarly to the proof for odd integers in Section 2, we also reach a contradiction.

5. Conclusions

In previous sections, we prove Cai–Zhang–Shen conjecture for figurate primes. The
way of proving this really provides a new approach to confirm Goldbach’s binary conjecture.
It is worth trying, and we will further consider the well-known and difficult conjecture.
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