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Abstract: This research article introduces an efficient method for integrating Lane–Emden–Fowler
equations of second-order singular initial value problems (SIVPs) using a pair of hybrid block
methods with a variable step-size mode. The method pairs an optimized Nyström technique with a
set of formulas applied at the initial step to circumvent the singularity at the beginning of the interval.
The variable step-size formulation is implemented using an embedded-type approach, resulting in an
efficient technique that outperforms its counterpart methods that used fixed step-size implementation.
The numerical simulations confirm the better performance of the variable step-size implementation.

Keywords: hybrid block technique; Lane–Emden–Fowler problems; optimization strategy; starting
procedure; adaptive formulation
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1. Introduction

The goal of this research paper was to find a reliable numerical approach for solving
second-order SIVPs Lane–Emden–Fowler equations of the form:

q′′(x) +
λ

x
q′(x) = w(x, q(x)), q(x0) = q0, q′(x0) = q′0, x0 = 0 ≤ x ≤ xN , (1)

where λ ≥ 1, q0, q′0 are real numbers; x0 and xN represent the initial and final points of the
integration interval, respectively; and w(x, q(x)) is a continuous real function. We note that
the necessary conditions for the existence and uniqueness of the solution to problem (1)
were established in [1,2].

Equations of the form (1) are commonly encountered in many fields, such as astro-
physics, mathematical modeling, celestial mechanics, physical and social sciences, and
engineering. These types of equations have also been used to model various systems,
including chemical reactors, thermal behavior of gas spheres, reaction–diffusion processes
in porous catalysts, stellar structure, isothermal gas spheres, and thermionic current theory
(as cited in sources such as [3–7], etc.).

The problem under consideration becomes one of the most complex problems to
integrate analytically, due to the nonlinear properties of the second order SIVP and the sin-
gularity at x = 0. Therefore, numerical methods are essential for providing an approximate
and reasonable solution.

Many scholars have extensively investigated the model in (1) and similar problems
and have developed various methods for solving them. These methods include the implicit
Euler method, various types of spline methods, the homotopy-perturbation technique,
the variational iteration techniques, the Adomian decomposition method, a Padè approx-
imation method, various types of collocation methods, finite difference methods, the
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heuristics approach, the differential transform method, the pseudospectral method, Taylor
wavelet techniques, hybrid block methods, Nyström methods, the Haar wavelet resolution
technique, iterative methods, spectral methods, Jacobi–Gauss collocation techniques, or
asymptotic numerical strategies (see [8–25]).

In this study, we aimed to obtain a variable step-size formulation of a pair of optimized
Nyström methods (PONMs) developed in [14] to further improve their performance. The
main formulas of the existing PONM are given as follows:

qn+1 = qn + hq′n +
1

360
h2
(

18wn + 7
(√

21 + 7
)

wn+r + 64wn+s − 7
(√

21− 7
)

wn+t

)
,

q′n+1 = q′n + h
(

1
20

wn +
49

180
wn+r +

16
45

wn+s +
49

180
wn+t +

1
20

wn+1

)
, (2)

while the additional formulas to avoid the singularity of the existing PONM are given by

q1 = q0 + hq′0 (3)

+h2(0.2009319137389590wr̄ + 0.2292411063595862ws̄ + 0.0698269799014541wt̄) ,

q′1 = q′0 + h(0.2204622111767684wr̄ + 0.3881934688431719ws̄

+0.3288443199800597wt̄ + 0.0625w1) ,

with

r =

(
7−
√

21
)

14
, s =

1
2

, t =

(
7 +
√

21
)

14
, r̄ ' 0.0885879595127039,

s̄ ' 0.4094668644407347, t̄ ' 0.7876594617608470 .

Note that the formulas in (3) do not use the value w0, thus obtaining an approximate
value for q(x1). After the formulas in (3) and the others needed for the block formulation
are applied in the first subinterval, the formulas in (2) and the corresponding ones to form
the main block method are applied in the subsequent subintervals. The reader is referred
to Equations (10) and (14) in reference [14] to see the remaining formulas, including the
complete description and theoretical analysis of the PONM method.

We remark that the main novelty of this study is a reasonable error estimation and
the variable step-size implementation using embedded type approaches, which allowed us
to very efficiently solve problems of the form in (1) when large integration intervals are
considered.

2. Error Estimation and Mesh Selection of the PONMs

Using a fixed step-size scheme to solve a SIVP may be unreasonable because the
solution rapidly changes within the integration interval. To improve efficiency, the PONM
should be implemented with variable step sizes. This can be achieved by using a lower-
order technique (LOT) to compute the local error at the end-point on each subinterval
[xn, xn+1]. In this article, an embedding approach is utilized to formulate the suggested
technique in variable step-size mode; this means that in addition to the approximation
provided by qn+1, an additional LOT approximation given by q∗n+1 is still needed. The
difference between qn+1 and q∗n+1 enables us to estimate the local error. A fourth-order
multistep formula, given by the following Equation (4),

q∗n+1 =
1
6

(
3−
√

21
)

qn+r +
1
6

(√
21 + 3

)
qn+t −

1
42

h2
((√

21− 5
)

wn+r − 8wn+s −
(√

21 + 5
)

wn+t

)
, (4)
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was used to estimate the local error at the end point, with a local truncation error of
h6q(6)(xn)

987840 + O
(
h7).

By following a similar strategy as the one reported in [16], the steps listed below are
taken in order to increase the efficiency of the PONMs:

• Equations (2) and (3) and those in Equations (10) and (14) from [14] are used simulta-
neously at xn+1, using the known solution at xn.

• We use the multistep formula in (4) to find a second approximation to the solution of
the problem under consideration at the grid point xn+1.

• We estimate the local error using the following formula

ESTM = ‖qn+1 − q∗n+1‖,

where q∗n+1 and qn+1 are the values obtained by the fourth-order multistep formula
in (4) and the PONM in (2) and (3) together with Equations (10) and (14) from [14],
respectively.
Given a user-defined tolerance, ABTOL, we proceed as follows:

• If ESTM ≤ ABTOL, the results are accepted, and the step size is increased to hnew =
2× hold.

• If ESTM > ABTOL, the results are rejected, and the calculations are repeated with a
new step size given by

hnew = µ× hold

(
ABTOL
|ESTM|

)1/(lo+2)
, (5)

where 0 < µ < 1 is an adjustment factor to prevent failed steps, and lo = 4 is the
order of the LOT. For more details about the choice of the variable step size strategy
in (5), see [21,22].

3. Computational Details

The PONM is executed utilizing the error estimation and the mesh selection strategy
presented in Section 2. The proposed PONM is written as W(u) = 0, and the unknowns
are expressed as

Q̃ =
{

qr̄, qs̄, qt̄, q′r̄, q′s̄, q′t̄
}⋃
{qi}i=1,2,...,N

⋃{
q′i
}

i=1,...,N

⋃{
qi+r, qi+s, qi+t, q′i+r, q′i+s, q′i+t

}
i=1,2,...,N−1.

We use the modified Newton’s method (MNM) to solve the nonlinear systems, with a
stopping criterion of 100 maximum iterations and an error from 2 subsequent estimates
provided by ‖Q̃i+1 − Q̃i‖ ≤ 10−16. We write MNM as

Q̃i+1 = Q̃i − (J0)
−1Wi,

where Q̃i+1 is the updated estimate of the solution at iteration i + 1, Q̃i is the current
estimate of the solution at iteration i, J0 is the frozen Jacobian matrix of the function W at
the current estimate Q̃i, and Wi is the vector of residuals at the current estimate Q̃i. The
following initializing values were used with MNM for each iteration:

qj = q0 + (jh0)q′0, q′j = q′0, j = r̄, s̄, t̄, 1,

qn+j = qn + (jh)q′n +
(jh)2

2
wn, q′n+j = q′n + (jh)wn, n = 1, 2, . . . , N − 1, j = r, s, t, 1.

4. Numerical Experiments

In this part, we give the numerical results for the proposed PONM on different SIVPs
of the form (1). We point out that the estimation and mesh selection technique described in
Section 2, as well as the PONM method given in (2) and (3) and the remaining formulas
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presented in Equations (10) and (14) in [14], play a crucial role in determining the efficiency
of the proposed method. The PONM was implemented in Mathematica 11.0 by using
the constructed codes. We utilized a PC with an i7 processor, 16 GB of RAM, and the
64-bit Windows 10 operating system. To measure the accuracy of our results, we use the
Maximum Absolute Error (MAE) formula, which is defined as:

MAE = max
j=0,...,N

{∥∥q(xj)− qj
∥∥

∞

}
,

In the above equation, q(xj) represents the exact solution, and qj represents the com-
puted result at each point xj on the discrete grid.

In the tables and figures, the following acronyms are used:

• PONM: The pair optimized hybrid Nyström method whose main formulas are given
in (2) and (3).

• HPM : The homotopy perturbation method in [23].
• WNT: The wavelet based neural technique in [25].
• NM: The Nyström method in [26].
• BVM: The boundary value method in [27]
• NS : Number of steps.
• TFE : Total number of function evaluations.
• ABTOL : Absolute tolerance.
• CPU : Computational cost in seconds.

4.1. Problem One

We consider the SIVP from [27],

q′′(x) +
2
x

q′(x) + q(x)5 = 0, q(0) = 1, q′(0) = 0, x ∈ [x0, xN ], (6)

with exact solution q(x) =
(

1 + x2

3

)− 1
2 .

The results in Tables 1 and 2 demonstrate the accuracy of the PONM in terms of MAE.
Additionally, the comparison of the PONM and the exact solutions for (6) with ABTOL
= 10−6, hini = 10−3, x ∈ [0, 500] in Figure 1, shows that the PONM technique in variable
step-size implementation strongly fits the analytical solution.

Table 1. Comparison of the numerical results on Problem 6 with x ∈ [0, 1].

ABTOL Method NS MAE

10−4 PONM 3 2.7228× 10−7

HPM 4 7.8000× 10−4

WNT 4 5.9000× 10−6

10−6 PONM 4 8.7887× 10−9

HPM 5 2.4000× 10−6

WNT 5 3.4000× 10−7
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Table 2. Numerical results for (6) with h0 = 10−3, x ∈ [0, 500].

ABTOL Method NS TFE CPU MAE

10−4 PONM 57 284 0.0956 5.6646× 10−5

NM 58 289 0.1047 1.2890× 10−5

10−6 NM 61 304 0.1132 6.5525× 10−8

NM 64 319 0.1338 1.6384× 10−7

10−8 PONM 72 359 0.1515 3.3750× 10−10

NM 80 399 0.1867 2.2762× 10−5

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

x-values

P
O
N
M
S
o
lu
ti
o
n
s
(q
(x
))

Figure 1. Comparison of PONM and the exact solution for (6).

4.2. Problem Two

We consider

q′′(x) = − 2
x

q′(x)− 9 cos(3x)− 6
x

sin(3x), q(0) = 2, q′(0) = 0, x ∈ [x0, xN ], (7)

with exact solution q(x) = 1 + cos(3x).
From the data reported in Tables 3 and 4, the proposed PONM outperforms the BVM

and NM methods in terms of MAE, TFE, and CPU. Additionally, the comparison of PONM
and the exact solution for (7) with ABTOL = 10−7, hini = 10−2, x ∈ [0, 80π] in Figure 2,
shows that the PONM method with a variable step size fits the exact solution.
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Table 3. Comparison of the numerical results for Problem 6 with x ∈ [0, 2π].

ABTOL Method NS MAE

10−6 PONM 22 1.6792× 10−8

BVM 40 1.5067× 10−5

10−8 PONM 43 3.0682× 10−11

BVM 80 2.2747× 10−7

10−10 PONM 88 1.0991× 10−13

BVM 160 3.5299× 10−9

Table 4. Numerical results for (6) with h0 = 10−3, x ∈ [0, 60π].

ABTOL Method NS TFE CPU MAE

10−5 PONM 397 1984 0.7901 5.7799× 10−6

NM 577 2884 0.9730 5.2609× 10−5

10−7 PONM 843 4214 1.4590 6.7684× 10−10

NM 1209 6044 1.7620 1.7594× 10−7

10−9 PONM 1772 8859 2.9444 9.4920× 10−11

NM 2541 12704 3.5005 7.2988× 10−10

0 50 100 150 200 250

0.0

0.5

1.0

1.5

2.0

x-values

P
O
N
M
S
o
lu
ti
o
n
s
(q
(x
))

Figure 2. Comparison of PONM and the exact solution for (7).

4.3. Problem Three

For the last problem in this research, we applied the proposed method to the following
system of SIVP from [26],

q′′1 (x) +
1
x

q′1(x)− q3
2(x)

(
q2

1(x) + 1
)
= 0,

q′′2 (x) +
3
x

q′2(x)− q5
2(x)

(
q2

1(x) + 3
)
= 0, x ∈ [x0, xN ], (8)
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with initial values

q1(0) = 1, q′1(0) = 1,

q2(0) = 0, q′2(0) = 0,

and the true solution from [26] is

q1(x) =
√

x2 + 1, q2(x) =
1√

x2 + 1
.

The suggested PONM surpasses the NM method in terms of MAE, TFE, and CPU,
according to the data in Table 5. Furthermore, the comparison of PONM and the exact
solution for (8) with ABTOL = 10−10, hini = 10−3, x ∈ [0, 200], is shown in Figure 3; one can
see that the PONM fits the exact solution.

Table 5. Numerical results on (8) with h0 = 10−3, x ∈ [0, 100].

ABTOL Method NS FE CPU MAE

10−8 PONM 40 199 0.4023 2.2212× 10−8

NM 43 214 0.4487 3.0775× 10−6

10−7 PONM 55 274 0.5315 1.2844× 10−9

NM 59 294 0.6269 3.1063× 10−7

10−9 PONM 78 389 0.7272 4.8580× 10−11

NM 82 409 0.8463 3.3702× 10−8

0 50 100 150 200

0

50

100

150

200

x-values
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S
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)

0 50 100 150 200
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2(
x)
)

Figure 3. Comparison of PONM and exact for (8).

5. Conclusions

In this paper, we introduced and applied a variable step-size version of a pair of
optimized Nyström methods (PONM) to give numerical solutions to Lane–Emden–Fowler
equations of second-order singular initial value problems. The error estimation and mesh
selection of the PONM were discussed. Two scalar examples and a system of numerical
experiments revealed that the variable step-size formulation using an embedded-type
approach results in an efficient technique that outperforms its counterpart methods that
use fixed step-size implementation. The type of strategy presented in this paper could be
considered for solving time-dependent partial differential equations and fractional-order
differential equations of the Lane–Emden–Fowler type in future research work.
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