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Abstract: This paper is concerned with the problem of asymptotic stability for a class of stochastic
differential equations with impulsive effects. A sufficient criterion on asymptotic stability is derived
for such impulsive stochastic differential equations via Lyapunov stability theory, bounded difference
condition and martingale convergence theorem. The results show that the impulses can facilitate the
stability of the stochastic differential equations when the original system is not stable. Finally, the
feasibility of our results is confirmed by two numerical examples and their simulations.
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1. Introduction

It is well known that stability is the essential condition to maintain the normal opera-
tion of dynamic systems, so stability analysis of systems has made long-term
developmen [1-5]. During the evolution of dynamic systems, the state of the system
changes abruptly at certain moments, and such systems are called impulsive systems.
Impulsive systems are extensively researched in the fields of biology, economy, communi-
cation, and power systems, as they can perform both continuous and discrete dynamical
behaviors. Therefore, impulsive differential equations are applied as mathematical models
for many physical phenomena. In fact, the impulses are divided into stabilizing impulses
and perturbed impulses, and the discrete dynamics behavior can be activated frequently
by stabilizing impulses to suppress the unstable continuous behavior [6-13]. For exam-
ple, ref. [7] utilizes the indefinite Lyapunov function and the impulse controller to obtain
the conditions on asymptotic stability of solution for the impulsive systems. In [10], the
exponential stability is investigated by employing impulsive control theory and several
analytical techniques for nonlinear time-delay impulsive control systems. Literature [12]
researches asymptotic stability conditions of impulsive differential systems based on com-
parison principle and vectorial Lyapunov functions. Therefore, it has significant and
practical importance to analyze the effect of impulses on the stability of systems.

Stochastic disturbances commonly exist in the real life. For example, environmental
noise, accidental emergencies, etc., and sometimes such stochastic factors may change
the state of the original dynamic systems. Therefore, stochastic differential equations are
introduced to characterize such dynamical systems with disturbances of stochastic fac-
tors [14-19]. Due to the potential presence of both impulse effects and stochastic factors,
dynamic systems are often modeled as impulsive stochastic differential equations. It is
noteworthy that many scholars are devoted to exploring the role of impulses in stabiliz-
ing unstable systems [20-25]. For example, in [20], the pth moment exponential stability
is investigated on the basis of vector Lyapunov function and Razumikhin technique for
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impulsive time-delay stochastic differential systems. In [21], the exponential stability is de-
veloped by utilizing stochastic analysis techniques, the Razumikhin approach and average
impulsive delay condition for stochastic delayed differential systems with average-delay
impulses. In [24], the almost sure exponential stability of a class of nonlinear stochastic
differential systems with impulse is established based on the Lyapunov function.

To date, the existing literature has analyzed the stability of the system by utilizing
some classical methods for impulsive stochastic differential equations. For instance, the
comparison method [26,27] and the average dwell time method [28-31]. Literature [26] ob-
tains conditions for asymptotic stability of solution for time-varying impulsive differential
equations through the Lyapunov function, comparison principle and some inequalities.
However, it may be difficult to construct suitable comparison systems for real systems,
which makes the theoretical results more conservative. Ref. [30] establishes sufficient
conditions for the global stability of impulsive stochastic systems by using Lyapunov
stability theory and the average dwell time condition. Yet there are two aspects we should
pay attention to. On the one hand, it is generally hard to test the average dwell time
condition in advance. On the other hand, the average dwell time condition does not ensure
the tightness or sparsity of the impulse jumps. According to the above discussion, the
asymptotic stability criterion on stochastic differential equations with impulsive effects is
established in this paper based on Lyapunov stability theory, bounded difference condition
and martingale convergence theorem as well as some lemmas and inequality techniques. It
is interesting that the bounded difference method is more effective in ensuring the stability
of impulsive stochastic differential equations. As far as the authors know, this method
is not used in the existing literature in the analysis of stability for stochastic differential
equations with stabilizing impulses.

This paper is described below. In Section 2, we will introduce the model and some
descriptions. In Section 3, sufficient conditions are given about the asymptotic stability of
impulsive stochastic differential equations. Two examples and their simulations illustrate
the feasibility of the theoretical results in Section 4. Section 5 draws a conclusion.

2. Preliminaries

Let (Q), F, P) stand for a complete probability space with a filtration {F;},-, satis-
fying the usual conditions, i.e., it is right continuous and F contains all P-null sets. Let
w(t) = (wi(t),...,wn(t))" be n-dimensional Brownian motion in this space. Given that
N means all positive integers. R represent all real numbers, R" is a nonnegative member
in set R, that is, Rt = [0, +0), R” and R"*" be the n-dimensional vectors and n x n
real matrices, respectively. A vector or matrix Y with transpose is defined as Y. E[]
means the mathematical expectation. For y € R", |y| represents the Euclidean vector norm.
Y < 0(Y > 0) means negative (positive) of matrix Y.

Firstly, we will consider the stochastic differential equations

dy(t) = Ey(t)dt + Fy(H)dw(t), t € [y, 1), @

where the state y(f) € R", the initial value y(tp) = yo, E and F are constant mataices.
Next, consider stochastic differential equations with impulsive effects as follows,
dy(t) = Ey(t)di + Fy(t)dw(t), t € [t b)), @
y(t") —y(t) =by () t =t k€N,

where y(t) is right-continuous at t;, namely y(t;) = y(t"), {tx}r; is the impulsive jump
point and by € (—2,0).
Hencel system (2) is equivalent to

®)

{dy(t) = Ey(t)dt + Fy(t)dw(t),t € [t_1,tx),
y(te) = mey (B ), t =tk €N,
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where . = 1+ by satisfying |uy| € (0,1).

In this paper, i is defined as the length of impulse interval on the range [t;_1 ti),
namely hy = t; — ty_1. We suppose that {l}; . are uniformly bounded, i.e., it has a
positive number h which satisfies h < h. Furthermore the impulsive interval lengths £,
hy, ..., are independent random variables on the probability space (Q), F, P).

It is necessary to introduce several definitions and lemmas before getting the condition
of stability for systems (3).

Definition 1. The solution y(t) of Equation (3) is said to be mean square asymptotically stable

lim Ely(t)|* =0,

t—co

for any initial value yo € R".

Definition 2. If there exists a positive number L satisfying
1 =l < L,

then for Vk € N, {Ii }c is called bounded difference sequence.

Remark 1. Both the literature [32] and this paper utilize bounded difference conditions to research
the stability of the system, yet they are completely different. On the one hand, the model is changed
from ordinary differential equations to stochastic differential equations, and on the other hand, the
impulse type is changed from perturbed impulses to stabilizing impulses.

Definition 3. Give a function V(x(t)) : R" — R™, an operator LV (x(t)) is defined by

LV(y(£) = Viy (1)) + Vy(y(D) f(y(8)) + %fmce{g(y(t))TVyyg(y(i))}-

() = U vy = (), VO,
2
Viu (y(5) = (W) |

Definition 4. If the random variable { Yy } - is integrable and satisfies inequality B (Y, 11|Fy) < Yy,
then {Yu},q is denoted by nonnegative super-martingale, with respect to natural filtration

{fﬂ}nzO'

Definition 5 (Martingale convergence theorem). For nonnegative super-martingale {Yy },,~,
if supE|[Yy| < +oo, then {Yy },~ converges to the integrable random variable Yo as n — oo and
E(Yoo| Fn) < Y.

Lemma 1 (Gronwall inequality). Supposed that u(-), v(-) and a(-) be real-valued continuous
functions, satisfing

t
a(t) <u(t) +/0 v(s)a(s)ds,

for ¥t > 0, then
a(t) < u(t)els v(6)ds,

Lemma 2 (Fatou’s lemma). Let {gy };cy be a sequence of non-negative random variables on some
probability space then

E[hm infgn} < lim infElg,].
n—oo

n—o00
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Lemma 3 (see [33] Schur complement). Assume that Py, P are matrices of appropriate dimen-
sions, P is a positive definite matrix, then the following two equations are equivalent,

(1) P,<0,P—PP,'P <0,

P P
(2) [P; P, } < 0.

3. Main Results

Next, we will establish the stability criterion for stochastic differential equations with
impulses by Lyapunov stability theory, bounded difference condition and martingale
convergence theorem.

Theorem 1. The solution of stochastic system (3) is asymptotic stable if there exist a positive
number 1], a positive definite matrix R and bounded differences subsequence {lj } .o such that

ey
RE+E'R+F'RF—yR <0, (4)
2)

lj

lim {H(ukf} = 0. )

jeo | k=1
Proof. Construct a Lyapunov function

V(y(1) =y  (HRy(t),
thus, we know that
MR)y(H)IF < V(y(1) < MRy,
where A1(R) and A(R) are minimum and maximum eigenvalue of positive definite matrix
R respectively. [
It is derived from (3), for f € [f;_1, ;)

t

v =yt )+ [ Eysids+ [ Fy()dw(s)

t—1 te-1

In view of elementary inequality and Holder inequality, one gets

Y0 <l 3¢ —t) [ [Ey(s) s

2 (6)

—|—3/t Fy(s)dw(s)

te—1
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Taking the expectation of inequality (6) on both sides,

t
Ely(t)[? §3E|y(tk71)|2+3|5|2(t*tk—l)/t Ely(s) *ds
k-1

¢ 2
+3E / Fy(s)dw(s)

te—1

-t
<BEly(te1) P +3(ER(E—tin) [ Ely(s)Pds

k-1

t
+3E/ IFy(s)[2ds
fe—1

t
<BEly(te1) +3(|ER( — tir) + [FF) [ Ely(s)Ps

k-1

By the Lemma 1, the following inequation holds
Ely(1) < 3Ely (t) et ) (Rt HIFE),
It follows from Itd’s formula that

dV(y(t)) = LV (y(t))dt + Vi (y(8)) (Fy(t))dew(t).
Here 6 > 0 is small enough to satisfy t + € (f;_1, f;), one has

EV(y(t +9)) ~ EV(y(t) = tw ELV (y(s))ds.
Thus
DYEV(y(t)) = ELV (y(t))

—E[zy (DREy(t) + (Fy (1) TR(Fy(t))]

=By’ (t)(2RE+ FTRF = yR)y(t) +y " (1) (1R)y(1)|.

By condition (4), we can see
D*EV(y(t)) < E[y (H(R)y(H)] = nEV (y(1)),
then (10) can be solved as
EV(y(1) < E[V(y(t1))er )],

fort € [tk,l, tr)-
Therefore, the results show that

EV(y(t,)) < E[V(y(tkfl))en(tk:tkfl)}‘

It is obtained from (3) and (11)

EV(y(t)) = E|y" (h)Ry(t) |
= () ”E[y" (6 )Ry ()]
= (m)"EV (y(t 7))
< (1) *e™EV (y (t—1))-

@)

®)

)

(10)

(11)

(12)
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Since Iy, is uniformly bounded, e is integrable and it is obvious from Equation (12)
that V(y(f;)) is integrable, which shows that

E[V(y(t0)| Fi1] < ()™ E[V (y(t1))| Fi1]
< () ™V (y(te1))- (13)

Based on uniform boundedness of i, nonnegative super-martingale {V (y (tl].) ) }jeN
and (5), we get that {V(y (tl].>) }jeN converges to a non-negative random variable Vi,
from martingale convergence theorem.

In view of E{V (y(tx))} = E[E[V (y(t))|Fx_1]], we have

E{V(y(tlf))} < {Hicjzl (Vk)z}enhE{V(]/(fo))}- (14)

According to the Lemma 2, there holds

E{Ve} =E nggo V(y(%))]
—E ngﬁlo ian(y(tlf))]
(

< lim infE[V(y tli))}

]
lj

< lim {H(Vk)z}eﬂhE{V(y(fo))}-

j—oo k=1

From condition (5), it is obtain that E{V,} = 0. It is obvious that the sequence

{V (y (tl]) ) }jeN converges to zero.
It follows from (7) that

Ely ()2 < 3E|y(t,_y) 23t (Rt +IFR) 0

7

< 3(k=11) ppe . .e”jfl“E‘y(fl;—l) 2

for t € [t_1t] C {tljfl,tl/.], where M = [pg_1[2.... |y, 12, 1 = 3l (|EPIy + EP2).
On the basis of uniform boundedness of /1 and bounded difference condition {/j }; <y,
the following inequalities hold

Ely(t)[?

S e ey )

< 3("’”—1)Me3hL(‘E|2h+\FI2)E’V(tz,-fl) ’2
(

3(1) M s (EPR+|F2
< S e eV (v(n)))
Therefore, tlim Ely(t)|? = 0.
—00

Remark 2. From Lemma 3, in Theorem 1 the condition (4) is equals to

TR _ T
<RE+ER yR F ><0.

* —R1 (16)

It is easy to solve the positive definite matrix R by using Matlab LMI toolbox.
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4. Numerical Simulations

As a result of the above theoretical derivation of stability for system (3), two numerical
examples are provided in this section that illustrate the feasibility of our results.

Example 1. Firstly, we consider the two-dimensional stochastic differential equations with impul-
sive effects,

{d(t) (% 208 o+ (525 e i,
y(te) = 04y(t ), t =tk €N,

where state y(t) € R2.

We choose 11 = 3, the feasible solution of LMI (16) is derived by Matlab toolbox

R— 32,5001 5.4141
| 54141 113585 |°

Therefore, it is clear from Theorem 1 that stochastic systems (17) is asymptotically stable.

The simulation results are as follows. For the initial condition vy = (0.5, —0.2)7, in
Figure 1, the state is unstable for stochastic systems (17) without stabilizing impulses.
According to Figure 2 one can see that the state is stable for stochastic systems (17) with
stabilizing impulses. We can derive that the impulses contribute to the stability of the
system state.

Example 2. Next, we investigate the following three-dimensional impulsive stochastic differential

equation,
-1 02 -05 -02 —-0.8 0

dy(t)=1 03 01 04 |y(t)dt+ 03 —02 —04 |y(t)dw(t),t€ [t_1,tk), (18)
0 02 01 0 01 —-05

y(te) = 01y(t ), t =t k €N,
where state y(t) € R3,

We set 7 = 6, by solving LMI (16) in Remark 2, the feasible solution is obtained
as follows

0.3266 4.7449 0.5246

3.2678 0.3266 —0.2426
R=
—0.2426 0.5246  4.7890

For the initial value yp = (—0.3,0.5, O.Z)T, Figures 3 and 4 indicate that the solution
of system (18) with stabilizing impulses is asymptotically stable. As we observe, the
convergence time of the state trajectory is shorter for the system (18) with impulsive effects.
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Figure 1. State trajectories of system (17) without stabilizing impulses.
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Figure 2. State trajectories of system (17) with stabilizing impulses.
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Figure 3. State trajectories of system (18) without stabilizing impulses.
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Figure 4. State trajectories of system (18) with stabilizing impulses.

5. Conclusions

Based on Lyapunov stability theory, bounded difference condition and martingale
convergence theorem, the stability condition is derived for stochastic differential equations
with stabilizing impulses. Finally, two examples and simulation figures are given to
demonstrate the efficiency of the stability condition. Furthermore, the results of this
paper will be applied to the stability analysis of nonlinear impulsive stochastic differential
equations and stochastic homogeneous differential equations .

Author Contributions: Software, Y.Z.; Writing—original draft, M.X.; Writing—review & editing, L.L.;
Supervision, J.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China under Grant
62003378, the Natural Science Foundation of Zhongyuan University of Technology under Grant
K2023MS018, the Key Scientific Research Projects in Colleges and Universities of Henan Province
under Grant 21A110025, the Key R&D and Promotion Projects (tackling of key scientific and technical
problems) in Henan Province, China under Grants 222102210275 and 232102111129.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chen, C. Explicit solutions and stability properties of homogeneous polynomial dynamical systems via tensor orthogonal
decomposition. arXiv 2021, arXiv:2107.11438.

2. Liu, X;; Shen, J. Stability theory of hybrid dynamical systems with time delay. IEEE Trans. Autom. Control 2006, 51, 620-625.
[CrossRef]

3. Haddad, W.M.; L'Afflitto, A. Finite-time stabilization and optimal feedback control. IEEE Trans. Autom. Contro. 2016,
61, 1069-1074. [CrossRef]

4. Ahmadi, A.A.; Khadir, B.E. On algebraic proofs of stability for homogeneous vector fields. IEEE Trans. Autom. Control 2019, 65,
325-332. [CrossRef]

5. Jungers, R.; Ahmadi, A.A.; Parrilo, P.A.; Roozbehani, M. A characterization of Lyapunov inequalities for stability of switched
systems. IEEE Trans. Autom. Control 2017, 62, 3062-3067. [CrossRef]

6. Liu, B; Xu, B;; Zhang, G.; Tong, L. Review of some control theory results on uniform stability of impulsive systems. Mathematics
2019, 7, 1186. [CrossRef]

7. Li, H,; Liu, A. Asymptotic stability analysis via indefinite Lyapunov functions and design of nonlinear impulsive control systems.

Nonlinear Anal. Hybrid Syst. 2020, 38, 100936. [CrossRef]


http://doi.org/10.1109/TAC.2006.872751
http://dx.doi.org/10.1109/TAC.2015.2454891
http://dx.doi.org/10.1109/TAC.2019.2914968
http://dx.doi.org/10.1109/TAC.2017.2671345
http://dx.doi.org/10.3390/math7121186
http://dx.doi.org/10.1016/j.nahs.2020.100936

Mathematics 2023, 11, 1541 10 of 10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Rao, R;; Lin, Z.; Ai, X.; W, ]. Synchronization of epidemic systems with Neumann boundary value under delayed impulse.
Mathematics 2022, 10, 2064. [CrossRef]

Li, X.; Li, P. Stability of time-delay systems with impulsive control involving stabilizing delays. Automatica 2020, 124, 109336.
[CrossRef]

Li, X.; Cao, J.; Ho, D.W.C. Impulsive control of nonlinear systems with time-varying delay and applications. IEEE Trans. Cybern.
2020, 50, 2661-2673. [CrossRef]

Jiang, B.; Lu, J.; Liu, Y. Exponential stability of delayed systems with average-delay impulses. SIAM ]. Control Optim. 2020,
58,3763-3784. [CrossRef]

Ai, Z.; Chen, C. Asymptotic stability analysis and design of nonlinear impulsive control systems. Nonlinear Anal. Hybrid Syst. Int.
Multidiscip. ]. 2017, 24, 244-252. [CrossRef]

Li, G,; Zhang, Y.; Guan, Y.; Li, W. Stability analysis of multi-point boundary conditions for fractional differential equation with
non-instantaneous integral impulse. Math. Biosci. Eng. 2023, 20, 7020-7041. [CrossRef]

Mao, X. Stochastic Differential Equations and Applications; Elsevier: Amsterdam, The Netherlands, 2007.

Calvin, T.; Rostand, N. Impact of financial crisis on economic growth: A stochastic model. Stoch. Qual. Control 2022, 37, 45-63.
Jin, X,; Li, Y.X. Adaptive fuzzy control of uncertain stochastic nonlinear systems with full state constraints. Inf. Sci. 2021,
574, 625-639. [CrossRef]

Yu, ].; Yu, S.; Yan, Y. Fixed-time stability of stochastic nonlinear systems and its application into stochastic multi-agent systems.
IET Control Theory Appl. 2021, 15, 126-135. [CrossRef]

Liu, J.; Wu, L.; Wu, C.; Luo, W.; Franquelo, L.G. Event-triggering dissipative control of switched stochastic systems via sliding
mode. Automatica 2019, 103, 261-273. [CrossRef]

Zhu, Q.; Kong, E; Cai, Z. Special issue “advanced symmetry methods for dynamics, control, optimization and applications”.
Symmetry 2022, 15, 26. [CrossRef]

Cao, W.; Zhu, Q. Razumikhin-type theorem for p th exponential stability of impulsive stochastic functional differential equations
based on vector Lyapunov function. Nonlinear Anal. Hybrid Syst. 2021, 39, 100983. [CrossRef]

Xu, H.; Zhu, Q. New criteria on p th moment exponential stability of stochastic delayed differential systems subject to average-
delay impulses. Syst. Control Lett. 2022, 164, 105234. [CrossRef]

Hu, W.; Zhu, Q. Stability criteria for impulsive stochastic functional differential systems with distributed-delay dependent
impulsive effects. IEEE Trans. Syst. Man Cybern. Syst. 2019, 51, 2027-2032. [CrossRef]

Hu, Z.; Mu, X. Event-triggered impulsive control for nonlinear stochastic systems. IEEE Trans. Cybern. 2021, 52, 7805-7813.
[CrossRef]

Cheng, P; Deng, F; Yao, F. Almost sure exponential stability and stochastic stabilization of stochastic differential systems with
impulsive effects. Nonlinear Anal. Hybrid Syst. 2018, 30, 106-117. [CrossRef]

Zhao, Y.; Wang, L. Practical exponential stability of impulsive stochastic food chain system with time-varying delays. Mathematics
2023, 11, 147. [CrossRef]

He, Z.; Li, C,; Cao, Z.; Li, H. Stability of nonlinear variable-time impulsive differential systems with delayed impulses. Nonlinear
Anal. Hybrid Syst. 2021, 39, 100970. [CrossRef]

Wang, Y.; Lu, J. Some recent results of analysis and control for impulsive systems. Commun. Nonlinear Sci. Numer. Simul. 2020,
80, 104862.1-104862.15. [CrossRef]

Li, X.; Song, S.; Wu, J. Exponential stability of nonlinear systems with delayed impulses and applications. IEEE Trans. Autom.
Control 2019, 64, 4024-4034. [CrossRef]

Cao, W.; Zhu, Q. Stability of stochastic nonlinear delay systems with delayed impulses. Appl. Math. Comput. 2022, 421, 126950.
[CrossRef]

Ren, W.; Xiong, ]. Stability analysis of impulsive stochastic nonlinear systems. IEEE Trans. Autom. Control 2017, 62, 4791-4797.
[CrossRef]

Hu, W.; Zhu, Q.; Karimi, H.R. Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems.
IEEE Trans. Autom. Control 2019, 64, 5207-5213. [CrossRef]

He, W,; Qian, F.; Han, Q.L.; Chen, G. Almost sure stability of nonlinear systems under random and impulsive sequential attacks.
IEEE Trans. Autom. Control 2020, 65, 3879-3886. [CrossRef]

Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; SIAM: Philadelphia, PA,
USA, 1994.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.3390/math10122064
http://dx.doi.org/10.1016/j.automatica.2020.109336
http://dx.doi.org/10.1109/TCYB.2019.2896340
http://dx.doi.org/10.1137/20M1317037
http://dx.doi.org/10.1016/j.nahs.2016.10.003
http://dx.doi.org/10.3934/mbe.2023303
http://dx.doi.org/10.1016/j.ins.2021.07.056
http://dx.doi.org/10.1049/cth2.12040
http://dx.doi.org/10.1016/j.automatica.2019.01.029
http://dx.doi.org/10.3390/sym15010026
http://dx.doi.org/10.1016/j.nahs.2020.100983
http://dx.doi.org/10.1016/j.sysconle.2022.105234
http://dx.doi.org/10.1109/TSMC.2019.2905007
http://dx.doi.org/10.1109/TCYB.2021.3052166
http://dx.doi.org/10.1016/j.nahs.2018.05.003
http://dx.doi.org/10.3390/math11010147
http://dx.doi.org/10.1016/j.nahs.2020.100970
http://dx.doi.org/10.1016/j.cnsns.2019.104862
http://dx.doi.org/10.1109/TAC.2019.2905271
http://dx.doi.org/10.1016/j.amc.2022.126950
http://dx.doi.org/10.1109/TAC.2017.2688350
http://dx.doi.org/10.1109/TAC.2019.2911182
http://dx.doi.org/10.1109/TAC.2020.2972220

	Introduction
	 Preliminaries
	Main Results
	Numerical Simulations
	Conclusions
	References

