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Abstract: Robot joints driven by permanent magnet synchronous motors (PMSM) often cannot have
both superior accuracy and rapidity when they track target signals. The robot joints have fine dynamic
characteristics and poor steady-state characteristics when the signal controller is used, or they have
fine steady-state characteristics and poor dynamic characteristics when the energy controller is used.
It is hard to make robot joints that have both superior dynamic and steady-state characteristics at once
using a single control method. In order to solve this problem, the strategy of optimized cooperative
control is proposed. First, an error port-controlled Hamiltonian (EPCH) energy controller and an
adaptive backstepping sliding mode (ABSM) signal controller are designed. Second, an optimized
cooperative control coefficient based on the position error of a robot joint is designed; this enables the
system to switch smoothly between the EPCH energy controller and ABSM signal controller. Next,
the strategy of optimized cooperative control is designed. In this way, robot systems can combine the
advantages of the EPCH energy controller and the ABSM signal controller. Finally, simulation results
demonstrate that using the strategy of optimized cooperative control gives robot joints outstanding
control performance in terms of tracking accuracy and response rapidity.

Keywords: robot joints; permanent magnet synchronous motors (PMSM); optimized cooperative
control; error port-controlled Hamiltonian (EPCH); adaptive backstepping sliding mode (ABSM);
optimized cooperative control coefficient

MSC: 70E60

1. Introduction

In recent years, multi-degree-of-freedom (DOF) industrial robots have been widely
used in assembly, handling and other industries [1–3]. They can replace repetitive machine-
type manipulation, and they are servo devices that rely on their own power and control
to achieve multiple functions. With the rapid development of modern manufacturing,
requirements for the control accuracy, running speed and system stability of industrial
robots are increasing [4].

A robot system includes a driving device, a transmission device and the robot body.
Driving devices mostly adopt PMSM [5], due to PMSM having the characteristics of high
accuracy, wide speed range, low speed and fast dynamic response. Transmission devices
widely adopt harmonic drive. PMSM converts electromagnetic torque into joint torque
using harmonic drive, which can drive the robot joints to complete specified motions
and functions.

The transmission mechanism in harmonic drive is rolling transmission, and friction
is represented by rolling friction. As a dynamic friction model, the LuGre friction model
explains the relationship between nonlinear force, Coulomb friction, viscous friction and
the Stribeck effect. It describes friction force as a function of relative velocity between the
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contact surfaces [6–8]. The harmonic drive is divided into the motor side and the joint side
in this paper. Dynamic equations based on the LuGre friction model are established in
order to improve the generalized mathematical model of the robot joint servo system.

The process of researching PMSM-driven robot joints is currently accelerating, and
researchers have made great progress in this area of science and technology innovation.
However, there are still many problems to be solved related to the servo control of robot
joint systems. In the actual industrial production, creating robot joints that have both
superior response speed and control accuracy, and remain stable during the whole process
of operation, has become a key technology problem in the research field of PMSM-driven
robot joint servo control system [9,10].

Domestic and foreign researchers have carried out a large amount of research work
with the aim of improving performance of control and optimization of PMSM-driven robot
joints. Depending on the controller used, the design of servo control of robot joints can
be divided into two types: signal control and energy control. From the point of view of
signal control [11,12], the servo control system of a robot joint is considered to be a signal
conversion device that converts the input position signal into the output position signal.
Although a signal controller can achieve the control requirement of fast dynamic response,
the electrical characteristics of PMSM and the friction characteristics of robot joints are not
considered. Due to high energy consumption and loss of friction, the optimization of energy
loss in the steady state cannot be achieved. Therefore, the steady-state error of the system is
large, and vibration occurs during the operation of a robot joint when the signal controller
is used alone. In contrast, from the point of view of energy control [13,14], the servo control
system of a robot joint is considered an energy conversion device. It converts the given
input energy into the actual output energy. The energy controller can cause the system to
track accurately in the steady state and stabilise the joint during operation, but the dynamic
response speed is very slow.

Based on the view of signal control, many control strategies have been proposed. These
include backstepping control [15], sliding mode control [16], fuzzy control [17], robust
control [18,19], adaptive control [20], etc.

The backstepping control (BC) algorithm is simple and makes the design process of a
controller systematized and structured. BC is often combined with intelligent methods and
other nonlinear methods in the position control of robot joint servo systems [21,22].

Sliding mode control (SMC) is extensively applied in nonlinear systems, due to its
strong robustness against external disturbances and parameter perturbations. Traditional
SMC has many obstacles in practical application; for instance, it cannot make systems
converge in a limited time, and shows a obvious chattering phenomenon during the
operation of the robot joints [23,24]. However, SMC has the merit of quick regulation,
which can result in nonlinear systems having faster dynamic response speeds than with
other control methods [25].

An accurate mathematical model cannot be established for the robot joint servo system,
so fuzzy control [26] has been proposed. However, the steady-state error of the systems in
this case is large and the control effect is unsatisfactory.

As a kind of robust control, H∞ shows strong robustness in the field of controlling
robot joints. In [27], a controller for robot joints is designed using a H∞ frame. It can
precisely follow target signals and has good robustness. However, the design scheme of
H∞ is complicated and difficult to implement. The above research algorithms all stem from
the viewpoint of signal control. Although they promote the response speed of robot joint
servo systems, their steady-state error rates are large.

At present, scientific researchers are concerned with research into algorithms ap-
proaching the problem from the viewpoint of energy control. Ortega et al. proposed the
port-controlled Hamiltonian (PCH) [28–31] control method, which uses a dissipative PCH
model to represent the dynamic system. It can diminish the steady-state error of a robot
joint’s servo system during operation. Nevertheless, the rapidity of this system is poor, and
its dynamic properties are difficult to guarantee.
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To sum up, both single signal control methods and energy control methods have their
own weaknesses. In order to develop a system with both superior rapidity and accuracy at
the same time, the strategy of optimized cooperative control is put forward in this paper.
The strategy of optimized cooperative control adopts a optimized cooperative control
coefficient based on the position error of robot joints, so that the system can smoothly switch
between the signal controller and the energy controller. The signal controller occupies
centre stage and guarantees the rapidity of system when the error of a joint is large. When
the error is small, control switches from the signal controller to the energy controller. At this
time, the energy controller occupies centre stage and guarantees the accuracy of the system.
In this way, the robot joint benefits from the advantages of the signal controller and the
energy controller. The system has short response time and low tracking error when robot
joints are tracking target signals. Generalized mathematical models of the robot joint
servo system are expressed by combining the robot body’s dynamics equation, motor
characteristics and joint friction. The EPCH energy controller and ABSM signal controller
are both designed using the generalized mathematical model. A Gaussian function is
used as the optimized cooperative control coefficient, and the strategy of cooperative
optimization control of EPCH and ABSM is designed. Finally, simulation results show that
this strategy results in a robot system that has both fast response speed and high tracking
accuracy.

The structure of this article is as follows. In Section 2, the kinetic equation of a multi-
joint industrial robot is given. In Section 3, the EPCH energy controller, ABSM signal
controller and the strategy of optimized cooperative control are designed. In Section 4,
we testify to the availability of optimized cooperative control through simulation results.
The conclusion is given in Section 5.

2. Mathematical Model of Multi-Joint Industrial Robot

This paper takes the servo system of a 2-DOF robot as the object of study. The multi-
joint industrial robot servo system is displayed in Figure 1. It includes three parts: PMSM,
harmonic drive and robot body. The Lagrange’s equation of the robot body is described
as [32]

M(q)q̈ + C(q, q̇)q̇ + G(q) = τL − R f q̇− JTF (1)

where q ∈ <2, q̇ ∈ <2 and q̈ ∈ <2 denote the position, velocity and acceleration, respec-
tively. M(q) ∈ <2 is the positive and definite inertia matrix. C(q, q̇) ∈ <2 includes the
Coriolis and centripetal forces. G(q) ∈ <2 is the vector of gravity terms. τL ∈ <2 is the
moment of the robot joint. R f ∈ <2 denotes the Coulomb friction coefficient matrix of
robot joints. F ∈ <2 is a vector of external force. J ∈ <2 is the Jacobian matrix.

Joint 1Joint 2

Figure 1. The multi-joint industrial robot servo system.
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The parameters of robot body is presented in the Appendix A.
To establish the mathematical model of PMSM, the following conditions are described:

1. The influence of the core saturation phenomenon is not considered.
2. The damping effects of the permanent magnet and rotor are ignored.
3. The material of the permanent magnet is considered to be insulated.
4. It is determined that the magnetic circuit is linear and satisfies the superposition

theorem.

In a synchronously rotating d-q reference frame, the model of the i-th (i = 1, 2) PMSM
with implicit pole type (Ldi = Lqi) can be described as [33]

Ldi
didi
dt

= −Rsiidi + npiωiLqiiqi + udi

Lqi
diqi

dt
= −Rsiiqi − npiωiLdiidi − npiωiΦi + uqi

Jmi
dωi
dt

= τi − τLi − Rmiωi

dθi
dt

= ωi

(2)

τi =
3
2 npi

[(
Ldi − Lqi

)
idiiqi + Φiiqi

]
(3)

where τi is the electromagnetic torque of PMSM. τLi is the torque of the robot joint. udi
and uqi denote the stator voltages of the d-axis and q-axis, respectively. Ldi and Lqi denote
the stator inductances of the d-axis and q-axis, respectively. idi and iqi denote the stator
currents of the d-axis and q-axis, respectively. Rsi is the stator resistance per phase. Φi is
the rotor flux linking of the stator. npi is the number of pole pairs in PMSM. θi is the angle.
Jmi is the moment of inertia in PMSM. Rmi is the friction coefficient of PMSM. ωi is the
angular velocity.

We can learn from i∗di = 0 and Ldi = Lqi that

i∗qi =
2τi

3npiΦi
(4)

The i-th harmonic drive is decomposed into a dynamic model consisting of the motor
side and joint side. The motor side is connected to the PMSM, and the joint side is connected
to the robot joint.

The model of the motor side is

τi = Jgi θ̈i + τgi + τci (5)

The model of the joint side is

η−1
i τci = Jdi q̈i + τdi + τLi (6)

where τci is the load moment of the motor side. τgi is the friction torque of the motor side.
τdi is the friction torque of the joint side. Jgi is the moment of inertia of the motor side. Jdi is
the moment of inertia of the joint side. θ̈i is the angular acceleration of the motor shaft. q̈i is
the angular acceleration of the robot joint. ηi is the reduction ratio of the harmonic drive,
and q̇i = ηi · θ̇i.
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The LuGre model expression of τgi is

τgi = σ01iz1i + σ11i ż1i + σ21iωi

g1(ωi) = Fc1i + (Fs1i − Fc1i)e
−

ω2
i

ω2
s1i

ż1i = ωi −
|ωi|

g1(ωi)
z1i

(7)

where z1i and ż1i denote the average bristle deformation amount and deformation rate of
the high-speed axis, respectively. Fc1i, Fs1i, ωs1i, g1(ωi), respectively, denote the Coulomb
friction, Stribeck friction, Stribeck velocity and static friction functions of high-speed
shafts. σ01i, σ11i and σ21i denote the bristle stiffness, bristle damping and viscous friction of
the motor side, respectively.

The LuGre model expression of τdi is

τdi = σ02iz2i + σ12i ż2i + σ22i q̇i

g2(q̇i) = Fc2i + (Fs2i − Fc2i)e
−

q̇2
i

ω2
s2i

ż2i = q̇i −
|q̇i|

g2(q̇i)
z2i

(8)

where z2i and ż2i denote the average bristle deformation amount and deformation rate of
the low-speed axis, respectively. Fc2i, Fs2i, ωs2i, g2(q̇i), respectively, denote the Coulomb
friction, Stribeck friction, Stribeck velocity and static friction functions of low-speed shafts.
σ02i, σ12i and σ22i denote the bristle stiffness, bristle damping and viscous friction of the
joint side, respectively. q̇i is the angular velocity of the robot joint.

Because the material, quality and lubrication conditions of the motor side and the joint
side of the harmonic drive are almost all the same, the parameters of the LuGre model take
the same values.

σ01i =σ02i =σ0i, σ11i =σ12i =σ1i, σ21i =σ22i =σ2i

Fc1i =Fc2i =Fci, Fs1i =Fs2i =Fsi, ωs1i =ωs2i =ωsi (9)

From Equation (1) to Equation (9), the generalized model of the robot joint servo
system is deduced as

M̄(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = τ − F̄ − F f (10)

where

M̄(q) = ηM(q) + η−1 Jg + ηJd (11)

C̄(q, q̇) = ηC(q, q̇) + ηR f (12)

Ḡ(q) = ηG(q) (13)

F̄ = ηJTF (14)

F f =σ0[z1+η · z2]+σ1[ż1+η · ż2]+σ2
(
η-1+η

)
q̇. (15)

The dynamic equation (Equation (10)) of the robot system satisfies the following
properties [34].
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1. M̄(q) is the positive definite symmetric matrix, and an inverse matrix M̄−1(q) exists.
M̄(q) and M̄−1(q), as functions of q, are uniformly bounded. Namely, the existence
of M̄min and M̄max makes the following equation hold:

0 < M̄min ≤ M̄(q) ≤ M̄max (16)

2. ˙̄M(q) − 2C̄(q, q̇) is the skew symmetric matrix. Namely, ∀x ∈ Rn can satisfy the
following equation:

xT
(

˙̄M(q)− 2C̄(q, q̇)
)

x = 0 (17)

3. Design of Optimized Cooperative Control

The control graph of the optimized cooperative control of a 2-DOF robot servo system
is displayed in Figure 2. q1, q2 and q∗1 , q∗2 are the practical positions and expected positions
of the robot joint, respectively. τe1, τe2 are the output torque of the EPCH energy controller,
τs1, τs2 are the output torque of the ABSM signal controller, τ1, τ2 is the output torque after
the application of optimized cooperative control, τm1, τm2 are the electromagnetic torque
of PMSM, and u1, u2 are the output voltage of PMSM. The inverter is a triphase inverter.
Space Vector Pulse Width Modulation (SVPWM) is the pulse width modulation technology,
which generates a pulse width modulation wave by switching mode. It considers the
inverter system and PMSM as a whole, and the model is relatively simple.
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Figure 2. The control graph of optimized cooperative control of an EPCH energy controller and
ABSM signal controller.

The PI current loop is designed as follows:
udi = λpi(i∗di − idi) + λii

∫
(i∗di − idi)

uqi = λpi(i∗qi − iqi) + λii

∫
(i∗qi − iqi)

(18)

where λpi, λii are, respectively, the scale coefficient and integral coefficient of the PI current
loop, which includes the adjustment of parameters Ldi, Lqi and Rsi.



Mathematics 2023, 11, 1542 7 of 20

Because the current loop adopts PI control, the PMSM parameters Ldi, Lqi and Rsi do
not need to be adjusted, and only the parameters λpi and λii of the PI current loop need to
be adjusted.

3.1. Design of EPCH Energy Controller

For a nonlinear system, the PCH model of the EPCH energy controller with energy
dissipation can be calculated as [35–38]{

ẋ = [J(x)− R(x)] ∂H(x)
∂x + g(x)u

y = gT(x) ∂H(x)
∂x

(19)

where x, u, and y are the state vector, control vector, and output vector. J(x) is the
interconnection matrix, J(x) = −JT(x), which expresses the interconnection structure.
R(x) is the damping matrix, R(x) = RT(x) ≥ 0, which shows the resistive structure on
the port. g(x) reflects the port’s characteristics. H(x) is the Hamiltonian function, which
signifies the total energy stored by the system.

The state vector, control vector and position error of the robot joints are defined,
respectively, as

x =

[
q
p

]
=

[
I2×2 02×2
02×2 M̄(q)

][
q
q̇

]
(20)

τe = [τe1 τe2]
T (21)

q̃ = q∗ − q (22)

where p = M̄(q)q̇ denotes the generalized inertia matrix of the system, and q∗ =
[
q∗1 , q∗2

]T
denotes the expected value of the robot joint’s motion trajectory.

The Hamiltonian function H(x) of robot joints is defined as

H(x) = 1
2 pTM̄−1(q)p + V(q) (23)

where V(q) is the potential energy of the robot joints.
Taking the partial differentiation of Equation (23), we can get

∂H(x)
∂x

=

 ∂H(x)
∂q

∂H(x)
∂p

=[ 1
2 q̇T ∂M̄(q)

∂q q̇

M̄−1(q)p

]
=

[
1
2 q̇T ∂M̄(q)

∂q q̇
q̇

]
(24)

Using Equations (17) and (24), we have

ṗ = −∂H(x)
∂q

+ τe (25)

Then, combining Equations (19), (24) and (25), the PCH model of a 2-DOF robot is
expressed as {

ẋ = [J(x)− R(x)] ∂H(x)
∂x + g(x)τe

y = q̇
(26)

where

J(x)=−JT(x)=
[

02×2 I2×2
−I2×2 02×2

]
(27)
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R(x)=RT(x)=

[
02×2 02×2

02×2 02×2

]
(28)

g(x) =

[
02×2

I2×2

]
(29)

Introducing state error into the PCH model can further improve the tracking accuracy
of the system. The following is the design process of the EPCH controller.

The state error of the robot joints is

x̃ = x∗ − x =

[
q̃

p̃

]
(30)

where x∗ is the expected state matrix.
The expected Hamiltonian function, including the kinetic energy and potential energy

of the robot joint, is chosen as

Hd(x̃) =
1
2

p̃TM−1
d p̃ +

1
2

q̃TKpq̃ (31)

where Md = MT
d > 0 denotes the moment of inertia, and 1

2 p̃TM−1
d p̃ indicates the kinetic

energy of the robot joints. Kp = KT
p > 0 denotes the proportional gain and 1

2 q̃TKpq̃
indicates the potential energy of robot joints.

Calculating the derivation of Equation (31), we have

∂Hd(x̃)
∂x̃

=

 ∂Hd(x̃)
∂q̃

∂Hd(x̃)
∂p̃

 =

[
Kpq̃

M−1
d p̃

]
(32)

when the system is in equilibrium, that is, x̃ = 0, the internal storage energy of the system
is the smallest. At this time, the form of the EPCH is expressed as

˙̃x = [Jd(x̃)− Rd(x̃)]
∂Hd(x̃)

∂x̃
(33)

where the expected interconnection matrix Jd(x̃) and expected damping matrix Rd(x̃) are
chosen as

Jd(x̃) = −JT
d(x̃) =

[
02×2 M̄−1(q)Md

−Md M̄−1(q) 02×2

]
(34)

Rd(x̃) = RT
d(x̃) =

[
02×2 02×2
02×2 Kv

]
(35)

The gain of damping matrix Kv = KT
v > 0.

From Equations (26), (30) and (33), we can get

g(x)τe = [Jd(x̃)− Rd(x̃)]
∂Hd(x̃)

∂x̃
− [J(x)− R(x)]

∂H(x)
∂x

+ ẋ∗. (36)

Using Equation (36), we can obtain the control law

τe = −Kl q̃− Kt ˙̃q + C̄(q, q̇) ˙̃q + Ḡ(q) + F̄+F f − ˙̄M(q) ˙̃q (37)

where Kl = Md M̄−1(q)Kp, Kt = M−1
d M̄(q)Kv.
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The desired Hamiltonian function (31) is the Lyapunov function, so the Lyapunov
function V e is

V e =
1
2

p̃TM−1
d p̃ +

1
2

q̃TKpq̃ (38)

From the derivation of Equation (38), we can obtain

V̇ e = p̃TM−1
d

˙̃p + q̃TKp ˙̃q (39)

Substituting Equations (10) and (37) into Equation (39), we can get

V̇ e = −
[

M−1
d M̄(q) ˙̃q

]T
Kv

[
M−1

d M̄(q) ˙̃q
]
6 0. (40)

{x∗} is the largest invariant set of
{

x̃r ∈ <4|
[

M−1
d M̄(q) ˙̃q

]T
Kv

[
M−1

d M̄(q) ˙̃q
]
= 0

}
.

Therefore, according to the Lasalle invariant set principle, the closed-loop control system of
the robot is asymptotically stable at the equilibrium point.

3.2. Design of ABSM Signal Controller

The EPCH energy controller has the advantages of high precision and strong stability.
However, its dynamic properties are not ideal when it is used alone. Therefore, the ABSM
signal controller is proposed to compensate for the dynamic properties.

Before the construction of the ABSM signal controller, it is required to improve the dy-
namic equation of the robot joint system. We need to replace the friction moment term F f
with the uncertainty term d̄, and construct an adaptive law to estimate the uncertainty term
d̄ in real time, that is, making d̄ = F f . Then, Equation (10) is represented as

M̄(q)q̈ + C̄(q, q̇)q̇ + Ḡ(q) = τ − F̄ − d̄ (41)

where d̄ only includes friction interference caused by PMSM, harmonic drive and the robot
body, and any other external interference is not considered.

The design of the ABSM signal controller is as follows. Equation (41) is converted to a
state space expression:{

ẋ1 = x2 = q̇

ẋ2 = M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − d̄

] (42)

Step 1: The position error of the robot joints is defined as

q̃ = q∗ − q (43)

where q∗ denotes the desired position of the robot joint.
Taking the derivative of Equation (43), we get

˙̃q = q̇∗ − q̇ (44)

We take the virtual control quantity α1 = c1q̃ and define

q̃1 = ˙̃q + α1 (45)

The Lyapunov function of the subsystem of Step 1 is selected as

V1 =
1
2

q̃Tq̃ (46)

We conduct the derivative of Equation (46) and use Equation (45) to obtain

V̇1 = q̃T ˙̃q = q̃T(q̃1 − α1) = q̃Tq̃1 − q̃Tc1q̃ (47)
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In Equation (47), if q̃1 = 0, then V̇1 =− q̃Tc1q̃ 6 0. Therefore, the next step of the
design is needed.

Step 2: Taking the derivative of Equation (44) and using Equation (42), we get

¨̃q = q̈∗ − q̈

= q̈∗ − M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − d̄

]
(48)

The sliding surface of a traditional SMC is selected as

s = βq̃ + ˙̃q (49)

where β denotes the positive constant value matrix.
By calculating the derivative of Equation (49) and using Equation (42), we have

ṡ = β ˙̃q + ¨̃q

= β ˙̃q + q̈∗−M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − d̄

]
(50)

We define the Lyapunov function of subsystem of Step 2 as

V2 = V1 +
1
2

sTs (51)

We conduct the derivative of Equation (51) and combine Equations (47) and (50)
to obtain

V̇2 = V̇1 + sTṡ

= q̃Tq̃1 − q̃Tc1q̃ + sT(β ˙̃q + q̈∗ − M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − d̄

]
) (52)

The estimation error is defined as

˜̄d = d̄− ˆ̄d (53)

where ˆ̄d is the estimated value of the uncertainty term d̄, and ˙̄̃d = 0.
Based on Equation (51), the Lyapunov function is defined at this time as

V3 = V2 +
1

2δ
˜̄dT ˜̄d (54)

where δ is the normal number matrix.
By taking the derivative of Equation (54), and combining Equation (52) with Equation (53),

we can get

V̇3 = V̇2 +
1
δ

˜̄d
T
· ˙̄̃d = V̇2 −

1
δ

˜̄d
T
· ˙̄̂d

= q̃Tq̃1 − q̃Tc1q̃ + sT(β ˙̃q + q̈∗

− M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − d̄

]
)− 1

δ
˜̄d

T
· ˙̄̂d

= q̃Tq̃1 − q̃Tc1q̃ + sT(β ˙̃q + q̈∗

− M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − ˜̄d− ˆ̄d

]
)− 1

δ
˜̄d

T
· ˙̄̂d

= q̃Tq̃1 − q̃Tc1q̃ + sT(β ˙̃q + q̈∗

− M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − ˆ̄d

]
)− 1

δ
˜̄d

T
· ˙̄̂d + sM̄−1(q) ˜̄d

= q̃Tq̃1 − q̃Tc1q̃ + sT(β ˙̃q + q̈∗

− M̄−1(q)
[
τ − C̄(q, q̇)q̇− Ḡ(q)− F̄ − ˆ̄d

]
)− 1

δ
˜̄d

T
(

˙̄̂d− δM̄−1(q)s) (55)
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In order to simplify Equation (55) and further prove V̇3 6 0, the control torque of the
robot joint is selected

τ = M̄(q)(β ˙̃q + q̈∗ + ρs + λρ sgn s) + C̄(q, q̇)q̇ + Ḡ(q) + F̄ + ˆ̄d (56)

where ρ is the symmetric and positive constant value matrix, and λ is a normal number.
The adaptive law can be taken as

˙̄̂d = δM̄−1(q)s. (57)

The Lyapunov function of the whole robot system is defined as

V3 =
1
2

q̃Tq̃ +
1
2

sTs +
1

2δ
˜̄dT ˜̄d. (58)

By taking the derivative of Equation (58), and substituting Equations (56) and (57) into
Equation (55), we get

V̇3 = q̃Tq̃1 − q̃Tc1q̃− sTρs−
2

∑
j=1

2

∑
i=1

λρij|si|. (59)

We take T =

[
c1 + βTρβ ρβ− I

2
ρβ− I

2 ρ

]
, and take the appropriate value to turn T into

the positive definite matrix. We have η = [q̃T q̃T
1 ], and get

ηTTη = [q̃T q̃T
1 ]

[
c1 + βTρβ ρβ− I

2
ρβ− I

2 ρ

][
q̃

q̃1

]
= q̃Tc1q̃− q̃q̃1 + sTρs. (60)

Namely,

V̇3 = −ηTTη−
2

∑
j=1

2

∑
i=1

λρij|si| 6 0. (61)

With the design of the above controller, the sliding surface can ultimately be bounded
as stable, and the robot joints can move according to the desired trajectory.

3.3. Strategy of Optimized Cooperative Control
3.3.1. Design of Optimized Cooperative Controller

The ABSM signal controller contributes rapid response speed and outstanding dy-
namic performance to the system; the EPCH energy controller generates high tracking
precision and impressive steady-state behavior. The strategy of optimized cooperative
control is designed to combine the advantages of these two controllers. Additionally, the
coefficient matrix of optimized cooperative control h(q̃) is introduced in order to make
the control vector change continuously and smoothly in the optimized cooperative control
procedure.

The design of the optimized cooperative controller is calculated as

τ = h(q̃) · τe(q̃) + [I − h(q̃)] · τs(q̃) (62)

where τ denotes the input torque of a joint after optimized cooperative control, h(q̃) is the
coefficient matrix of optimized cooperative control based on the position error of the robot
joint, and h(q̃) = diag{h(q̃1), h(q̃2)}.

There are many kinds of mathematical function that can be used as cooperative control
coefficients, and different cooperative control coefficients have different effects on the
cooperative control of the system. In order to study which coefficient has the best effect
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on the cooperative control of the system, four kinds of cooperative control coefficient,
namely a Gaussian function, hyperbolic tangent function, arctangent function, and Cauchy
distribution function, are selected for comparison. Additionally, the optimized cooperative
control coefficient is determined through comparative analysis of the scale effect, switching
accuracy, switching speed and storage space.

The specific forms of the four cooperative control coefficients are shown in Table 1,
where h(q̃), f (q̃), k(q̃) and g(q̃) represent the Gaussian function, hyperbolic tangent func-
tion, arctangent function and Cauchy distribution function, respectively, and σ represents
the scale parameters.

Table 1. The forms of cooperative control coefficients.

Function Function Name Function Form

h(q̃) Gaussian function e−(
q̃i
σ )

2

f (q̃) Hyperbolic tangent function 1− e

(
q̃i
σ

)2

−e
−
(

q̃i
σ

)2

e

(
q̃i
σ

)2

+e
−
(

q̃i
σ

)2

k(q̃) Arctangent function 1− 2
π arctan (

q̃i
σ )

2

g(q̃) Cauchy distribution function 1

1+π
(

q̃i
σ

)2

Because the different scale parameters directly affect the cooperative control effect, it
is important to carry out an analysis of parameter selection. When a scale parameter σ > 1
is adopted, the tracking curve after the cooperative control is similar to that of the EPCH
controller used alone, and the system’s rapidity is poor at this time; when a scale parameter
0.01 < σ < 1 is adopted, the system’s rapidity gradually improves with the decrease of
the scale parameter σ; when a scale parameter σ < 0.01 is adopted, the system’s rapidity is
almost unchanged with the decrease of scale parameter σ. In order to give the system good
dynamic performance, and taking into account the factor of computational complexity,
four groups of parameters σ = 0.01, σ = 0.05, σ = 0.1, and σ = 0.5 are selected and analyzed.
The mathematical curves of the above four coefficients are displayed in Figure 3, where
e = q̃.

It can be seen from Figure 3 that, with a given scale parameter, the distribution trends
of the four control coefficients are the same. Therefore, the scale effects are the same.
Additionally, the function curves change mainly around the zero value; hence, the EPCH
energy controller and ABSM signal controller start to switch when the error approaches
zero. It can also be seen that the trend of the hyperbolic tangent function curve is steeper;
the trend of the Gaussian function curve is steep; the trend of the arctangent function curve
is gentler; and the Cauchy distribution function’s curve is gentle. The steeper the curve
changes around zero value, the faster the switching process is completed, the higher the
switching accuracy, and the faster and more accurate the system is. However, the algorith-
mic complexity of the four cooperative control coefficients are different, so the switching
speed and storage space are also different. The higher the complexity of the algorithm,
the slower the switching speed and the larger the storage space. On the contrary, the faster
the switching speed, the smaller the storage space occupied.

To sum up, the scale effects are the same when any of the above four cooperative
control coefficients are adopted. The steeper the curve, the higher the switching accuracy;
the higher the complexity of the algorithm, the slower the switching speed, and the larger
the storage space occupied. Table 2 presents a comprehensive comparison of the four kinds
of cooperative control coefficient.
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(a) (b)

(c) (d)

Figure 3. Mathematical curves of four cooperative control coefficients under different scale parame-
ters. (a) The curves of four kinds of cooperative control coefficient with σ = 0.01. (b) The curves of
four kinds of cooperative control coefficient with σ = 0.05. (c) The curves of four kinds of cooperative
control coefficient with σ = 0.1. (d) The curves of four kinds of cooperative control coefficient with
σ = 0.5.

Table 2. The form of cooperative control coefficients.

Function Scale Effect Switching
Precision

Switching
Speed Storage Space Comprehensive

Comparison

h(e) same better faster less best
f (e) same best slowest largest better
k(e) same poor slower larger poor
g(e) same worst fastest least worst

Through the comparison and analysis of scale effect, switching precision, switching
speed and storage space, it is shown that the Gaussian function has the best effect on the
cooperative control. Therefore, the Gaussian function is the optimized cooperative control
coefficient and is used in the strategy of optimized cooperative control, as shown:

h(q̃) = e−
(

q̃
σ

)2

. (63)

In order to illustrate the process of optimized cooperative control, the relationship
curves between optimized cooperative control coefficient h(q̃) and position error q̃ are
shown in Figure 4, where e = q̃.

3.3.2. Stability Proof of the Overall Robot System with Optimized Cooperative Control

Case 1: When q̃i → ∞, that is h(q̃i) → 0 , according to Equation (62), τ = τs(q̃).
Only the ABSM signal controller works at this time, and the overall system of the robot is
asymptotically stable.
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Case 2: When q̃i = 0, that is 1− h(q̃i) = 0, according to Equation (62), τ = τe(q̃).
Only the EPCH energy controller works at this time, and the overall system of the robot is
asymptotically stable.

Case 3: When 0 < q̃i < ∞, that is 0 < h(q̃i) < 1, 0 <1− h(q̃i) < 1, according to
Equation (62), τ = τs(q̃) + τe(q̃). In this case, the EPCH energy controller and ABSM
signal controller work together. The Lyapunov function of the overall robot system is
defined as:

V = V e + V3 > 0. (64)

By taking the derivative of Equation (64) and combining Equations (40) and (61), we
can get

V̇ = V̇ e + V̇3 6 0. (65)

According to the Lasalle invariant set principle, the overall robot system is asymp-
totically stable. Consequently, the overall robot system after the application of optimized
cooperative control is asymptotically stable.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 e/rad

0

0.2

0.4

0.6

0.8

1

 h
(e

)

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 e/rad

0

0.2

0.4

0.6

0.8

1

 1
-h

(e
)

(b)

Figure 4. The curves of optimized cooperative control coefficient. (a) The function curve of h(q̃).
(b) The function curve of 1− h(q̃).

4. Simulation Results

To demonstrate the validity of the optimized cooperative control method, Joint 1 and
Joint 2 are taken as an example to simulate and analyze the robot system. The parameters
of the EPCH energy controller are: Kl = diag{50000, 50000}, Kt = diag{3000, 3000}.
The parameters of the ABSM signal controller are: β = diag{50, 50}, ρ = diag{200, 200},
λ = 5, δ = diag{30, 30}. The parameters of the PI current loop are: λpi = 5, λii = 10. The
scale parameter is σ = diag{0.01, 0.01}. The parameters of PMSM and the LuGre model
are displayed in Table 3.

Table 3. Parameters of PMSM and LuGre model.

Symbol Quantity Values Unit

Φi rotor flux 0.29 Wb
Jmi moment of inertia 0.03 kg·m2

npi number of pole-pairs 4 -
Fci Coulomb friction 0.649 N·m
Fsi Stribeck friction 0.684 N·m
ωsi Stribeck velocity 0.02 rad/s
σ0i bristle stiffness 45.01 -
σ1i bristle damping 1.28 -
σ2i viscous friction 0.171 -
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Case 1: To verify the advantage of the ABSM signal controller in dynamic response
performance, simulations are conducted to compare the ABSM controller with BC, SMC,
and feedback linearization control (FLC). Under no load condition, Joint 1 and Joint 2 track
the unit step signal. The simulation results are shown in Figure 5. The results indicate
that the ABSM controller has the fastest dynamic response speed among the above four
controllers. Therefore, the ABSM controller is the most suitable as the signal controller in
the strategy of optimized cooperative control. The performance index of the four controllers
is shown in Table 4. It can be seen from Table 4 that dynamic response time is the shortest
when the ABSM controller is adopted.

Table 4. Performance index of ABSM, BC, SMC, and FLC with unit step response.

Description ABSM BC SMC FLC

Joint 1: rise time 0.13 s 0.14 s 0.35 s 0.39 s
Joint 2: rise time 0.12 s 0.15 s 0.31 s 0.42 s
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Figure 5. Position tracking curve and tracking error curve of two joints under ABSM, BC, SMC,
and FLC. (a) Position tracking curve of Joint 1. (b) Position tracking curve of Joint 2. (c) Tracking
error curve of Joint 1. (d) Tracking error curve of Joint 2.

Case 2: To prove the effect of scale parameters on the cooperative control performance
of the system, we select four groups of parameters: σ = 0.01, σ = 0.05, σ = 0.1 and
σ = 0.5. Robot joints track the unit step signal under the above four groups of parameters.
The simulation results are shown in Figure 6. It can be observed from Figure 6 that the
response speed of the system is the fastest with σ = 0.01. The steady-state error rates of the
system are the same with different scale parameters. Furthermore, the smaller the scale
parameter, the faster the response speed. Therefore, we choose the scale parameter σ = 0.01
in the following Case 3. In this case, the dynamic characteristics of the robot servo system
are optimal.
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Figure 6. Position tracking curve and tracking error curve of two joints with different scale parameters.
(a) Position tracking curve of Joint 1. (b) Position tracking curve of Joint 2. (c) Tracking error curve of
Joint 1. (d) Tracking error curve of Joint 2.

Case 3: To demonstrate the effectiveness of the strategy of optimized cooperative
control, the curve of unit step response is measured. The scale parameter is set to
σ = diag{0.01, 0.01}. The obtained curves of position tracking are displayed in Figure 7.
The simulation results reveal that the control characteristic after the application of opti-
mized cooperative control is significantly better than with EPCH or ABSM. It can be seen
from Table 5 that, when the ABSM signal controller is used alone, the rise time of the system
is about (0.17 s, 0.18 s) and the tracking error of the system is about (±0.0025 rad, ±0.0018
rad); when the EPCH controller is used alone, the system’s rise time is about (1.02 s, 1.06 s)
and its tracking error is about (±0.0004 rad, ±0.0004 rad); when the strategy of optimized
cooperative control is used, the system’s rise time is about (0.21 s, 0.23 s) and its tracking
error is about (±0.0004 rad, ±0.0004 rad). Therefore, the strategy of optimized cooperative
control can reduce the rise time of the EPCH energy controller and the steady-state error of
the ABSM signal controller. The optimized cooperative controller can give robot joints both
superior rapidity and accuracy at once.

Table 5. Property indicators of EPCH, ABSM, and optimized cooperative control with unit step re-
sponse.

Description EPCH ABSM Optimized Cooperative Control

Joint 1: rise time (s) 1.02 0.17 0.21
tracking error (rad) ±0.0004 ±0.0025 ±0.0004
Joint 2: rise time (s) 1.06 0.18 0.23
tracking error (rad) ±0.0004 ±0.0018 ±0.0004
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Figure 7. Position tracking curve and tracking error curve of two joints under the three control
methods. (a) Position tracking curve of Joint 1. (b) Position tracking curve of Joint 2. (c) Tracking
error curve of Joint 1. (d) Tracking error curve of Joint 2.

Case 4: To verify the influence of the PMSM mathematical model parameter Φi on the
simulation results, the relevant parameter sensitivity analysis is shown in Figure 8. The
robot joint with optimized cooperative control tracks the unit step signal. The rise time re-
quired by the system is the lowest when Φi = 0.29± 0.01 is selected; in this case, the system
has the fastest dynamic response speed. However, a different PMSM mathematical model
parameter Φi has almost the same effect on tracking error. Therefore, the system has the
best control effect when Φi = 0.29 is adopted and the approximate error is 0.01 about Φi.

Figure 8. The parameter sensitivity analysis of Φi.
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5. Conclusions

With the aim of improving the position control of PMSM-driven robot joints, the strat-
egy of optimized cooperative control based on an EPCH energy controller and an ABSM
signal controller is proposed. To enable smooth switching between the ABSM signal con-
troller and EPCH energy controller, a Gaussian function based on the position error of robot
joints is used as the optimized cooperative control coefficient. The simulation results show
that, compared with BC, SMC and FLC, the ABSM signal controller can offer excellent
dynamic performance for systems. Additionally, the rise times of Joint 1 and Joint 2 are
0.13 s and 0.12 s, respectively, when the ABSM signal controller is adopted. The optimized
cooperative control effect of the robot system is at its best when σ = 0.01 is selected. The
proposed optimized cooperative control strategy reduces rise time by about 79.4% com-
pared with the ABSM signal controller and reduces tracking error by about 84% compared
with the EPCH energy controller. Thus, the effectiveness of optimized cooperative control
based on an EPCH energy controller and an ABSM signal controller is verified.
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Appendix A

The parameters in Lagrange’s equation of robot body are as follows:

M(q) =
[

(m1 + m2)d2
1 + m2d2

2 + 2m2d1d2 cos(q2) m2d2
2 + m2d1d2 cos(q2)

m2d2
2 + m2d1d2 cos(q2) m2d2

2

]
(A1)

C(q, q̇) =
[
−2m2d1d2q̇2 sin(q2) −m2d1d2q̇2 sin(q2)

m2d1d2q̇1 sin(q2) 0

]
(A2)

G(q) =
[

(m1 + m2)gd1 sin(q1) + m2gd2 sin(q1 + q2)
m2gd2 sin(q1 + q2)

]
(A3)

R f =

[
0.03 0

0 0.03

]
(A4)
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J =
[

d1 cos(q1) + d2 cos(q1 + q2) d2 cos(q1 + q2)
]

(A5)

where m1 = m2 = 0.5, d1 = d2 = 1, and g = 9.8. q1 and q2 are the actual positions of Joint 1
and Joint 2. q̇1 and q̇2 are the actual velocities of Joint 1 and Joint 2.
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