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Abstract: For the design of computer experiments, column orthogonality and space-filling are two
desirable properties. In this paper, we develop methods for constructing a new class of column-
orthogonal designs (ODs) with two-dimensional stratifications on finer grids, including orthogonal
Latin hypercube designs (OLHDs) as special cases. In addition to being column-orthogonal, these
designs have good space-filling properties in two dimensions. The resulting designs achieve stratifica-
tions on s2 × s or s× s2 grids, and most column pairs satisfy stratifications on s2 × s2 grids. Moreover,
many column pairs can achieve stratifications on s4 × s2 and s2 × s4 grids. Furthermore, the obtained
space-filling ODs can have s6 levels, s4 levels, and mixed levels, as required for different needs.
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1. Introduction

Computer experiments have been widely used recently to explore complex systems in
many fields; space-filling and column orthogonality are desirable properties in the design
of computer experiments [1]. The space-filling property, which measures the uniformity
of the design points in the experimental region, is a fundamental criterion for evaluating
designs for computer experiments. Latin hypercube designs (LHDs), proposed by [2], are
widely used space-filling designs for computer experiments. An LHD with n runs and m
factors, denoted as LHD(n, m), is an n×m matrix with each column a permutation of n
equally spaced levels. Such a design achieves the maximum stratification in each dimension.
Based on the effect sparsity principle [3], for a high-dimensional design region, only a
handful of the factors are expected to be active. In [4], the author proposed orthogonal
array (OA)-based LHDs which improve the low-dimensional projection properties of
random LHDs. In [5,6], the authors discussed space-filling designs with good projection
properties in low dimensions. Recently, ref. [7] introduced strong orthogonal arrays, and [8]
proposed mappable nearly orthogonal arrays. Both of these two kinds of arrays have better
space-filling properties than ordinary orthogonal arrays.

Column orthogonality is a desirable property for LHDs; when a linear model is fitted,
this property ensures that the estimates of the main effects are uncorrelated. In addition,
orthogonality can be viewed as a stepping stone to space-filling designs when Gaussian
process models are considered [9]. There are many ways to construct orthogonal LHDs
(OLHDs); see, e.g., [10–15] and the references therein. Among them, the method of rotation
has attracted widespread attention. In the extant literature, few works have simultaneously
considered both the space-filling property and column orthogonality. In [16], the authors
constructed OLHDs which achieved stratifications on s2 × s or s × s2 grids, with most
column pairs achieving stratifications on s2× s2 grids. In [17], the authors provided column-
orthogonal designs (ODs) with two-dimensional stratifications. In [18], the authors studied
ODs with two-dimensional and three-dimensional stratifications, while [15] proposed ODs
with multi-dimensional stratifications.

Mathematics 2023, 11, 1549. https://doi.org/10.3390/math11061549 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061549
https://doi.org/10.3390/math11061549
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1954-6241
https://orcid.org/0000-0002-8288-0608
https://doi.org/10.3390/math11061549
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061549?type=check_update&version=1


Mathematics 2023, 11, 1549 2 of 27

The goal of the present paper is to construct ODs with stratifications on finer grids,
i.e., s2 × s2, s4 × s2, and s2 × s4. We first introduce a new class of OLHDs with sd+2k runs
by rotating s-level OAs, where d + 2k can be any positive even integer not smaller than
4 and d = 2c (c ≥ 2). We additionally introduce a new class of ODs with flexible run
sizes. All these designs guarantee desirable two-dimensional space-filling properties. Most
column pairs of the resulting designs can achieve stratifications on s2 × s2 grids. Moreover,
many column pairs can satisfy stratifications on s4 × s2 and s2 × s4 grids. Furthermore, the
resulting ODs can have s6 or s4 levels and mixed levels.

The rest of this paper is organized as follows: Section 2 introduces preliminaries used
in this paper; Section 3 proposes the general construction method for OLHDs and extends
it to accommodate more factors; Section 4 concentrates on the construction of ODs with s6

levels, s4 levels, and mixed levels; finally, concluding remarks are provided in Section 5.
All proofs are deferred to Appendix A.

2. Definitions and Notation

We use D(n, s1, . . . , sm) to denote a balanced design of n runs and m factors, with
each of the sj levels from {0, 1, . . . , sj − 1}. When all the instances of sj are equal to s, the
design is a symmetric balanced design D(n, sm). Further, if s = n, it is an LHD, denoted as
LHD(n, m).

A mixed-level orthogonal array (OA) with strength t and levels s1, . . . , sm, denoted
as OA(n, m, s1 × · · · × sm, t), satisfies the requirement that all possible level combinations
for any columns t occur with the same frequency. When all sj are equal to s, the array is
symmetric and denoted as OA(n, m, s, t). For an OA(n, m, s, t), it must have n = λst for
some integer λ, which is the index of the OA.

For an array with n runs and m factors, we say it achieves a stratification on an
s1 × · · · × sp grid for some p ≥ 2 if the corresponding p columns of it can be collapsed into
an OA (n, p, s1 × · · · × sp, p).

The correlation between two vectors a = (a1, . . . , an)T and b = (b1, . . . , bn)T is de-
fined as

ρ(a, b) = ∑n
i=1(ai − ā)(bi − b̄)√

∑n
i=1(ai − ā)2 ∑n

i=1(bi − b̄)2
,

where ā = ∑n
i=1 ai/n and b̄ = ∑n

i=1 bi/n. The average correlation of a design D = (d1, . . . , dm)
is defined as

ρave(D) =
∑j 6=k ρ(dj, dk)

m(m− 1)
.

Two vectors are said to be column-orthogonal if the correlation between them is 0. A
design D(n, sm) is said to be column-orthogonal, denoted as OD(n, sm), if any two of its
columns are column-orthogonal. Obviously, any OA(n, m, s, t) with t ≥ 2 is an OD(n, sm).
Similarly, we have OLHD (n, m).

To facilitate the study of orthogonality, we sometimes center the s2 levels of an OD
(n, (s2)m) into

Ω(s2) = {u− (s2 − 1)/2|u = 0, . . . , s2 − 1}. (1)

Let GF(sd) = {a0 + a1x + · · ·+ ad−1xd−1, a0, . . . , ad−1 ∈ GF(s)} be a Galois field of
order sd and let GF(s) = {0, . . . , s− 1} be a Galois field of order s. We denote an r × c
matrix with entries from GF(s2) = {a0 + a1x, a0, a1 ∈ GF(s)} as D(r, c, s2), which is called
a difference scheme if it satisfies the requirement that, for any i and j with 1 ≤ i 6= j ≤ c, the
vector difference of the ith and jth columns contains every element of GF(s2) equally often.

For two matrices A = (aij)m×n and B = (bij)u×v with entries from GF(s2), we define

A⊕ B =

 a11 + B · · · a1n + B
...

...
am1 + B · · · amn + B

,
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where + is the addition defined on GF(s2).
For any design A with entries from {0, 1, . . . , s2 − 1}, let Φ0(A) = A; we define

Φk(A) =
(

ϕk,1(A), . . . , ϕk,bs2/2c(A)
)

(2)

for k = 1, 2, . . ., and define

ϕk,j(A) =
(

d2j−1 ⊕Φk−1(A), d2j ⊕Φk−1(A)
)

,

where j = 1, . . . , bs2/2c, bhc denotes the largest integer less than or equal to h and dl denotes
the lth column in the difference scheme D(s2, s2, s2) = (d1, . . . , ds2) for l = 1, . . . , s2.

Let

R1,0 =

(
s2 −1
1 s2

)
, Ru,0 =

(
s2u

Ru−1,0 −Ru−1,0
Ru−1,0 s2u

Ru−1,0

)
(u ≥ 2),

Q1 =

(
1 0
0 −1

)
, and Qu =

(
Qu−1 0

0 −Qu−1

)
(u ≥ 2).

Then, we define

Ru,1 =

(
s2Ru,0 −Qu

Qu s2Ru,0

)
, Ru,k =

(
s2Ru,k−1 −Qu+k−1
Qu+k−1 s2Ru,k−1

)
(u ≥ 2, k ≥ 2). (3)

For a prime power s2, let C = (c1, . . . , cm) be an OA(n, m, s2, 2) with entries from
GF(s2) and let D be a difference scheme D(s2, s2, s2) = (d1, . . . , ds2). We now create

Ei = D⊕ ci = (d1 ⊕ ci, . . . , ds2 ⊕ ci), (4)

for i = 1, . . . , m and define
E = (E1, . . . , Em). (5)

For a prime s and integer d with d = 2c and c ≥ 2, we denote the d columns of an
sd-run full factorial design as 1, . . . , d. Any generated column including each column of
1, . . . , d can be denoted as 1a0 . . . dad−1 for some a0, . . . , ad−1 ∈ GF(s), and corresponds to a
nonzero element a0 + a1x + · · ·+ ad−1xd−1 in GF(sd). Here, let p = b(sd − 1)/(d(s− 1))c.

As discussed in [11], the corresponding columns of the first pd non-zero elements of
GF(sd), x0, x1, . . . , xpd−1 modulo f (x) form a regular design D, where f (x) is a primitive
polynomial of order d. Any d consecutive columns of D form a full factorial design,
denoted as B1, B2, . . . , Bp and Bi = (x(i−1)d, x(i−1)d+1, . . . , xid−1) mod f (x), i = 1, . . . , p.
Let Bi = (bi,1, . . . , bi,d), defining fi,j = sbi,2j−1 + bi,2j for i = 1, . . . , p, j = 1, . . . , d/2. Then,
we have

Fi = ( fi,1, . . . , fi,d/2) (6)

and
F = (F1, . . . , Fp). (7)

Without particular explanation, in this paper, s is a prime, k ≥ 0, d is an integer with
d = 2c, c ≥ 2, and p = b(sd − 1)/(d(s − 1))c. We provide an illustrative example in
the following.

Example 1. For s = 3 and d = 4, we denote the 34 full factorial design as (1, 2, 3, 4). Here,
GF(34) = {a0 + a1x + a2x2 + a3x3, a0, a1, a2, a3 ∈ GF(3)}, with the primitive polynomial
f (x) = x4 + x + 2. Then, x0, x1, x2, x3 modulo f (x) are 1, x, x2, x3, which correspond to columns
1, 2, 3, 4. Similarly, we have the elements of x4, x5, . . . , x39 modulo f (x). For example, 122 is
obtained by x4 modulo f (x). The obtained full factorial designs B1, . . . , B10 are shown in Table 1,
where bij is the jth column in Bi for i = 1, . . . , 10 and j = 1, . . . , 4.
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Table 1. The obtained 34 full factorial designs.

bi1 bi2 bi3 bi4

B1 1(x0) 2(x1) 3(x2) 4(x3)
B2 122(x4) 232(x5) 342(x6) 12242(x7)
B3 123(x8) 234(x9) 12234(x10) 12324(x11)
B4 142(x12) 12(x13) 23(x14) 34(x15)
B5 1224(x16) 132(x17) 242(x18) 12232(x19)
B6 23242(x20) 122324(x21) 13242(x22) 124(x23)
B7 13(x24) 24(x25) 1223(x26) 2324(x27)
B8 122342(x28) 12342(x29) 13242(x30) 12324(x31)
B9 1342(x32) 1242(x33) 1232(x34) 2342(x35)
B10 1223242(x36) 1234(x37) 134(x38) 14(x39)

3. Construction of Orthogonal LHDs

This section first introduces a rotation method in Algorithm 1 to construct OLHDs
with attractive stratification properties, then generalizes the method to enlarge the columns
of these LHDs.

To make it easier for readers to understand the algorithm, we provide the flowchart
in Figure 1 to explain the algorithm.

To measure the stratification properties of a design with m columns, we define the
following two proportions:

πα =
rα

(m
2 )

, πβ =
rβ

(m
2 )

,

where rα is the number of column pairs that achieve stratifications on s2 × s2 grids and rβ

is the number of column pairs that achieve stratifications on s4 × s2 and s2 × s4 grids. The
properties of the designs in Algorithm 1 are summarized in Theorem 1.

Algorithm 1 Construction of OLHDs

Input: F = (F1, . . . , Fp), D(s2, s2, s2) = (d1, . . . , ds2), and integer k.

1: Let F = (F1, . . . , Fp) as defined in (6) and replace the levels of {0, 1, . . . , s2 − 1} in each

Fi with {a0 + a1x, a0, a1 ∈ GF(s)}.

2: Obtain a difference scheme D(s2, s2, s2) = (d1, . . . , ds2). For a given k, let F′k =

(F′k,1, . . . , F′k,p) with F′k,i = Φk(Fi) for i = 1, . . . , p, where Φk(Fi) is defined in (2).

3: Replace the levels of F′k with entries from Ω(s2) as in (1) and denote the resulting design

as F∗k .

4: Obtain Z = F∗k R, where R = Ipbs2/2c ⊗ Rĉ,k, ĉ = log2 d− 1, and Rĉ,k is defined in (3).

Output: Design Z.
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Input: F, D(s2, s2, s2), and integer k

Replace the levels of {0, 1, . . . , s2 − 1} in each Fi with {a0 + a1x, a0, a1 ∈ GF(s)}

Let F′k = (F′k,1, . . . , F′k,p) with F′k,i = Φk(Fi) for i = 1, . . . , p

Obtain design F∗k

Output: Z = F∗k R

Φk(Fi) is defined in (2)

Replace the levels of F′k with entries from Ω(s2)

Rĉ,k is defined in (3)

Figure 1. Flowchart of Algorithm 1.

Theorem 1. Design Z in Algorithm 1 is an OLHD(sd+2k, m)where m = pdγ/2 and γ = bs2/2ck2k,
and has the following properties:

(1) Any two columns achieve a stratification on an s2 × s or s× s2 grid;

(2) The proportion of column pairs achieving stratifications on s2 × s2 grids satisfies πα ≥ 1−
2(s− 1)/(m− 1);

(3) The proportion of column pairs achieving stratifications on s2 × s4 and s4 × s2 grids satisfies
πβ ≥ 1− (m/γ + 2γs− γ− 2s)/(m− 1).

For this, we use the following illustrative example.

Example 2. For s = 2 and d = 4, we denote the four independent columns as 1, 2, 3, 4, while
the generated columns of these four columns are denoted as 12, 13, 14, 23, 24, 34, 123, 124, 134,
234, 1234. We have GF(24) = {a0 + a1x + a2x2 + a3x3, ai ∈ GF(2)} with GF(2) = {0, 1}
and the primitive polynomial f (x) = x4 + x + 1. It is easy to obtain three full factorial designs
B1 = (1, 2, 3, 4), B2 = (12, 23, 34, 124), and B3 = (13, 24, 123, 234). Then, we have F1 = (2×
1 + 2, 2× 3 + 4), F2 = (2× 12 + 23, 2× 34 + 124), and F3 = (2× 13 + 24, 2× 123 + 234).
Thus, F = (F1, F2, F3), which is displayed in Table 2.
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Table 2. F in Example 2.

F1 F2 F3

2× 1 + 2 2× 3 + 4 2× 12 + 23 2× 34 + 124 2× 13 + 24 2× 123+ 234

0 0 0 0 0 0
0 1 0 x + 1 1 1
0 x 1 x x x + 1
0 x + 1 1 1 x + 1 x
1 0 x + 1 1 1 x + 1
1 1 x + 1 x 0 x
1 x x x + 1 x + 1 1
1 x + 1 x 0 x 0
x 0 x 1 x 1
x 1 x x x + 1 x
x x x + 1 x + 1 0 x + 1
x x + 1 x + 1 0 1 0

x + 1 0 1 0 x + 1 1
x + 1 1 1 x + 1 x 0
x + 1 x 0 x 1 x
x + 1 x + 1 0 1 0 x + 1

In this way, we obtain a difference scheme D(4, 4, 4) = (d1, d2, d3, d4), denoted as

D =


0 0 0 0
0 1 x x + 1
0 x x + 1 1
0 x + 1 1 x

,

with F′1 = (F′1,1, F′1,2, F′1,3), where F′1,i = Φ1(Fi) = (d0 ⊕ Fi, d1 ⊕ Fi, d2 ⊕ Fi, d3 ⊕ Fi) for
i = 1, 2, 3. We can obtain F∗1 by replacing the levels of F′1 with entries from {−1.5,−0.5, 0.5, 1.5}.
Then, we rotate F∗1 by R = I6 ⊗ R1,1 to generate an OLHD(64, 24), where

R1,1 =


16 −4 −1 0
4 16 0 1
1 0 16 −4
0 −1 4 16

.

The resulting OLHD(64, 24) is displayed in Table A1 of Appendix B. From Table 3, it is
apparent that 260 out of all 276 (i.e., 94.20%) column pairs achieve stratifications on 4× 4 grids,
more than 60% of column pairs achieve stratifications on 4× 16 or 16× 4 grids, and 52.17% of
column pairs achieve stratifications on 2× 32 or 32× 2 grids.

Table 3. The stratification properties of the resulting design in Example 2.

4 × 16 16 × 4 2 × 4 4 × 2 4 × 4

count 168 180 276 260 260

proportion (%) 60.87 65.22 100 94.20 94.20

To illustrate the projection property of the resulting OLHD(64, 24), we display the pairwise
scatter plots of the (1–5)th columns of the design in Figure 2.
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Figure 2. The pairwise scatter plots of the (1–5)th columns of OLHD(64, 24) in Example 2.

From Figure 2, it can be seen that all the column pairs of the first five columns achieve
stratifications on 4× 4 grids, and most of the same column pairs achieve stratifications on 4× 16
and 16× 4 grids. Other column pairs perform similarly.

Example OLHDs constructed by Algorithm 1 are listed in Table 4. Without loss of
generality, we only show the lower bounds of πα and πβ in Table 4, which are denoted as
πα,LB and πβ,LB, respectively.

Table 4. Example OLHDs constructed by Algorithm 1.

s d p k γ OLHD(sd+2k, pdγ/2) πα,LB πβ,LB

2 4 3 1 4 OLHD(26, 24) 91.30 39.13
2 4 3 2 16 OLHD(28, 96) 97.89 47.37
2 8 31 1 4 OLHD(210, 496) 99.60 73.39
3 4 10 1 8 OLHD(36, 160) 97.48 66.04
3 4 10 2 64 OLHD(38, 1280) 99.69 73.89
5 4 39 1 24 OLHD(56, 1872) 99.57 84.82
7 4 100 1 48 OLHD(76, 9600) 99.87 91.56

As shown in Table 4, the lower bounds of πα are very close to 1, while that of πβ is
close to 1 when the run size is large, which means that nearly all the column pairs achieve



Mathematics 2023, 11, 1549 8 of 27

stratifications on s2 × s2 grids and that most column pairs achieve stratifications on s2 × s4

and s4 × s2 grids.
A comparison between the OLHDs obtained using Algorithm 1 and the OLHDs

in [14–16] is presented in Table 5. Compared with this class of designs, the resulting
OLHDs satisfy two-dimensional space-filling properties on finer grids, i.e., s2 × s2, s4 × s2,
and s2 × s4. The OLHDs in [14] satisfy stratifications on s2 × s and s× s2 grids, while the
designs in [16] satisfy stratifications on s2 × s2 grids. Thus, the OLHDs based on Algorithm
1 satisfy better two-dimensional space-filling properties. Moreover, these OLHDs are able
to accommodate more factors than OLHDs in [15], and can fill the gap between the run
sizes of the available OLHDs in [16]. For example, we can construct OLHDs of 64 and 1024
runs, while such designs are not available in [16].

Table 5. Comparison with related designs.

OLHD 1 OLHD 2 OLHD 3 OLHD 4

s N m m m m

2 16 6 6 12 6
2 64 24 − 48 20
2 256 96 124 192 62
2 1024 496 − 992 204
3 81 20 20 40 20
3 729 160 − 160 120
3 6561 1280 1640 3280 800
5 625 78 78 156 78
5 15,625 1872 − 2496 1302

1 OLHDs obtained by Algorithm 1; 2 OLHDs in [16]; 3 OLHDs in [14]; 4 OLHDs in [15]. The (–) symbol indicates
that the corresponding value is not available.

Furthermore, we can construct OLHDs with more columns through Algorithm 2. The
flowchart of Algorithm 2 is shown in Appendix B.

Algorithm 2 Enlarging the columns of OLHDs
Input: F = (F1, . . . , Fp), O = (oij), and integer k.

1: Let O = (oij) be an OLHD(s, t). For l = 1, . . . , t, obtain matrix B(l) = (B(l)
1 , . . . , B(l)

p ) by

replacing the s levels of B with o1l , . . . , osl , respectively, where B = (B1, . . . , Bp) is the

same as in Section 2.

2: For l = 1, . . . , t, obtain F(l) from B(l) per (6) in Section 2 and replace the levels of each

F(l) with {a0 + a1x, a0, a1 ∈ GF(s)}.

3: For a given integer k and l = 1, . . . , t, let F′(l)k = (F′(l)k,1 , . . . , F′(l)k,p ) with F′(l)k,i = Φk(F′(l)i )

for i = 1, . . . , p, where Φk(F(l)
i ) is defined in (2).

4: For l = 1, . . . , t, replace the levels of F′(l)k,i with entries from Ω{s2} in (1) and denote the

resulting design as F(l)∗
k,i . Construct M = (M1, . . . , Mt) = (F(1)∗

k R, . . . , F(t)∗
k R), where

R = Ipbs2/2c ⊗ Rĉ,k, ĉ = log2 d− 1, and Rĉ,k is the same as in Algorithm 1.

Output: Design M.

Corollary 1. Design M obtained by Algorithm 2 is an OLHD(sd+2k, mt) where m = pdγ/2 and
γ = bs2/2ck2k. Each sub-design Mi achieves the same stratifications with Z in Algorithm olhds1
for i = 1, . . . , t. At least 2k pdt(2k pdt− 2t)/8 column pairs of M achieve stratifications on s× s
grids in all the two dimensions.
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In Step 1, we can choose OLHDs obtained by [15,19] when s = 5, 7, 11, and 17,
respectively. According to Algorithm 2, we can obtain OLHDs with t sub-designs, with
each satisfying the same stratification properties in Theorem 1. Moreover, when s = 5, per
Algorithm 2 we can obtain an OLHD(56, 3744) that can accommodate more columns than
OLHD(56, 2496) in [14] and has more attractive space-filling properties.

4. Construction of Orthogonal Designs

This section introduces three rotation methods for constructing ODs. The first two
methods can construct ODs with s6 and s4 levels, respectively, while the third can obtain
mixed-level ODs. We first present the construction of ODs with s6 levels and investigate
their properties. The construction method is provided in Algorithm 3, and the flowchart is
shown in Appendix B.

Algorithm 3 Construction of s6-level ODs

Input: F = (F1, . . . , Fp) and D(s2, s2, s2) = (d1, . . . , ds2).

1: Let F = (F1, . . . , Fp) = (ξ1, . . . , ξpq) with q = bd/2c, and let D be a difference scheme

D(s2, s2, s2) = (d1, . . . , ds2) with entries from GF(s2) as defined in Section 2. Replace

the levels of {0, 1, . . . , s2 − 1} in each Fi with {a0 + a1x, a0, a1 ∈ GF(s)} and define

Ei = D⊕ ξi = (d1 ⊕ ξi, . . . , ds2 ⊕ ξi), i = 1, . . . , pq, q = bd/2c.

2: Divide each Ei into g or g + 1 groups for i = 1, . . . , pq as Ei = (Ei,1, . . . , Ei,g) if s2 = 2g

or Ei = (Ei,1, . . . , Ei,g, li) if s2 = 2g + 1, where each Ei,j has two columns. Then, order

Ei,j’s as

E1,1, E2,1, . . . , Epq,1, E1,2, E2,2, . . . , Epq,2, . . . , E1,g, E2,g, . . . , Epq,g. (8)

3: Replace the levels of each Ei,j with entries from Ω(s2) and denote the resulting design

as E∗i,j. Take two successive instances of E∗i,j at a time in the order given in (8), and

obtain µ = pqg/2 sets of four columns, denoted as E(1), . . . , E(µ). Combine E(i) for

i = 1, . . . , µ together:

E∗ = (E(1), . . . , E(µ)).

4: Create

X∗ = (E(1)R1,1, . . . , E(µ)R1,1), (9)

where

R1,1 =


s4 −s2 −1 0

s2 s4 0 1

1 0 s4 −s2

0 −1 s2 s4


is a rotation matrix up to a constant.

Output: Design X∗.
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Based on the form of the rotation matrix, it is easy to see that any column x in X∗

obtained in (9) has the following form:

x = s4e± s2e′ ± e′′, (10)

where e and e′ are the two columns in some E∗i,j with E∗i,j ∈ E(l) for some l; here, e′′ is a
column which is not in E∗i,j. We call e the leading column of x to facilitate later study. Now,
we can consider the mapping

δ1(z) = b
z + (s6 − 1)/2

s4 c − s2 − 1
2

, for z ∈ Ω(s6), (11)

with δ1(·) collapsing the s6 levels in Ω(s6) into s2 levels in Ω(s2). For example, when s = 2,
the 64 levels are collapsed into 4 levels by the mapping, as follows:

−31.5, −30.5, . . . , −16.5 → −1.5,
−15.5, −14, 5, . . . , −0.5 → −0.5,

0.5, 1, 5, . . . , 15.5 → 0.5,
16.5, 17.5 . . . , 31.5 → 1.5.

Then, we consider the mapping

δ2(z) = b
z + (s6 − 1)/2

s2 c − s4 − 1
2

, for z ∈ Ω(s6), (12)

with δ2(·) collapsing the s6 levels in Ω(s6) into s4 levels in Ω(s4). For example, when s = 2,
the 64 levels are collapsed into 16 levels by the mapping, as follows:

−31.5, −30.5, −29.5, −28.5 → −7.5,
−27.5, −26, 5, −25.5, −24.5 → −6.5,

...
...

...
...

...
...

24, 5, 25, 5, 26.5, 27.5 → 6.5,
28.5, 28.5 30.5, 31.5 → 7.5.

The resulting design X∗ is orthogonal and achieves stratifications on s2 × s or s× s2

grids; most column pairs can achieve stratifications on s2 × s2 grids. Moreover, column
pairs can achieve stratifications on s2 × s4 and s4 × s2 grids as well. We can summarize the
properties of X∗ in the following theorem.

Theorem 2. Design X∗ in (9) is an OD(sd+2, (s6)4µ), where µ = bpqg/2c and g = bs2/2c; X∗

can be partitioned into pq disjoint groups of 2g columns, each with the following properties:

(1) Any two distinct columns achieve a stratification on an s2 × s or s× s2 grid;

(2) Most column pairs achieve stratifications on s2 × s2 grids, and the proportion πα is not less
than 1− 2(s− 1)/(4µ− 1);

(3) The proportion of column pairs achieving stratifications on s2 × s4 and s4 × s2 grids satisfies
πβ ≥ 1− (µ/g + 4gs− 2g− 2s)/(4µ− 1).

From Theorem 2, it can be understood that the obtained ODs have appealing strati-
fication properties. For example, for s = 3 and d = 4 at least 97.48% of all column pairs
of X∗ can achieve stratifications on s2 × s2 grids. Furthermore, many column pairs of X∗

achieve stratifications on finer s2 × s4 and s4 × s2 grids (πβ ≥ 64.78). The lower bound of
this proportion is relatively loose. Below, we provide an illustrative example.



Mathematics 2023, 11, 1549 11 of 27

Example 3. Consider the same conditions in Example 2 with p = 3, q = 2, and g = 2; we can
obtain F = (F1, F2, F3) = (ξ1, . . . , ξ6) and the difference scheme D(4, 4, 4). From Step 1, we have
E = (E1, . . . , E6), where

Ei = D⊕ ξi = (d0 ⊕ ξi, . . . , d3 ⊕ ξi), i = 1, . . . , 6.

Then, we divide Ei into two groups, as follows: Ei = (Ei,1, Ei,2) for i = 1, . . . , 6, where each
Ei,j has two columns, and order the Ei,j as follows:

E1,1, E2,1, . . . , E6,1, E1,2, E2,2, . . . , E6,2. (13)

We replace the levels of each Ei,j with entries from Ω(s2) and denote the resulting design as
E∗i,j. Taking two successive instances of E∗i,j at a time in the order given in (13), we obtain µ = 6

sets of four columns, denoted as E(1), . . . , E(6). Then, we can obtain an OLHD(64, 24) through

X∗ = (E(1)R1,1, . . . , E(6)R1,1),

which is displayed in Table A2 of Appendix B. The stratification properties of X∗ are summarized in
Table 6. It can be seen that this design has the same number of column pairs achieving stratification
on a 4× 4 grid as the one in Example 2, and has more column pairs achieving stratifications on
4× 16 or 16× 4 grids than the one in Example 2 with πβ = 63.77%. Furthermore, by calculation,
we can say that the obtained OLHD(64, 24) achieves stratifications on a 2× 32 grid in 140 out of
all 276 (i.e., 50.72%) and on a 32× 2 grid in100 out of all 276 (i.e., 36.23%).

Table 6. The stratification properties of the resulting OLHD(64, 24) in Example 3.

4 × 16 16 × 4 2 × 4 4 × 2 4 × 4

count 176 176 272 264 260

proportion (%) 63.77 63.77 98.55 95.65 94.20

The OAs and difference schemes used in the construction are available in [20] and the
library of OAs (http://neilsloane.com/oadir/index.html, accessed on 16 March 2023). It is
easy to show that X∗ is an OLHD(sd+2, 4µ) when d = 4. Table 7 summarizes example ODs
constructed by Algorithm 3. Their space-filling properties are characterized by πα and πβ.
Similar to Section 3, we only list the lower bounds of πα and πβ in Table 7, denoted as πα,LB
and πβ,LB, respectively. As shown in Table 7, the lower bounds of πα are very close to 1
and those of πβ are quite large in most cases, which means that nearly all the column pairs
of these ODs achieve stratifications on s2 × s2 grids, and that most column pairs achieve
stratifications on finer s2 × s4 and s4 × s2 grids as well.

Table 7. Example ODs constructed by Algorithm 3.

s d p q g OA(sd, sd−1
s−1 , s, 2) OD(sd+2, (s6)4µ) πα,LB πβ,LB

2 4 3 2 2 OA(24, 15, 2, 2) OD(26, (64)24) # 91.30 39.13
2 5 6 2 2 OA(25, 31, 2, 2) OD(27, (64)48) 95.74 57.45
2 6 10 3 2 OA(26, 63, 2, 2) OD(28, (64)120) 98.32 68.07
2 7 18 3 2 OA(27, 127, 2, 2) OD(29, (64)216) 99.07 71.16
2 8 31 4 2 OA(28, 255, 2, 2) OD(210, (64)496) 99.60 73.33
3 4 10 2 4 OA(34, 40, 3, 2) OD(36, (729)160) # 97.48 64.78
3 5 24 2 4 OA(35, 121, 3, 2) OD(37, (729)384) 98.96 78.07
3 6 60 3 4 OA(36, 364, 3, 2) OD(38, (729)1440) 99.72 84.99
3 7 156 3 4 OA(37, 1093, 3, 2) OD(39, (729)3744) 99.89 86.53
5 4 39 2 12 OA(54, 156, 5, 2) OD(56, (15625)1872) # 99.57 84.82

The # symbol indicates that the design is also an OLHD.

http://neilsloane.com/oadir/index.html
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Next, we introduce the construction of ODs with s4 levels with the same space-filling
properties as the designs obtained in Algorithm 3. The construction method is provided in
Algorithm 4.

Algorithm 4 Construction of s4-level ODs

Input: F = (F1, . . . , Fp) and D(s2, s2, s2) = (d1, . . . , ds2).

1: Let matrices B, F, D, Ei,j, E∗i,j be the same as in Algorithm 3.

2: For i = 1, . . . , pd/2, define Gi = (E∗i,1, . . . , E∗i,g) with g = bs2/2c.

3: Create

Y = (G1, . . . , Gpd/2)V = (Y1, . . . , Ypd/2), (14)

where

V =


R1,0 02×2 · · · 02×2

02×2 R1,0 · · · 02×2
...

...
. . .

...

02×2 02×2 · · · R1,0

 with R1,0 =

 s2 −1

1 s2

,

where R1,0 is repeated pdg/2 times and all off-diagonal sub-matrices of V are 2× 2 zero

matrices.

Output: Design Y.

For the resulting design, it is easy to obtain the following theorem.

Theorem 3. Design Y in (14) is an OD(sd+2, (s4)m) with m = 2pdg, g = bs2/2c that can be
partitioned into pd disjoint groups of 2g columns with the same stratification properties as X∗ in
Theorem 2.

Compared with the ODs constructed in Algorithm 3, design Y has lower levels and
can accommodate more columns than design X∗ in Algorithm 3 when d is an odd number.
Now, we turn to an illustrative example.

Example 4. Considering the same conditions in Example 3, we first obtain the Ei,js. For i = 1, . . . , 6,

we define Gi = (E∗i,1, E∗i,2) and R1,0 =

(
s2 −1
1 s2

)
. We can construct an OD(64, 1624) by

Y = (Y1, . . . , Y6) = (G1, . . . , G6)V,

which is displayed in Table A3 of Appendix B. It can be seen that the design points are well-scattered
in the two-dimensional projections of the resulting OD(64, 1624), and it has the same space-filling
properties as the OD constructed in Example 3.

Table 8 lists example ODs obtained by Algorithm 4. Compared with the ODs con-
structed using Algorithm 3, the obtained designs have lower levels and more columns
when d is odd. The resulting designs have the same stratification properties as the ODs
constructed by Algorithm 3. These ODs have more flexible run sizes than the OLHDs
obtained by Algorithm 1.
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Table 8. Example ODs constructed by Algorithm 4.

s d p g OA(sd, sd−1
s−1 , s, 2) OD(sd+2, (s4)m) πα,LB πβ,LB

2 4 3 2 OA(24, 15, 2, 2) OD(26, (16)24) 91.30 39.13
2 5 6 2 OA(25, 31, 2, 2) OD(27, (16)60) 95.74 61.02
2 6 10 2 OA(26, 63, 2, 2) OD(28, (16)120) 98.32 68.07
2 7 18 2 OA(27, 127, 2, 2) OD(29, (16)252) 99.07 71.71
2 8 31 2 OA(28, 255, 2, 2) OD(210, (16)496) 99.60 73.33
3 4 10 4 OA(34, 40, 3, 2) OD(36, (81)160) 97.48 64.78
3 5 24 4 OA(35, 121, 3, 2) OD(37, (81)480) 98.96 79.96
3 6 60 4 OA(36, 364, 3, 2) OD(38, (81)1440) 99.72 84.99
3 7 156 4 OA(37, 1093, 3, 2) OD(39, (81)4368) 99.89 86.67
5 3 10 12 OA(53, 31, 5, 2) OD(55, (625)360) 96.65 38.44
5 4 39 12 OA(54, 156, 5, 2) OD(56, (625)1872) 99.57 84.82

Now, we consider the construction of mixed-level ODs, which are very useful when
the factors cannot have the same number of levels. The construction method is provided in
Algorithm 5.

Algorithm 5 Construction of mixed-level ODs

Input: F = (F1, . . . , Fp) and D(s2, s2, s2) = (d1, . . . , ds2).

1: Let matrices B, F, D, Ei,j, and E∗i,j be the same as in Algorithm 3. Then, order the Ei,js as

in (8). First, take two successive Ei,j instances at each time in the above list and take a

total of µ1 times (where µ1 ≤ bpqg/2c) to µ1 sets of four columns each. Center the s2

levels of each column into Ω(s2) in (1) and denote these sets as E(1), . . . , E(µ1).

2: Take one Ei,j at a time in the remaining list of (8), thus µ2 = bpdg/2c −2µ1 sets of two

columns each can be obtained. Similarly center the s2 levels of each column into Ω(s2)

and denote these sets as J(1), . . . , J(µ2).

3: Create

H = (E(1)R1,1, . . . , E(µ1)R1,1, J(1)R1,0, . . . , J(µ2)R1,0), (15)

where R1,1 and R1,0 are the rotation matrices provided in (3).

Output: Design H.

For the resulting design H, the following theorem holds.

Theorem 4. Design H in (15) is an OD(sd+2, (s6)4µ1(s4)2µ2) with µ1 ≤ bpqk/2c that can be
partitioned into pd disjoint groups of 2g columns with the same stratification properties as design
X∗ in Algorithm 3.

Table 9 summarizes example ODs constructed by Algorithms 3–5 for practical needs.
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Table 9. Example ODs constructed by Algorithms 3–5.

OA(sd, sd−1
s−1 , s, 2) OD(sd+2, (s6)4µ1) OD(sd+2, (s4)2µ2) OD(sd+2, (s6)4µ1(s4)2µ2)

OA(24, 15, 2, 2) OD(26, (64)24) OD(26, (16)24)
OD(26, 644µ1 162µ2 ), 4µ1 +
2µ2 = 24

OA(25, 31, 2, 2) OD(27, (64)48) OD(27, (16)60)
OD(27, 644µ1 162µ2 ), 4µ1 +
2µ2 = 60

OA(26, 63, 2, 2) OD(28, (64)120) OD(28, (16)120)
OD(28, 644µ1 162µ2 ), 4µ1 +
2µ2 = 120

OA(27, 127, 2, 2) OD(29, (64)216) OD(29, (16)252)
OD(29, 644µ1 162µ2 ), 4µ1 +
2µ2 = 252

OA(28, 255, 2, 2) OD(210, (64)496) OD(210, (16)496)
OD(210, 644µ1 162µ2 ),
4µ1 + 2µ2 = 496

OA(34, 40, 3, 2) OD(36, (729)160) OD(36, (81)160)
OD(36, 7294µ1 812µ2 ),
4µ1 + 2µ2 = 160

OA(35, 121, 3, 2) OD(37, (729)384) OD(37, (81)480)
OD(37, 7294µ1 812µ2 ),
4µ1 + 2µ2 = 480

OA(36, 364, 3, 2) OD(38, (729)1440) OD(38, (81)1440)
OD(38, 7294µ1 812µ2 ),
4µ1 + 2µ2 = 1440

OA(37, 1093, 3, 2) OD(39, (729)3744) OD(39, (81)4368)
OD(39, 7294µ1 812µ2 ),
4µ1 + 2µ2 = 4368

5. Conclusions, Limitations, and Future Research

In this paper, we have proposed a new rotation method to generate OLHDs that can
achieve stratifications on s2 × s or s× s2 grids; moreover, most column pairs can achieve
stratifications on s2× s2 grids, and a large portion of column pairs can achieve stratifications
on s4 × s2 and s2 × s4 grids. Furthermore, we introduce a new class of space-filling ODs
with s6 levels, s4 levels, and mixed levels, which can guarantee desirable stratifications in
two dimensions.

It is worth noting that the resulting OLHDs and ODs enjoy stratifications on finer
grids that cannot be satisfied by the existing space-filling designs. To the best of our
knowledge, this is a new development in the literature. The theoretical constructions are
well established. All these properties make the resulting designs competitive for computer
experiments. The proposed designs are constructed systematically, without relying on any
optimization algorithm, and the methods are efficient from a time perspective.

Next, we provide a simple simulation example to illustrate the performance of the
resulting OLHDs from the model perspective. First, we use the following three methods to
screen the active effects: the least absolute shrinkage and selection operator (LASSO) in
the ‘glmnet’ R package, the smoothly clipped absolute deviation (SCAD) in the ‘ncvreg’ R
package, and the stepwise linear model regression following the AIC criterion; the first two
methods were recently used in [21], and further details can be found there. Suppose the
true model is

y =µ + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + β6x6 + β1,3x1x3 + β2,5x2x5

+ β4,6x4x6 + ε,
(16)

where µ = 10, β = (β1, . . . , β6, β1,3, β2,5, β4,6)
T = (7, 3,−5,−5, 3, 7, 4,−3,−3)T , and the

random error ε ∼ N(0, 1). We use the first twelve columns of the designed OLHD(64, 24)
in Example 2 to generate the responses. All screening results are provided in Table 10,
where the truly active factors are marked with the superscript “a” and identified “active
factors” are indicated with “•”.
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Table 10. Screening result.

Method µa xa
1 xa

2 xa
3 xa

4 xa
5 xa

6 x8 x1x2 x1xa
3 x2xa

5 x3x4 x4xa
6

LASSO • • • • • • • • • • •
SCAD • • • • • • • • • • •
stepwise • • • • • • • • • • •

From Table 10, it can be seen that each method identifies eleven active effects, and
the three methods all obtain the same ten truly active effects. Next, we entered all of these
thirteen active effects into the model in order to test the significance of the coefficients.
Table 11 shows the estimates and significance test results.

Table 11. Estimates and significance test results.

True Value Estimate p-Value Significance

µ 10 10.204 0.000 * Y
β1 7 6.386 0.000 * Y
β2 3 2.988 0.000 * Y
β3 −5 −5.036 0.000 * Y
β4 −5 −5.342 0.000 * Y
β5 3 2.889 0.000 * Y
β6 7 7.205 0.000 * Y
β8 0 0.113 0.784 N
β1,2 0 −0.823 0.683 N
β1,3 4 3.649 0.009 * Y
β2,5 −3 −5.494 0.001 * Y
β3,4 0 0.532 0.796 N
β4,6 −3 −2.744 0.047 * Y

The ∗ symbol indicates that the coefficient is significant.

From Table 11, the true active effects can be correctly identified as {µ, x1, x2, x3, x4, x5, x6,
x1x3, x2x5, x4x6}. Then, we fitted the model in (17), with the R2 of the model being 0.9378.

ŷ =9.826 + 6.887x1 + 3.360x2 − 4.747x3 − 3.725x4 + 3.573x5 + 7.984x6 + 5.051x1x3

− 4.787x2x5 − 3.970x4x6.
(17)

This result is very close to the real model.
The computation was implemented on a personal computer with an Intel i5-4210H

CPU and 2.90 GHz, which needed 0.384 seconds to generate the design, screen the active
effects, and fit the model.

Due to the utilization of the rotation method, the run sizes of the obtained designs are
restricted to prime powers, and certain two-dimensional stratification properties are not
satisfied by all the column pairs, only a large proportion of them. Due to time restrictions,
we do not provide an empirical example here. These issues are, however, deserving of
future work. In this paper, we consider the space-filling properties measured by the two-
dimensional stratifications; however, other criteria, for example, the maximin distance
criterion, can be suitable choices as well. Constructions of column-orthogonal designs
using the maximin distance and flexible run sizes are interesting topics for future research.

Author Contributions: S.-N.L.: conceptualization, methodology, formal analysis, writing—original
draft preparation; J.-Y.Y.: methodology, formal analysis, writing—review and editing, supervision;
M.-Q.L.: methodology, supervision, writing—review and editing, funding acquisition. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
Nos. 12131001 and 12226343) and the National Ten Thousand Talents Program of China.

Data Availability Statement: Not applicable.



Mathematics 2023, 11, 1549 16 of 27

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

First, we introduce a lemma from [14] that is crucial for the construction in this paper.

Lemma A1 ([14]). Let A be an (s2)g-full factorial and define a difference scheme D(s2, s2, s2) =
(d1, . . . , ds2). For j = 1, . . . , s2, let Bj = dj ⊕ A. Then, for any column b in Bj, (Bi, b) must be an
(s2)g+1-full factorial for any i 6= j.

Proof of Theorem 1. We first show that Z is an LHD. Because each Bi is an sd full factorial
design with elements from {0, 1, . . . , s − 1}, it is the case that fi,j = sbi,2j−1 + bi,2j has
levels {0, 1, . . . , s2 − 1} and Fi = ( fi,1, . . . , fi,d/2) is an (s2)d/2 full factorial design for any
i = 1, . . . , p. Due to Lemma A1, (ϕ1,j1(Fi), b) is a d/2 + 1 full factorial design where b is
one column in ϕ1,j′1

(Fi), j1 6= j′1 = 1, . . . , bs2/2c, and i = 1, . . . , p. For each ϕ1,j1(Fi), we can
create (ϕ2,j2(Fi), ϕ2,j′2

(Fi)) with j2 6= j′2 = 1, . . . , bs2/2c and i = 1, . . . , p such that ϕ2,j2(Fi) by
applying Lemma A1 twice; this results in certain sub-arrays of d/2 + 2 columns being full
factorials. In general, for any integer k, (ϕk,jk (Fi), ϕk,j′k

(Fi)) with jk 6= j′k = 1, . . . , bs2/2c and
i = 1, . . . , p has the property that certain sub-arrays of d/2 + k columns are full factorials.
Thus, all possible (d/2+ k)-tuples with elements from {−(s2− 1)/2,−(s2− 3)/2, . . . , (s2−
1)/2} appear equally often in F∗k,i, for i = 1, . . . , p. Due to the property of Ru,k, it can be
verified that the ith column of Z is a permutation of {−(sd+2k − 1)/2, (sd+2k − 3)/2, . . . ,
(sd+2k − 1)/2}, which implies that Z is an LHD.

Next, we prove the orthogonality of Z. As R is column-orthogonal, we only need to
prove the orthogonality of F∗k . For any column ξ, ϕk,jk (ξ) has two columns. We denote
the first column of ϕk,jk (ξ) as ϕ1

k,jk
(ξ) and the second column of ϕk,jk (ξ) as ϕ2

k,jk
(ξ). For

any two columns ϕ
q
k,jk

(sbi,2j−1 + bi,2j) + (1− s2)/2 and ϕ
q
k,j′k

(sbh,2l−1 + bh,2l) + (1− s2)/2

in F∗k with jk, j′k = 0, 1, . . . , bs2/2c − 1 and q = 1, 2, we have sbi,2j−1 + bi,2j + (1− s2)/2 =

s[bi,2j−1 + (1 − s)/2] + (bi,2j) + (1 − s)/2] and sbh,2l−1 + bh,2l + (1 − s2)/2 = s[bh,2l−1 +
(1− s)/2] + [bh,2l + (1− s)/2]. Then,

[sbi,2j−1 + bi,2j + (1− s2)/2]T [sbh,2l−1 + bh,2l + (1− s2)/2] = 0

where i 6= h = 1, . . . , p and j 6= l = 1, . . . , d/2 − 1. It follows that (B1, ..., Bp) is an
OA(sd, pd, s, 2). Then, we can find that when j 6= h, the columns in ϕk,jk (sbi,2j−1 + bi,2j)⊕
(1− s2)/2 and ϕk,j′k

(sbh,2l−1 + bh,2l)⊕ (1− s2)/2 are column-orthogonal. When j = h and

jk 6= j′k, we can find that ϕk,jk (sbi,2j−1 + bi,2j)⊕ (1− s2)/2 and ϕk,j′k
(sbh,2l−1 + bh,2l)⊕ (1−

s2)/2 are column-orthogonal based on the properties of the difference scheme. Thus, Z is
an OLHD.

Next, we prove the stratification properties of (1) and (2). It can be seen that after
collapsing the levels of Z to the s2 level, we obtain F′k. Thus, we only need to prove the
stratification property of F′k. For any i = 1, . . . , p and j = 1, . . . , bs2/2c, it is easy to find
that any two columns from ϕk,j(Fi) can achieve a stratification on an s2 × s2 grid, as Fi is a
d/2 full factorial design. From the properties of the difference scheme, we can find that if
j 6= j′, any two columns from ϕk,j(Fi) and ϕk,j′(Fi) can achieve a stratification on an s2 × s2

grid. Now, we consider two columns from F′k,i and F′k,i′ for i 6= i′. According to proof of
Theorem 1 in [16], the column pairs in F′k can only have the following structures:
(a). (ϕ

q
k,j(sX + Y), ϕ

q
k,j′(s(X + lY) + L) or (ϕ

q
k,j(sX + Y), ϕ

q
kj′(sL + (X + lY))),

(b). (ϕ
q
k,j(sX + Y), ϕ

q
k,j′(sM + N)) or (ϕ

q
k,j(sX + Y), ϕ

q
kj′(sN + M)),

where j, j′ = 1, . . . , bs2/2c, q = 1, 2, and X, Y, L, M, N are independent columns of F. Here,
X + lY denotes any interaction of X and Y with l = 1, . . . , s− 1 and L, M, N denote the
factors that are not the interactions of X and Y. If two columns have structure (a) and j = j′,
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they can only achieve a stratification on an s× s2 or s2 × s grid. It is easy to check that
there are less than pdγ(s− 1)/2 such pairs in F′k. The other column pairs having structure
(b) or (a) with j 6= j′ can achieve stratifications on s2 × s2 grids. When the other column
pairs have structure (b), then sX + Y and sM + N is orthogonal. Thus, they can achieve
stratifications on s2 × s2 grids. If the other column pairs have structure (a) with j 6= j′, they
can achieve stratifications on s2 × s2 grids based on the properties of difference scheme.

Now, we prove property (3). For any two columns z1 and z2 of Z, we collapse the
sd+2k levels of z1 into s2 levels in Ω(s2) using mapping g1 and collapse the sd+2k levels
of z2 into s4 levels in Ω(s4) using mapping g2. Then, we have g1(z1) = ϕ

q
k,j( fi) and

g2(z2) = s2 ϕ
q
k,j′( fl)± ϕ

q
k,j′′( fl), where j 6= j′ = 1, . . . , bs2/2c, q = 1, 2, fi and fl are from

F, and i, l = 1, . . . , pd/2. As the column pairs in F′k can only have structure (a) or (b)
and if ϕ

q
k,j( fi), ϕ

q
k,j′( fl) have structure (b), j 6= j′′, (ϕ

q
k,j( fi), ϕ

q
k,j′( fl), ϕ

q
k,j′′( fl)) from an

OA(sd+2k, 3, s2, 3). Thus, they can achieve stratifications on s2 × s4 grids. In a similar way,
it is clear that they can achieve stratifications on s4 × s2 grids as well. It easy to see that
only pd(pd/2− 1)/4− pd(s− 1)/2 column pairs have structure (b) in F. Thus, we have at
least [pd(pd/2− 1)/4− pd(s− 1)/2]γ(γ− 1) = pdγ(pd− 4s + 2)(γ− 1)/8 column pairs
achieving stratifications on s2 × s4 and s4 × s2 grids. The proof is completed.

Proof of Corollary 1. We only need to prove the stratification property of M which follows
from the property of F(l)∗

k , where l = 1, . . . , t. When collapsed into s levels, f (l1)i1,h becomes

b(l1)i1,2h−1 and f (l2)i2,g becomes b(l2)i2,2g−1, where f (l1)i1,h and f (l2)i2,g are the hth column of F(l1)
i1

and the

gth column of F(l2)
i2

, respectively, and b(l1)i1,2h−1 and b(l2)i2,2g−1 are the (2h− 1)th column of B(l1)
i1

and the (2g− 1)th column of B(l2)
i2

, respectively.
Case 1:

If l1 = l2 and (i1, h) 6= (i2, g), the two columns are in the same Mi and achieve the
same stratification as in Theorem 1.
Case 2:

If l1 6= l2 and (i1, h) 6= (i2, g), (b(l1)i1,2h−1, b(l2)i2,2g−1) and ( f (l1)i1,h , f (l2)i2,g ) are orthogonal.

Based on the properties of difference scheme, (ϕkj( f (l1)i1,h ), ϕkj′( f (l2)i2,g )) is an OA for j, j′ =

1, . . . , bs2/2c. Thus, the hth column of F(l1)
k,i1

and the gth column of F(l2)
k,i2

can achieve a

stratification on an s× s grid. Then, if (i1, h) = (i2, g), (b(l1)i1,2h−1, b(l2)i2,2g−1) may not be an OA
and fails to guarantee stratification on an s× s grid. Thus, similar to the proof of Theorem 1,
we can find that at least 2k pdt(2k pdt− 2t)/8 column pairs in M can achieve stratifications
on s× s grids. The proof is completed.

Proof of Theorem 2. First, we need to prove the orthogonality; as R4 is column-orthogonal,
we only need to prove the orthogonality of E∗. It is easy to find that sbi,l + bi,l+1 + (1−
s2)/2 = s[bi,l + (1 −s)/2] + [bi,l+1 + (1− s)/2] and sbk,h + bk,h+1 + (1− s2)/2 = s[bk,h +
(1− s)/2] + [bk,h+1 +(1− s)/2]. Due to the property of (B1, . . . , Bp),

[(sbi,l + bi,l+1) + (1− s2)/2]T [sbk,h + bk,h+1 + (1− s2)/2] = 0,

where i, k = 1, . . . , p and l, h = 1, . . . , d/2− 1. Then, we can find that when l 6= h, (dj ⊕
(sbi,l + bi,l+1) + (1− s2)/2) and (dj′ ⊕ (sbk,h + bk,h+1) + (1− s2)/2) are column-orthogonal.
When l = h and j 6= j′, we can find that (dj ⊕ (sbi,l + bi,l+1) + (1− s2)/2) and (dj′ ⊕ (sbk,h +

bk,h+1) + (1 − s2)/2) are column-orthogonal based on the properties of the difference
scheme. Thus, X∗ is an OD.
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Next, we prove the stratification properties of X∗. Note that

δ1(x) = b s4e± s2e′ ± e′′ + (s6 − 1)/2
s4 c − s2 − 1

2

= b s4b1 ± s2b2 ± b3

s4 c − s2 − 1
2

,

where b1 = e− (s− 1)/2, b2 = e′ − (s− 1)/2, and b3 = e′′ − (s− 1)/2. The elements of e,
e′, and e′′ are in Ω(s2); thus, all the elements of bi fall into Ω(s2), i = 1, 2, 3. This indicates
that the elements of s2b2 ± b3 must be less than s4. Therefore, we have δ1(x) = e. Similar
to the proof of Theorem 1, according to proof of Theorem 1 in [16], the column pairs in F∗

have only the following two structures:
(a). (dj′ ⊕ (sX + Y), dj′ ⊕ (s(X + lY) + L)) or (dj′ ⊕ (sX + Y), dj′ ⊕ (sL + (X + lY))),
(b). (dj′ ⊕ (sX + Y), dj′ ⊕ (sM + N)) or (dj′ ⊕ (sX + Y), dj′ ⊕ (sN + M)),
Here, X, Y, L, M, N are independent columns of F, X + lY denotes any interaction of X
and Y with l = 1, . . . . , s− 1, and L, M, N denote the factors that are not interactions of X
and Y, where j, j′ = 0, 1, . . . , bs2/2c − 1. If two columns have structure (a) and j = j′, they
can only achieve stratifications on an s× s2 or s2 × s grid. It is easy to check that there are
less than 2kp(s− 1) column pairs in E∗ when pk is even and 2(kp− 1)(s− 1) column pairs
in E∗ when pk is odd. The other column pairs with structure (b) or (a) for j 6= j′ can achieve
stratifications on s2 × s2 grids. This completes the proof of properties (1) and (2).

Any two columns x1 and x2 of X∗ can be expressed as

x1 = s4e1 ± s2e′1 ± e′′1 , x2 = s4e2 ± s2e′2 ± e′′2 .

Based on the previous discussion, it is easy to see that e1 and e′1 are from the same
Ei,j, and as such are e2 and e′2. Now, we collapse the s6 levels in Ω(s6) of x1 into s2 levels
in Ω(s2) using mapping δ1 in (11) and collapse the s6 levels in Ω(s6) of x2 into s4 levels in
Ω(s4) using mapping δ2 as

δ2(z) = b
z + (s6 − 1)/2

s2 c − s4 − 1
2

.

Then, we have δ1(x1) = e1 and δ2(x2) = s2e2 ± e′2, where e1 = dj ⊕ L′, e2 = dj′ ⊕M′,
e′2 = dj′′ ⊕ N′, and L′, M′, N′ are independent columns of F. If e1 and e2 have structure
(b) and j 6= j′′, then the two pairs (e1, e′1) and (e2, e′2) have structure (b) and j 6= j′′ as
well. Only if e2 and e′2 are not interactions of e1 and e′1, (e1, s2e2 ± e′2) can there be an
OA(sd+2, 2, s2 × s4, 2). Similar to the proof of Theorem 1, at least µ(pd− 2s + 1)(g− 1)/8
column pairs achieve stratifications on s2 × s4 and s4 × s2 grids. This completes the proof
of property (3). The proof is completed.
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Appendix B

Input: F, O = (oij), and integer k

Replace s levels of B with o1l , . . . , osl , respectively

Replace the levels of each F(l) with {a0 + a1x, a0, a1 ∈ GF(s)}

Let F′(l)k = (F′(l)k,1 , . . . , F′(l)k,p ) with F′(l)k,i = Φk(F(l)
i )

Obtain design F(l)∗
k,i

Output: M = (M1, . . . , Mt) = (F(1)∗
k R, . . . , F(t)∗

k R)

Φk(Fi) is defined in (2)

Obtain F(l) from B(l) as (6) in Section 2

Rĉ,k is defined in (3)

Figure A1. Flowchart of Algorithm 2.
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Input: F and D(s2, s2, s2)

Replace the levels of {0, 1, . . . , s2 − 1} in each Fi with {a0 + a1x, a0, a1 ∈ GF(s)}

Divide each Ei into g or g + 1 groups for i = 1, . . . , pq

Obtain design E∗i,j

Obtain µ = pqg/2 sets of four columns, denoted as E(1), . . . , E(µ)

Output: X∗ = (E(1)R1,1, . . . , E(µ)R1,1)

Ei = D⊕ ξi = (d1 ⊕ ξi, . . . , ds2 ⊕ ξi)

Replace the levels of Ei,j with entries from Ω(s2)

Take two successive instances of E∗i,j at a time

Combine E(i) for i = 1, . . . , µ together

Figure A2. Flowchart of Algorithm 3.
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Table A1. The OLHD(64, 24) used in Example 2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5
2 −27.5 −1.5 −24.5 −2.5 −27.5 −1.5 −24.5 −2.5 −19.5 28.5 −16.5 31.5 −19.5 28.5 −16.5 31.5 −10.5 −5.5 −9.5 −6.5 −10.5 −5.5 −9.5 −6.5
3 −23.5 13.5 −20.5 14.5 −23.5 13.5 −20.5 14.5 −6.5 9.5 −5.5 10.5 −6.5 9.5 −5.5 10.5 14.5 20.5 13.5 23.5 14.5 20.5 13.5 23.5
4 −19.5 28.5 −16.5 31.5 −19.5 28.5 −16.5 31.5 −10.5 −5.5 −9.5 −6.5 −10.5 −5.5 −9.5 −6.5 27.5 1.5 24.5 2.5 27.5 1.5 24.5 2.5
5 −14.5 −20.5 −13.5 −23.5 −14.5 −20.5 −13.5 −23.5 23.5 −13.5 20.5 −14.5 23.5 −13.5 20.5 −14.5 −2.5 24.5 −1.5 27.5 −2.5 24.5 −1.5 27.5
6 −10.5 −5.5 −9.5 −6.5 −10.5 −5.5 −9.5 −6.5 27.5 1.5 24.5 2.5 27.5 1.5 24.5 2.5 −23.5 13.5 −20.5 14.5 −23.5 13.5 −20.5 14.5
7 −6.5 9.5 −5.5 10.5 −6.5 9.5 −5.5 10.5 14.5 20.5 13.5 23.5 14.5 20.5 13.5 23.5 19.5 −28.5 16.5 −31.5 19.5 −28.5 16.5 −31.5
8 −2.5 24.5 −1.5 27.5 −2.5 24.5 −1.5 27.5 2.5 −24.5 1.5 −27.5 2.5 −24.5 1.5 −27.5 6.5 −9.5 5.5 −10.5 6.5 −9.5 5.5 −10.5
9 2.5 −24.5 1.5 −27.5 2.5 −24.5 1.5 −27.5 6.5 −9.5 5.5 −10.5 6.5 −9.5 5.5 −10.5 10.5 5.5 9.5 6.5 10.5 5.5 9.5 6.5

10 6.5 −9.5 5.5 −10.5 6.5 −9.5 5.5 −10.5 10.5 5.5 9.5 6.5 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5 31.5 16.5 28.5 19.5
11 10.5 5.5 9.5 6.5 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5 31.5 16.5 28.5 19.5 −27.5 −1.5 −24.5 −2.5 −27.5 −1.5 −24.5 −2.5
12 14.5 20.5 13.5 23.5 14.5 20.5 13.5 23.5 19.5 −28.5 16.5 −31.5 19.5 −28.5 16.5 −31.5 −14.5 −20.5 −13.5 −23.5 −14.5 −20.5 −13.5 −23.5
13 19.5 −28.5 16.5 −31.5 19.5 −28.5 16.5 −31.5 −14.5 −20.5 −13.5 −23.5 −14.5 −20.5 −13.5 −23.5 23.5 −13.5 20.5 −14.5 23.5 −13.5 20.5 −14.5
14 23.5 −13.5 20.5 −14.5 23.5 −13.5 20.5 −14.5 −2.5 24.5 −1.5 27.5 −2.5 24.5 −1.5 27.5 2.5 −24.5 1.5 −27.5 2.5 −24.5 1.5 −27.5
15 27.5 1.5 24.5 2.5 27.5 1.5 24.5 2.5 −23.5 13.5 −20.5 14.5 −23.5 13.5 −20.5 14.5 −6.5 9.5 −5.5 10.5 −6.5 9.5 −5.5 10.5
16 31.5 16.5 28.5 19.5 31.5 16.5 28.5 19.5 −27.5 −1.5 −24.5 −2.5 −27.5 −1.5 −24.5 −2.5 −19.5 28.5 −16.5 31.5 −19.5 28.5 −16.5 31.5
17 −30.5 −17.5 −8.5 −7.5 11.5 4.5 29.5 18.5 −30.5 −17.5 −8.5 −7.5 11.5 4.5 29.5 18.5 −30.5 −17.5 −8.5 −7.5 11.5 4.5 29.5 18.5
18 −26.5 −0.5 −12.5 −22.5 15.5 21.5 25.5 3.5 −18.5 29.5 −4.5 11.5 7.5 −8.5 17.5 −30.5 −11.5 −4.5 −29.5 −18.5 30.5 17.5 8.5 7.5
19 −22.5 12.5 −0.5 26.5 3.5 −25.5 21.5 −15.5 −7.5 8.5 −17.5 30.5 18.5 −29.5 4.5 −11.5 15.5 21.5 25.5 3.5 −26.5 −0.5 −12.5 −22.5
20 −18.5 29.5 −4.5 11.5 7.5 −8.5 17.5 −30.5 −11.5 −4.5 −29.5 −18.5 30.5 17.5 8.5 7.5 26.5 0.5 12.5 22.5 −15.5 −21.5 −25.5 −3.5
21 −15.5 −21.5 −25.5 −3.5 26.5 0.5 12.5 22.5 22.5 −12.5 0.5 −26.5 −3.5 25.5 −21.5 15.5 −3.5 25.5 −21.5 15.5 22.5 −12.5 0.5 −26.5
22 −11.5 −4.5 −29.5 −18.5 30.5 17.5 8.5 7.5 26.5 0.5 12.5 22.5 −15.5 −21.5 −25.5 −3.5 −22.5 12.5 −0.5 26.5 3.5 −25.5 21.5 −15.5
23 −7.5 8.5 −17.5 30.5 18.5 −29.5 4.5 −11.5 15.5 21.5 25.5 3.5 −26.5 −0.5 −12.5 −22.5 18.5 −29.5 4.5 −11.5 −7.5 8.5 −17.5 30.5
24 −3.5 25.5 −21.5 15.5 22.5 −12.5 0.5 −26.5 3.5 −25.5 21.5 −15.5 −22.5 12.5 −0.5 26.5 7.5 −8.5 17.5 −30.5 −18.5 29.5 −4.5 11.5
25 3.5 −25.5 21.5 −15.5 −22.5 12.5 −0.5 26.5 7.5 −8.5 17.5 −30.5 −18.5 29.5 −4.5 11.5 11.5 4.5 29.5 18.5 −30.5 −17.5 −8.5 −7.5
26 7.5 −8.5 17.5 −30.5 −18.5 29.5 −4.5 11.5 11.5 4.5 29.5 18.5 −30.5 −17.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −11.5 −4.5 −29.5 −18.5
27 11.5 4.5 29.5 18.5 −30.5 −17.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −11.5 −4.5 −29.5 −18.5 −26.5 −0.5 −12.5 −22.5 15.5 21.5 25.5 3.5
28 15.5 21.5 25.5 3.5 −26.5 −0.5 −12.5 −22.5 18.5 −29.5 4.5 −11.5 −7.5 8.5 −17.5 30.5 −15.5 −21.5 −25.5 −3.5 26.5 0.5 12.5 22.5
29 18.5 −29.5 4.5 −11.5 −7.5 8.5 −17.5 30.5 −15.5 −21.5 −25.5 −3.5 26.5 0.5 12.5 22.5 22.5 −12.5 0.5 −26.5 −3.5 25.5 −21.5 15.5
30 22.5 −12.5 0.5 −26.5 −3.5 25.5 −21.5 15.5 −3.5 25.5 −21.5 15.5 22.5 −12.5 0.5 −26.5 3.5 −25.5 21.5 −15.5 −22.5 12.5 −0.5 26.5
31 26.5 0.5 12.5 22.5 −15.5 −21.5 −25.5 −3.5 −22.5 12.5 −0.5 26.5 3.5 −25.5 21.5 −15.5 −7.5 8.5 −17.5 30.5 18.5 −29.5 4.5 −11.5
32 30.5 17.5 8.5 7.5 −11.5 −4.5 −29.5 −18.5 −26.5 −0.5 −12.5 −22.5 15.5 21.5 25.5 3.5 −18.5 29.5 −4.5 11.5 7.5 −8.5 17.5 −30.5
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Table A1. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

33 −29.5 −18.5 11.5 4.5 29.5 18.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5 29.5 18.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5 29.5 18.5 −11.5 −4.5
34 −25.5 −3.5 15.5 21.5 25.5 3.5 −15.5 −21.5 −17.5 30.5 7.5 −8.5 17.5 −30.5 −7.5 8.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5
35 −21.5 15.5 3.5 −25.5 21.5 −15.5 −3.5 25.5 −4.5 11.5 18.5 −29.5 4.5 −11.5 −18.5 29.5 12.5 22.5 −26.5 −0.5 −12.5 −22.5 26.5 0.5
36 −17.5 30.5 7.5 −8.5 17.5 −30.5 −7.5 8.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5 25.5 3.5 −15.5 −21.5 −25.5 −3.5 15.5 21.5
37 −12.5 −22.5 26.5 0.5 12.5 22.5 −26.5 −0.5 21.5 −15.5 −3.5 25.5 −21.5 15.5 3.5 −25.5 −0.5 26.5 22.5 −12.5 0.5 −26.5 −22.5 12.5
38 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5 25.5 3.5 −15.5 −21.5 −25.5 −3.5 15.5 21.5 −21.5 15.5 3.5 −25.5 21.5 −15.5 −3.5 25.5
39 −4.5 11.5 18.5 −29.5 4.5 −11.5 −18.5 29.5 12.5 22.5 −26.5 −0.5 −12.5 −22.5 26.5 0.5 17.5 −30.5 −7.5 8.5 −17.5 30.5 7.5 −8.5
40 −0.5 26.5 22.5 −12.5 0.5 −26.5 −22.5 12.5 0.5 −26.5 −22.5 12.5 −0.5 26.5 22.5 −12.5 4.5 −11.5 −18.5 29.5 −4.5 11.5 18.5 −29.5
41 0.5 −26.5 −22.5 12.5 −0.5 26.5 22.5 −12.5 4.5 −11.5 −18.5 29.5 −4.5 11.5 18.5 −29.5 8.5 7.5 −30.5 −17.5 −8.5 −7.5 30.5 17.5
42 4.5 −11.5 −18.5 29.5 −4.5 11.5 18.5 −29.5 8.5 7.5 −30.5 −17.5 −8.5 −7.5 30.5 17.5 29.5 18.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5
43 8.5 7.5 −30.5 −17.5 −8.5 −7.5 30.5 17.5 29.5 18.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5 −25.5 −3.5 15.5 21.5 25.5 3.5 −15.5 −21.5
44 12.5 22.5 −26.5 −0.5 −12.5 −22.5 26.5 0.5 17.5 −30.5 −7.5 8.5 −17.5 30.5 7.5 −8.5 −12.5 −22.5 26.5 0.5 12.5 22.5 −26.5 −0.5
45 17.5 −30.5 −7.5 8.5 −17.5 30.5 7.5 −8.5 −12.5 −22.5 26.5 0.5 12.5 22.5 −26.5 −0.5 21.5 −15.5 −3.5 25.5 −21.5 15.5 3.5 −25.5
46 21.5 −15.5 −3.5 25.5 −21.5 15.5 3.5 −25.5 −0.5 26.5 22.5 −12.5 0.5 −26.5 −22.5 12.5 0.5 −26.5 −22.5 12.5 −0.5 26.5 22.5 −12.5
47 25.5 3.5 −15.5 −21.5 −25.5 −3.5 15.5 21.5 −21.5 15.5 3.5 −25.5 21.5 −15.5 −3.5 25.5 −4.5 11.5 18.5 −29.5 4.5 −11.5 −18.5 29.5
48 29.5 18.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5 −25.5 −3.5 15.5 21.5 25.5 3.5 −15.5 −21.5 −17.5 30.5 7.5 −8.5 17.5 −30.5 −7.5 8.5
49 −28.5 −19.5 31.5 16.5 −9.5 −6.5 10.5 5.5 −28.5 −19.5 31.5 16.5 −9.5 −6.5 10.5 5.5 −28.5 −19.5 31.5 16.5 −9.5 −6.5 10.5 5.5
50 −24.5 −2.5 27.5 1.5 −13.5 −23.5 14.5 20.5 −16.5 31.5 19.5 −28.5 −5.5 10.5 6.5 −9.5 −9.5 −6.5 10.5 5.5 −28.5 −19.5 31.5 16.5
51 −20.5 14.5 23.5 −13.5 −1.5 27.5 2.5 −24.5 −5.5 10.5 6.5 −9.5 −16.5 31.5 19.5 −28.5 13.5 23.5 −14.5 −20.5 24.5 2.5 −27.5 −1.5
52 −16.5 31.5 19.5 −28.5 −5.5 10.5 6.5 −9.5 −9.5 −6.5 10.5 5.5 −28.5 −19.5 31.5 16.5 24.5 2.5 −27.5 −1.5 13.5 23.5 −14.5 −20.5
53 −13.5 −23.5 14.5 20.5 −24.5 −2.5 27.5 1.5 20.5 −14.5 −23.5 13.5 1.5 −27.5 −2.5 24.5 −1.5 27.5 2.5 −24.5 −20.5 14.5 23.5 −13.5
54 −9.5 −6.5 10.5 5.5 −28.5 −19.5 31.5 16.5 24.5 2.5 −27.5 −1.5 13.5 23.5 −14.5 −20.5 −20.5 14.5 23.5 −13.5 −1.5 27.5 2.5 −24.5
55 −5.5 10.5 6.5 −9.5 −16.5 31.5 19.5 −28.5 13.5 23.5 −14.5 −20.5 24.5 2.5 −27.5 −1.5 16.5 −31.5 −19.5 28.5 5.5 −10.5 −6.5 9.5
56 −1.5 27.5 2.5 −24.5 −20.5 14.5 23.5 −13.5 1.5 −27.5 −2.5 24.5 20.5 −14.5 −23.5 13.5 5.5 −10.5 −6.5 9.5 16.5 −31.5 −19.5 28.5
57 1.5 −27.5 −2.5 24.5 20.5 −14.5 −23.5 13.5 5.5 −10.5 −6.5 9.5 16.5 −31.5 −19.5 28.5 9.5 6.5 −10.5 −5.5 28.5 19.5 −31.5 −16.5
58 5.5 −10.5 −6.5 9.5 16.5 −31.5 −19.5 28.5 9.5 6.5 −10.5 −5.5 28.5 19.5 −31.5 −16.5 28.5 19.5 −31.5 −16.5 9.5 6.5 −10.5 −5.5
59 9.5 6.5 −10.5 −5.5 28.5 19.5 −31.5 −16.5 28.5 19.5 −31.5 −16.5 9.5 6.5 −10.5 −5.5 −24.5 −2.5 27.5 1.5 −13.5 −23.5 14.5 20.5
60 13.5 23.5 −14.5 −20.5 24.5 2.5 −27.5 −1.5 16.5 −31.5 −19.5 28.5 5.5 −10.5 −6.5 9.5 −13.5 −23.5 14.5 20.5 −24.5 −2.5 27.5 1.5
61 16.5 −31.5 −19.5 28.5 5.5 −10.5 −6.5 9.5 −13.5 −23.5 14.5 20.5 −24.5 −2.5 27.5 1.5 20.5 −14.5 −23.5 13.5 1.5 −27.5 −2.5 24.5
62 20.5 −14.5 −23.5 13.5 1.5 −27.5 −2.5 24.5 −1.5 27.5 2.5 −24.5 −20.5 14.5 23.5 −13.5 1.5 −27.5 −2.5 24.5 20.5 −14.5 −23.5 13.5
63 24.5 2.5 −27.5 −1.5 13.5 23.5 −14.5 −20.5 −20.5 14.5 23.5 −13.5 −1.5 27.5 2.5 −24.5 −5.5 10.5 6.5 −9.5 −16.5 31.5 19.5 −28.5
64 28.5 19.5 −31.5 −16.5 9.5 6.5 −10.5 −5.5 −24.5 −2.5 27.5 1.5 −13.5 −23.5 14.5 20.5 −16.5 31.5 19.5 −28.5 −5.5 10.5 6.5 −9.5
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Table A2. The OLHD(64, 24) used in Example 3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5 −31.5 −16.5 −28.5 −19.5
2 −30.5 −17.5 −8.5 −7.5 −28.5 −19.5 31.5 16.5 −10.5 −5.5 −9.5 −6.5 −30.5 −17.5 −8.5 −7.5 −28.5 −19.5 31.5 16.5 −10.5 −5.5 −9.5 −6.5
3 −29.5 −18.5 11.5 4.5 −9.5 −6.5 10.5 5.5 11.5 4.5 29.5 18.5 −29.5 −18.5 11.5 4.5 −9.5 −6.5 10.5 5.5 11.5 4.5 29.5 18.5
4 −28.5 −19.5 31.5 16.5 −10.5 −5.5 −9.5 −6.5 30.5 17.5 8.5 7.5 −28.5 −19.5 31.5 16.5 −10.5 −5.5 −9.5 −6.5 30.5 17.5 8.5 7.5
5 −11.5 −4.5 −29.5 −18.5 29.5 18.5 −11.5 −4.5 −8.5 −7.5 30.5 17.5 −11.5 −4.5 −29.5 −18.5 29.5 18.5 −11.5 −4.5 −8.5 −7.5 30.5 17.5
6 −10.5 −5.5 −9.5 −6.5 30.5 17.5 8.5 7.5 −29.5 −18.5 11.5 4.5 −10.5 −5.5 −9.5 −6.5 30.5 17.5 8.5 7.5 −29.5 −18.5 11.5 4.5
7 −9.5 −6.5 10.5 5.5 11.5 4.5 29.5 18.5 28.5 19.5 −31.5 −16.5 −9.5 −6.5 10.5 5.5 11.5 4.5 29.5 18.5 28.5 19.5 −31.5 −16.5
8 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5 9.5 6.5 −10.5 −5.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5 9.5 6.5 −10.5 −5.5
9 8.5 7.5 −30.5 −17.5 9.5 6.5 −10.5 −5.5 10.5 5.5 9.5 6.5 8.5 7.5 −30.5 −17.5 9.5 6.5 −10.5 −5.5 10.5 5.5 9.5 6.5

10 9.5 6.5 −10.5 −5.5 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5 9.5 6.5 −10.5 −5.5 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5
11 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5 −30.5 −17.5 −8.5 −7.5 10.5 5.5 9.5 6.5 31.5 16.5 28.5 19.5 −30.5 −17.5 −8.5 −7.5
12 11.5 4.5 29.5 18.5 28.5 19.5 −31.5 −16.5 −11.5 −4.5 −29.5 −18.5 11.5 4.5 29.5 18.5 28.5 19.5 −31.5 −16.5 −11.5 −4.5 −29.5 −18.5
13 28.5 19.5 −31.5 −16.5 −11.5 −4.5 −29.5 −18.5 29.5 18.5 −11.5 −4.5 28.5 19.5 −31.5 −16.5 −11.5 −4.5 −29.5 −18.5 29.5 18.5 −11.5 −4.5
14 29.5 18.5 −11.5 −4.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5 29.5 18.5 −11.5 −4.5 −8.5 −7.5 30.5 17.5 8.5 7.5 −30.5 −17.5
15 30.5 17.5 8.5 7.5 −29.5 −18.5 11.5 4.5 −9.5 −6.5 10.5 5.5 30.5 17.5 8.5 7.5 −29.5 −18.5 11.5 4.5 −9.5 −6.5 10.5 5.5
16 31.5 16.5 28.5 19.5 −30.5 −17.5 −8.5 −7.5 −28.5 −19.5 31.5 16.5 31.5 16.5 28.5 19.5 −30.5 −17.5 −8.5 −7.5 −28.5 −19.5 31.5 16.5
17 −27.5 −1.5 −24.5 −2.5 −27.5 −1.5 −24.5 −2.5 −27.5 −1.5 −24.5 −2.5 14.5 20.5 13.5 23.5 14.5 20.5 13.5 23.5 14.5 20.5 13.5 23.5
18 −26.5 −0.5 −12.5 −22.5 −24.5 −2.5 27.5 1.5 −14.5 −20.5 −13.5 −23.5 15.5 21.5 25.5 3.5 13.5 23.5 −14.5 −20.5 27.5 1.5 24.5 2.5
19 −25.5 −3.5 15.5 21.5 −13.5 −23.5 14.5 20.5 15.5 21.5 25.5 3.5 12.5 22.5 −26.5 −0.5 24.5 2.5 −27.5 −1.5 −26.5 −0.5 −12.5 −22.5
20 −24.5 −2.5 27.5 1.5 −14.5 −20.5 −13.5 −23.5 26.5 0.5 12.5 22.5 13.5 23.5 −14.5 −20.5 27.5 1.5 24.5 2.5 −15.5 −21.5 −25.5 −3.5
21 −15.5 −21.5 −25.5 −3.5 25.5 3.5 −15.5 −21.5 −12.5 −22.5 26.5 0.5 26.5 0.5 12.5 22.5 −12.5 −22.5 26.5 0.5 25.5 3.5 −15.5 −21.5
22 −14.5 −20.5 −13.5 −23.5 26.5 0.5 12.5 22.5 −25.5 −3.5 15.5 21.5 27.5 1.5 24.5 2.5 −15.5 −21.5 −25.5 −3.5 12.5 22.5 −26.5 −0.5
23 −13.5 −23.5 14.5 20.5 15.5 21.5 25.5 3.5 24.5 2.5 −27.5 −1.5 24.5 2.5 −27.5 −1.5 −26.5 −0.5 −12.5 −22.5 −13.5 −23.5 14.5 20.5
24 −12.5 −22.5 26.5 0.5 12.5 22.5 −26.5 −0.5 13.5 23.5 −14.5 −20.5 25.5 3.5 −15.5 −21.5 −25.5 −3.5 15.5 21.5 −24.5 −2.5 27.5 1.5
25 12.5 22.5 −26.5 −0.5 13.5 23.5 −14.5 −20.5 14.5 20.5 13.5 23.5 −25.5 −3.5 15.5 21.5 −24.5 −2.5 27.5 1.5 −27.5 −1.5 −24.5 −2.5
26 13.5 23.5 −14.5 −20.5 14.5 20.5 13.5 23.5 27.5 1.5 24.5 2.5 −24.5 −2.5 27.5 1.5 −27.5 −1.5 −24.5 −2.5 −14.5 −20.5 −13.5 −23.5
27 14.5 20.5 13.5 23.5 27.5 1.5 24.5 2.5 −26.5 −0.5 −12.5 −22.5 −27.5 −1.5 −24.5 −2.5 −14.5 −20.5 −13.5 −23.5 15.5 21.5 25.5 3.5
28 15.5 21.5 25.5 3.5 24.5 2.5 −27.5 −1.5 −15.5 −21.5 −25.5 −3.5 −26.5 −0.5 −12.5 −22.5 −13.5 −23.5 14.5 20.5 26.5 0.5 12.5 22.5
29 24.5 2.5 −27.5 −1.5 −15.5 −21.5 −25.5 −3.5 25.5 3.5 −15.5 −21.5 −13.5 −23.5 14.5 20.5 26.5 0.5 12.5 22.5 −12.5 −22.5 26.5 0.5
30 25.5 3.5 −15.5 −21.5 −12.5 −22.5 26.5 0.5 12.5 22.5 −26.5 −0.5 −12.5 −22.5 26.5 0.5 25.5 3.5 −15.5 −21.5 −25.5 −3.5 15.5 21.5
31 26.5 0.5 12.5 22.5 −25.5 −3.5 15.5 21.5 −13.5 −23.5 14.5 20.5 −15.5 −21.5 −25.5 −3.5 12.5 22.5 −26.5 −0.5 24.5 2.5 −27.5 −1.5
32 27.5 1.5 24.5 2.5 −26.5 −0.5 −12.5 −22.5 −24.5 −2.5 27.5 1.5 −14.5 −20.5 −13.5 −23.5 15.5 21.5 25.5 3.5 13.5 23.5 −14.5 −20.5
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Table A2. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

33 −23.5 13.5 −20.5 14.5 −23.5 13.5 −20.5 14.5 −23.5 13.5 −20.5 14.5 23.5 −13.5 20.5 −14.5 23.5 −13.5 20.5 −14.5 23.5 −13.5 20.5 −14.5
34 −22.5 12.5 −0.5 26.5 −20.5 14.5 23.5 −13.5 −2.5 24.5 −1.5 27.5 22.5 −12.5 0.5 −26.5 20.5 −14.5 −23.5 13.5 2.5 −24.5 1.5 −27.5
35 −21.5 15.5 3.5 −25.5 −1.5 27.5 2.5 −24.5 3.5 −25.5 21.5 −15.5 21.5 −15.5 −3.5 25.5 1.5 −27.5 −2.5 24.5 −3.5 25.5 −21.5 15.5
36 −20.5 14.5 23.5 −13.5 −2.5 24.5 −1.5 27.5 22.5 −12.5 0.5 −26.5 20.5 −14.5 −23.5 13.5 2.5 −24.5 1.5 −27.5 −22.5 12.5 −0.5 26.5
37 −3.5 25.5 −21.5 15.5 21.5 −15.5 −3.5 25.5 −0.5 26.5 22.5 −12.5 3.5 −25.5 21.5 −15.5 −21.5 15.5 3.5 −25.5 0.5 −26.5 −22.5 12.5
38 −2.5 24.5 −1.5 27.5 22.5 −12.5 0.5 −26.5 −21.5 15.5 3.5 −25.5 2.5 −24.5 1.5 −27.5 −22.5 12.5 −0.5 26.5 21.5 −15.5 −3.5 25.5
39 −1.5 27.5 2.5 −24.5 3.5 −25.5 21.5 −15.5 20.5 −14.5 −23.5 13.5 1.5 −27.5 −2.5 24.5 −3.5 25.5 −21.5 15.5 −20.5 14.5 23.5 −13.5
40 −0.5 26.5 22.5 −12.5 0.5 −26.5 −22.5 12.5 1.5 −27.5 −2.5 24.5 0.5 −26.5 −22.5 12.5 −0.5 26.5 22.5 −12.5 −1.5 27.5 2.5 −24.5
41 0.5 −26.5 −22.5 12.5 1.5 −27.5 −2.5 24.5 2.5 −24.5 1.5 −27.5 −0.5 26.5 22.5 −12.5 −1.5 27.5 2.5 −24.5 −2.5 24.5 −1.5 27.5
42 1.5 −27.5 −2.5 24.5 2.5 −24.5 1.5 −27.5 23.5 −13.5 20.5 −14.5 −1.5 27.5 2.5 −24.5 −2.5 24.5 −1.5 27.5 −23.5 13.5 −20.5 14.5
43 2.5 −24.5 1.5 −27.5 23.5 −13.5 20.5 −14.5 −22.5 12.5 −0.5 26.5 −2.5 24.5 −1.5 27.5 −23.5 13.5 −20.5 14.5 22.5 −12.5 0.5 −26.5
44 3.5 −25.5 21.5 −15.5 20.5 −14.5 −23.5 13.5 −3.5 25.5 −21.5 15.5 −3.5 25.5 −21.5 15.5 −20.5 14.5 23.5 −13.5 3.5 −25.5 21.5 −15.5
45 20.5 −14.5 −23.5 13.5 −3.5 25.5 −21.5 15.5 21.5 −15.5 −3.5 25.5 −20.5 14.5 23.5 −13.5 3.5 −25.5 21.5 −15.5 −21.5 15.5 3.5 −25.5
46 21.5 −15.5 −3.5 25.5 −0.5 26.5 22.5 −12.5 0.5 −26.5 −22.5 12.5 −21.5 15.5 3.5 −25.5 0.5 −26.5 −22.5 12.5 −0.5 26.5 22.5 −12.5
47 22.5 −12.5 0.5 −26.5 −21.5 15.5 3.5 −25.5 −1.5 27.5 2.5 −24.5 −22.5 12.5 −0.5 26.5 21.5 −15.5 −3.5 25.5 1.5 −27.5 −2.5 24.5
48 23.5 −13.5 20.5 −14.5 −22.5 12.5 −0.5 26.5 −20.5 14.5 23.5 −13.5 −23.5 13.5 −20.5 14.5 22.5 −12.5 0.5 −26.5 20.5 −14.5 −23.5 13.5
49 −19.5 28.5 −16.5 31.5 −19.5 28.5 −16.5 31.5 −19.5 28.5 −16.5 31.5 −6.5 9.5 −5.5 10.5 −6.5 9.5 −5.5 10.5 −6.5 9.5 −5.5 10.5
50 −18.5 29.5 −4.5 11.5 −16.5 31.5 19.5 −28.5 −6.5 9.5 −5.5 10.5 −7.5 8.5 −17.5 30.5 −5.5 10.5 6.5 −9.5 −19.5 28.5 −16.5 31.5
51 −17.5 30.5 7.5 −8.5 −5.5 10.5 6.5 −9.5 7.5 −8.5 17.5 −30.5 −4.5 11.5 18.5 −29.5 −16.5 31.5 19.5 −28.5 18.5 −29.5 4.5 −11.5
52 −16.5 31.5 19.5 −28.5 −6.5 9.5 −5.5 10.5 18.5 −29.5 4.5 −11.5 −5.5 10.5 6.5 −9.5 −19.5 28.5 −16.5 31.5 7.5 −8.5 17.5 −30.5
53 −7.5 8.5 −17.5 30.5 17.5 −30.5 −7.5 8.5 −4.5 11.5 18.5 −29.5 −18.5 29.5 −4.5 11.5 4.5 −11.5 −18.5 29.5 −17.5 30.5 7.5 −8.5
54 −6.5 9.5 −5.5 10.5 18.5 −29.5 4.5 −11.5 −17.5 30.5 7.5 −8.5 −19.5 28.5 −16.5 31.5 7.5 −8.5 17.5 −30.5 −4.5 11.5 18.5 −29.5
55 −5.5 10.5 6.5 −9.5 7.5 −8.5 17.5 −30.5 16.5 −31.5 −19.5 28.5 −16.5 31.5 19.5 −28.5 18.5 −29.5 4.5 −11.5 5.5 −10.5 −6.5 9.5
56 −4.5 11.5 18.5 −29.5 4.5 −11.5 −18.5 29.5 5.5 −10.5 −6.5 9.5 −17.5 30.5 7.5 −8.5 17.5 −30.5 −7.5 8.5 16.5 −31.5 −19.5 28.5
57 4.5 −11.5 −18.5 29.5 5.5 −10.5 −6.5 9.5 6.5 −9.5 5.5 −10.5 17.5 −30.5 −7.5 8.5 16.5 −31.5 −19.5 28.5 19.5 −28.5 16.5 −31.5
58 5.5 −10.5 −6.5 9.5 6.5 −9.5 5.5 −10.5 19.5 −28.5 16.5 −31.5 16.5 −31.5 −19.5 28.5 19.5 −28.5 16.5 −31.5 6.5 −9.5 5.5 −10.5
59 6.5 −9.5 5.5 −10.5 19.5 −28.5 16.5 −31.5 −18.5 29.5 −4.5 11.5 19.5 −28.5 16.5 −31.5 6.5 −9.5 5.5 −10.5 −7.5 8.5 −17.5 30.5
60 7.5 −8.5 17.5 −30.5 16.5 −31.5 −19.5 28.5 −7.5 8.5 −17.5 30.5 18.5 −29.5 4.5 −11.5 5.5 −10.5 −6.5 9.5 −18.5 29.5 −4.5 11.5
61 16.5 −31.5 −19.5 28.5 −7.5 8.5 −17.5 30.5 17.5 −30.5 −7.5 8.5 5.5 −10.5 −6.5 9.5 −18.5 29.5 −4.5 11.5 4.5 −11.5 −18.5 29.5
62 17.5 −30.5 −7.5 8.5 −4.5 11.5 18.5 −29.5 4.5 −11.5 −18.5 29.5 4.5 −11.5 −18.5 29.5 −17.5 30.5 7.5 −8.5 17.5 −30.5 −7.5 8.5
63 18.5 −29.5 4.5 −11.5 −17.5 30.5 7.5 −8.5 −5.5 10.5 6.5 −9.5 7.5 −8.5 17.5 −30.5 −4.5 11.5 18.5 −29.5 −16.5 31.5 19.5 −28.5
64 19.5 −28.5 16.5 −31.5 −18.5 29.5 −4.5 11.5 −16.5 31.5 19.5 −28.5 6.5 −9.5 5.5 −10.5 −7.5 8.5 −17.5 30.5 −5.5 10.5 6.5 −9.5
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Table A3. The OD(64, 1624) used in Example 4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5 −7.5 −4.5
2 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5
3 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5
4 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5
5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5
6 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5
7 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5
8 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5
9 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5

10 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5
11 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 2.5 1.5 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5
12 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 2.5 1.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5
13 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5
14 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 7.5 4.5 −2.5 −1.5 −2.5 −1.5 7.5 4.5 2.5 1.5 −7.5 −4.5
15 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5 7.5 4.5 2.5 1.5 −7.5 −4.5 2.5 1.5 −2.5 −1.5 2.5 1.5
16 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5 7.5 4.5 7.5 4.5 −7.5 −4.5 −2.5 −1.5 −7.5 −4.5 7.5 4.5
17 −6.5 −0.5 −6.5 −0.5 −6.5 −0.5 −6.5 −0.5 −6.5 −0.5 −6.5 −0.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5 3.5 5.5
18 −6.5 −0.5 −3.5 −5.5 −6.5 −0.5 6.5 0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5 6.5 0.5 3.5 5.5 −3.5 −5.5 6.5 0.5 6.5 0.5
19 −6.5 −0.5 3.5 5.5 −3.5 −5.5 3.5 5.5 3.5 5.5 6.5 0.5 3.5 5.5 −6.5 −0.5 6.5 0.5 −6.5 −0.5 −6.5 −0.5 −3.5 −5.5
20 −6.5 −0.5 6.5 0.5 −3.5 −5.5 −3.5 −5.5 6.5 0.5 3.5 5.5 3.5 5.5 −3.5 −5.5 6.5 0.5 6.5 0.5 −3.5 −5.5 −6.5 −0.5
21 −3.5 −5.5 −6.5 −0.5 6.5 0.5 −3.5 −5.5 −3.5 −5.5 6.5 0.5 6.5 0.5 3.5 5.5 −3.5 −5.5 6.5 0.5 6.5 0.5 −3.5 −5.5
22 −3.5 −5.5 −3.5 −5.5 6.5 0.5 3.5 5.5 −6.5 −0.5 3.5 5.5 6.5 0.5 6.5 0.5 −3.5 −5.5 −6.5 −0.5 3.5 5.5 −6.5 −0.5
23 −3.5 −5.5 3.5 5.5 3.5 5.5 6.5 0.5 6.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 −0.5 −6.5 −0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5
24 −3.5 −5.5 6.5 0.5 3.5 5.5 −6.5 −0.5 3.5 5.5 −3.5 −5.5 6.5 0.5 −3.5 −5.5 −6.5 −0.5 3.5 5.5 −6.5 −0.5 6.5 0.5
25 3.5 5.5 −6.5 −0.5 3.5 5.5 −3.5 −5.5 3.5 5.5 3.5 5.5 −6.5 −0.5 3.5 5.5 −6.5 −0.5 6.5 0.5 −6.5 −0.5 −6.5 −0.5
26 3.5 5.5 −3.5 −5.5 3.5 5.5 3.5 5.5 6.5 0.5 6.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 −0.5 −6.5 −0.5 −3.5 −5.5 −3.5 −5.5
27 3.5 5.5 3.5 5.5 6.5 0.5 6.5 0.5 −6.5 −0.5 −3.5 −5.5 −6.5 −0.5 −6.5 −0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5 6.5 0.5
28 3.5 5.5 6.5 0.5 6.5 0.5 −6.5 −0.5 −3.5 −5.5 −6.5 −0.5 −6.5 −0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5 6.5 0.5 3.5 5.5
29 6.5 0.5 −6.5 −0.5 −3.5 −5.5 −6.5 −0.5 6.5 0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5 6.5 0.5 3.5 5.5 −3.5 −5.5 6.5 0.5
30 6.5 0.5 −3.5 −5.5 −3.5 −5.5 6.5 0.5 3.5 5.5 −6.5 −0.5 −3.5 −5.5 6.5 0.5 6.5 0.5 −3.5 −5.5 −6.5 −0.5 3.5 5.5
31 6.5 0.5 3.5 5.5 −6.5 −0.5 3.5 5.5 −3.5 −5.5 3.5 5.5 −3.5 −5.5 −6.5 −0.5 3.5 5.5 −6.5 −0.5 6.5 0.5 −6.5 −0.5
32 6.5 0.5 6.5 0.5 −6.5 −0.5 −3.5 −5.5 −6.5 −0.5 6.5 0.5 −3.5 −5.5 −3.5 −5.5 3.5 5.5 6.5 0.5 3.5 5.5 −3.5 −5.5
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Table A3. Cont.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

33 −5.5 3.5 −5.5 3.5 −5.5 3.5 −5.5 3.5 −5.5 3.5 −5.5 3.5 5.5 −3.5 5.5 −3.5 5.5 −3.5 5.5 −3.5 5.5 −3.5 5.5 −3.5
34 −5.5 3.5 −0.5 6.5 −5.5 3.5 5.5 −3.5 −0.5 6.5 −0.5 6.5 5.5 −3.5 0.5 −6.5 5.5 −3.5 −5.5 3.5 0.5 −6.5 0.5 −6.5
35 −5.5 3.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 0.5 −6.5 5.5 −3.5 5.5 −3.5 −0.5 6.5 0.5 −6.5 −0.5 6.5 −0.5 6.5 −5.5 3.5
36 −5.5 3.5 5.5 −3.5 −0.5 6.5 −0.5 6.5 5.5 −3.5 0.5 −6.5 5.5 −3.5 −5.5 3.5 0.5 −6.5 0.5 −6.5 −5.5 3.5 −0.5 6.5
37 −0.5 6.5 −5.5 3.5 5.5 −3.5 −0.5 6.5 −0.5 6.5 5.5 −3.5 0.5 −6.5 5.5 −3.5 −5.5 3.5 0.5 −6.5 0.5 −6.5 −5.5 3.5
38 −0.5 6.5 −0.5 6.5 5.5 −3.5 0.5 −6.5 −5.5 3.5 0.5 −6.5 0.5 −6.5 0.5 −6.5 −5.5 3.5 −0.5 6.5 5.5 −3.5 −0.5 6.5
39 −0.5 6.5 0.5 −6.5 0.5 −6.5 5.5 −3.5 5.5 −3.5 −5.5 3.5 0.5 −6.5 −0.5 6.5 −0.5 6.5 −5.5 3.5 −5.5 3.5 5.5 −3.5
40 −0.5 6.5 5.5 −3.5 0.5 −6.5 −5.5 3.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 −5.5 3.5 −0.5 6.5 5.5 −3.5 −0.5 6.5 0.5 −6.5
41 0.5 −6.5 −5.5 3.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 0.5 −6.5 −0.5 6.5 5.5 −3.5 −0.5 6.5 0.5 −6.5 −0.5 6.5 −0.5 6.5
42 0.5 −6.5 −0.5 6.5 0.5 −6.5 0.5 −6.5 5.5 −3.5 5.5 −3.5 −0.5 6.5 0.5 −6.5 −0.5 6.5 −0.5 6.5 −5.5 3.5 −5.5 3.5
43 0.5 −6.5 0.5 −6.5 5.5 −3.5 5.5 −3.5 −5.5 3.5 −0.5 6.5 −0.5 6.5 −0.5 6.5 −5.5 3.5 −5.5 3.5 5.5 −3.5 0.5 −6.5
44 0.5 −6.5 5.5 −3.5 5.5 −3.5 −5.5 3.5 −0.5 6.5 −5.5 3.5 −0.5 6.5 −5.5 3.5 −5.5 3.5 5.5 −3.5 0.5 −6.5 5.5 −3.5
45 5.5 −3.5 −5.5 3.5 −0.5 6.5 −5.5 3.5 5.5 −3.5 −0.5 6.5 −5.5 3.5 5.5 −3.5 0.5 −6.5 5.5 −3.5 −5.5 3.5 0.5 −6.5
46 5.5 −3.5 −0.5 6.5 −0.5 6.5 5.5 −3.5 0.5 −6.5 −5.5 3.5 −5.5 3.5 0.5 −6.5 0.5 −6.5 −5.5 3.5 −0.5 6.5 5.5 −3.5
47 5.5 −3.5 0.5 −6.5 −5.5 3.5 0.5 −6.5 −0.5 6.5 0.5 −6.5 −5.5 3.5 −0.5 6.5 5.5 −3.5 −0.5 6.5 0.5 −6.5 −0.5 6.5
48 5.5 −3.5 5.5 −3.5 −5.5 3.5 −0.5 6.5 −5.5 3.5 5.5 −3.5 −5.5 3.5 −5.5 3.5 5.5 −3.5 0.5 −6.5 5.5 −3.5 −5.5 3.5
49 −4.5 7.5 −4.5 7.5 −4.5 7.5 −4.5 7.5 −4.5 7.5 −4.5 7.5 −1.5 2.5 −1.5 2.5 −1.5 2.5 −1.5 2.5 −1.5 2.5 −1.5 2.5
50 −4.5 7.5 −1.5 2.5 −4.5 7.5 4.5 −7.5 −1.5 2.5 −1.5 2.5 −1.5 2.5 −4.5 7.5 −1.5 2.5 1.5 −2.5 −4.5 7.5 −4.5 7.5
51 −4.5 7.5 1.5 −2.5 −1.5 2.5 1.5 −2.5 1.5 −2.5 4.5 −7.5 −1.5 2.5 4.5 −7.5 −4.5 7.5 4.5 −7.5 4.5 −7.5 1.5 −2.5
52 −4.5 7.5 4.5 −7.5 −1.5 2.5 −1.5 2.5 4.5 −7.5 1.5 −2.5 −1.5 2.5 1.5 −2.5 −4.5 7.5 −4.5 7.5 1.5 −2.5 4.5 −7.5
53 −1.5 2.5 −4.5 7.5 4.5 −7.5 −1.5 2.5 −1.5 2.5 4.5 −7.5 −4.5 7.5 −1.5 2.5 1.5 −2.5 −4.5 7.5 −4.5 7.5 1.5 −2.5
54 −1.5 2.5 −1.5 2.5 4.5 −7.5 1.5 −2.5 −4.5 7.5 1.5 −2.5 −4.5 7.5 −4.5 7.5 1.5 −2.5 4.5 −7.5 −1.5 2.5 4.5 −7.5
55 −1.5 2.5 1.5 −2.5 1.5 −2.5 4.5 −7.5 4.5 −7.5 −4.5 7.5 −4.5 7.5 4.5 −7.5 4.5 −7.5 1.5 −2.5 1.5 −2.5 −1.5 2.5
56 −1.5 2.5 4.5 −7.5 1.5 −2.5 −4.5 7.5 1.5 −2.5 −1.5 2.5 −4.5 7.5 1.5 −2.5 4.5 −7.5 −1.5 2.5 4.5 −7.5 −4.5 7.5
57 1.5 −2.5 −4.5 7.5 1.5 −2.5 −1.5 2.5 1.5 −2.5 1.5 −2.5 4.5 −7.5 −1.5 2.5 4.5 −7.5 −4.5 7.5 4.5 −7.5 4.5 −7.5
58 1.5 −2.5 −1.5 2.5 1.5 −2.5 1.5 −2.5 4.5 −7.5 4.5 −7.5 4.5 −7.5 −4.5 7.5 4.5 −7.5 4.5 −7.5 1.5 −2.5 1.5 −2.5
59 1.5 −2.5 1.5 −2.5 4.5 −7.5 4.5 −7.5 −4.5 7.5 −1.5 2.5 4.5 −7.5 4.5 −7.5 1.5 −2.5 1.5 −2.5 −1.5 2.5 −4.5 7.5
60 1.5 −2.5 4.5 −7.5 4.5 −7.5 −4.5 7.5 −1.5 2.5 −4.5 7.5 4.5 −7.5 1.5 −2.5 1.5 −2.5 −1.5 2.5 −4.5 7.5 −1.5 2.5
61 4.5 −7.5 −4.5 7.5 −1.5 2.5 −4.5 7.5 4.5 −7.5 −1.5 2.5 1.5 −2.5 −1.5 2.5 −4.5 7.5 −1.5 2.5 1.5 −2.5 −4.5 7.5
62 4.5 −7.5 −1.5 2.5 −1.5 2.5 4.5 −7.5 1.5 −2.5 −4.5 7.5 1.5 −2.5 −4.5 7.5 −4.5 7.5 1.5 −2.5 4.5 −7.5 −1.5 2.5
63 4.5 −7.5 1.5 −2.5 −4.5 7.5 1.5 −2.5 −1.5 2.5 1.5 −2.5 1.5 −2.5 4.5 −7.5 −1.5 2.5 4.5 −7.5 −4.5 7.5 4.5 −7.5
64 4.5 −7.5 4.5 −7.5 −4.5 7.5 −1.5 2.5 −4.5 7.5 4.5 −7.5 1.5 −2.5 1.5 −2.5 −1.5 2.5 −4.5 7.5 −1.5 2.5 1.5 −2.5
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