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Abstract: We consider the Gaussian Leonardo numbers and investigate some of their amazing
characteristic properties, including their generating function, the associated Binet formula and
Cassini identity, and their matrix representation. Then, we define the hybrid Gaussian Leonardo
numbers and obtain some of their particular properties. Furthermore, we define nn Hessenberg
matrices whose permanents yield the Leonardo and Gaussian Leonardo sequences.
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1. Introduction

The Leonardo numbers [1] are defined by the following recurrence relation:

Len = Len−1 + Len−2 + 1 ; n ≥ 2

where Len denotes the nth Leonardo number and Le0 = 1, Le1 = 1. It is known that they
can be represented via the Fibonacci numbers, as shown below:

Len = 2Fn+1 − 1

where Fn is the nth Fibonacci number, defined by the following recurrence for n ≥ 2:

Fn = Fn−1 + Fn−2.

Although the Leonardo numbers have been recently defined, one can find a vast
amount of papers about them in the literature. For example, in [2], the authors obtain new
identities of the Leonardo numbers and give relationships among the Fibonacci, Lucas, and
Leonardo numbers. Moreover, they give some matrix representations. In [3], the authors
define the incomplete Leonardo numbers and obtain some properties. The authors give a
generalization of the Leonardo numbers in [4]. In [5], the authors define the generalized
Leonardo numbers and provide some properties of these numbers. Additionally, they give
matrix representations and define the incomplete generalized Leonardo numbers. In [6],
the authors present some properties of octonion numbers of the Leonardo sequence.

Recently, there has been a huge amount of interest in hybrid numbers, which can be
considered a generalization of complex numbers and are composed of a combination of
complex (i2 = −1), hyperbolic (h2 = 1), and dual numbers (ε2 = 0). The set of hybrid
numbers (for details, see [7]) are defined below:

K =
{

a + bi + cε + dh : a, b, c, d ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i
}

.
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Here, we want to draw your attention to the fact that the product of any two hybrid
numbers is achieved by exploiting Table 1:

Table 1. Multiplication table.

. 1 i ε h

1 1 i ε h

i i −1 1− h ε + i

ε ε h + 1 0 −ε

h h −ε− i ε 1

Recently, many researchers have been interested in the hybrid numbers with some
well-known number sequence coefficients. For more details, please see [8–23] and the
references therein.

The determinant and the permanent of an n× n matrix A = (aij) may be given by

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

aiσ(i) ,

and

per (A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

respectively. Here, Sn represents the symmetric group of the degree n. Note that if one
omits the sign pattern in the definition of the determinant, we obtain the permanent of A.

In the literature, there are many researchers who are interested in determinant and
permanent computations. For more details, please look at references [24–28]. The authors
of [24] have defined an excellent method for computing matrix permanents, which is called
the contraction method. In other words, it is defined as follows:

Let A = (aij) be an m× n matrix with row vectors r1, r2, . . . , rm. We say A is contractible
on column k if that column contains exactly two nonzero elements, say aik 6= 0, ajk 6= 0, and
i 6= j. Then, the (m− 1)× (n− 1) matrix, Aij:k, is obtained from A replacing the ith row
with ajkri + aikrj and deleting the jth row, and the kth column is called the contraction of
A on column k relative to rows i and j. If A is contractible on row k with aki 6= 0, akj 6= 0,
and i 6= j, then the matrix Ak:ij = [AT

ij:k]
T is called the contraction of A on row k relative to

columns i and j. We know that if A is an integer matrix, and B is a contraction of A, then

per A = per B . (1)

Inspired by these recent papers, we introduce a new hybrid number system with the
Gaussian Leonardo coefficients. In the following section, we define the Gaussian Leonardo
hybrid numbers and obtain some of their particular properties. In the next section, we
define n × n Hessenberg matrices whose permanents are the Leonardo and Gaussian
Leonardo numbers. Finally, we give a Maple 13 source code to verify the permanent
computation (Appendix A).

2. The Gaussian Leonardo Sequence

Definition 1. The Gaussian Leonardo numbers are defined as shown below:

GLn = Len + Len−1i ; n ≥ 1
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where GLn denotes the nth Gaussian Leonardo number, and Len denotes the nth Leonardo number.
Clearly, it can be written as follows:

GLn = Len + Len−1i

= (2Len−1 − Len−3)

+(2Len−2 − Len−4)i,

and
GLn−1 = 2Len−1 + Len−3i,

GLn−2 = 2Len−2 + Len−4i.

In other words, the Gaussian Leonardo sequence can be rewritten by the following recurrence,
n ≥ 3:

GLn = 2GLn−1 − GLn−3

where GL0 = 1− i , GL1 = 1 + i , GL2 = 3 + i, and GL3 = 5 + 3i.

Some values of the Gaussian Leonardo numbers are given in Table 2.

Table 2. Gaussian Leonardo numbers.

n 0 1 2 3 4 5 6 7

GLn 1− i 1 + i 3 + i 5 + 3i 9 + 5i 15 + 9i 25 + 15i 41 + 25i

Theorem 1. (Generating function) The generating function for the Gaussian Leonardo numbers is
given by

g(x) =
∞

∑
n=0

(GLn)xn =
(1− i) + (−1 + 3i)x + (1− i)x2

1− 2x + x3 .

Proof. Taking into account the definition of the generating function and the Gaussian
Leonardo numbers, we can write the following equalities:

g(x) = GL0 + GL1x + GL2x2 + ... + GLnxn + ...

2xg(x) = 2GL0x + 2GL1x2 + 2GL2x3 + ... + 2GLn−1xn + ...

−x3g(x) = −GL0x3 − GL1x4 − GL2x5 + ...− GLn−3xn + ....

Then,

(1− 2x + x3)g(x) = GL0 + (GL1 − 2GL0)x

+(GL2 − 2GL1)x2

+(GL3 − 2GL2 + GL0)x3

.

.

.

+(GLn − 2GLn−1 + GLn−3)xn + ...
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and, therefore,

g(x) =
GL0 + (GL1 − 2GL0)x + (GL2 − 2GL1)x2

1− 2x + x3

=
(1− i) + (−1 + 3i)x + (1− i)x2

1− 2x + x3 .

So, the proof is completed.

Theorem 2. (Binet formula) For n ≥ 0, the Binet formula for the Gaussian Leonardo numbers is

GLn = T(
αn − βn

α− β
) + 2βn + K

where T = 1 + 2i +
√

5, K = −1− i, α =
1 +
√

5
2

, and β =
1−
√

5
2

.

Proof. By exploiting the generating function and the definition of the Gaussian Leonardo
numbers, and, as a result,

g(x) =
(1− i) + (−1 + 3i)x + (1− i)x2

1− 2x + x3

=
Ax + B

(1− x− x2)
+

C
(1− x)

=
D

(1− αx)
+

E
(1− βx)

+
C

1− x

where A = 2i, B = 2, C = (−1− i), D =
1 + 2i +

√
5√

5
, E =

√
5− 1− 2i√

5
,

α =
1 +
√

5
2

and β =
1−
√

5
2

.
This can be rewritten as

(1− i) + (−1 + 3i)x + (1− i)x2

1− 2x + x3 =
D

(1− αx)
+

E
(1− βx)

+
C

1− x

=

(
∞

∑
n=0

Dαnxn

)
+

(
∞

∑
n=0

Eβnxn

)
+

(
∞

∑
n=0

Cxn

)

=
∞

∑
n=0

(Dαn + Eβn + C)xn

where

g(x) =
∞

∑
n=0

(Dαn + Eβn + C)xn

i.e.,

GLn = T(
αn − βn

α− β
) + 2βn + K

where T = 1 + 2i +
√

5 and K = −1− i. So, the proof is completed.

Note that by using the Binet formula for the Fibonacci numbers and the relation
GLn = (2Fn+1 − 1) + (2Fn − 1)i, we obtain another statement for the Binet formula.

Example 1. For n = 3,
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GL3 = T(
α3 − β3

α− β
) + 2β3 + K = (1 + 2i +

√
5)(α2 + αβ + β2) + 2β3 − 1− i = 5 + 3i.

Theorem 3. (Cassini identity) For n > 0, the following identity holds

GLn−1GLn+1 − GL2
n =

(
3 + i

5

)
8−n[(−2− i)(8α)n(2α + 2i)

+(8β)n
(
(4− 3i) + (2− i)

√
5
)

+21+2n
(
(−5 + 5i)(−2)n +

(
(2 + i) + i

√
5
)
(2α)n

)]
.

Proof. According to the Binet formula and by applying a pile of operations, we have:

GLn−1GLn+1 − GL2
n =

(1 + 2i +
√

5)


(

1 +
√

5
2

)n−1

−
(

1−
√

5
2

)n−1

(
1 +
√

5
2

)
−
(

1−
√

5
2

)


+2

(
1−
√

5
2

)n−1

+ (−1− i)


(1 + 2i +

√
5)


(

1 +
√

5
2

)n+1

−
(

1−
√

5
2

)n+1

(
1 +
√

5
2

)
−
(

1−
√

5
2

)


+2

(
1−
√

5
2

)n+1

+ (−1− i)

−
(1 + 2i +

√
5)


(

1 +
√

5
2

)n

−
(

1−
√

5
2

)n

(
1 +
√

5
2

)
−
(

1−
√

5
2

)


+2

(
1−
√

5
2

)n

+ (−1− i)

]2

=

(
3 + i

5

)
8−n

[
(−2− i)

(
4
(

1 +
√

5
))n(

(1 + 2i) +
√

5
)

+
(

4− 4
√

5
)n(

(4− 3i) + (2− i)
√

5
)

+21+2n
(
(−5 + 5i)(−2)n +

(
(2 + i) + i

√
5
)(

1 +
√

5
)n)]

.

So, the proof is completed.

Note that by using the relation GLn = (2Fn+1 − 1) + (2Fn − 1)i, the Binet formula for
Fn, and exploiting the algebraic manipulations on the recurrence relation for the Fibonacci
numbers, one can find the Cassini identity, as shown below:

GLn−1GLn+1 − GL2
n = (8(−1)n−1 − 4Fn + 6Fn−1) + (4(−1)n − 2Fn−1)i.

3. Matrix Representation of the Gaussian Leonardo Sequence

In this section, we give the matrix representation of the Leonardo numbers. Note
that, in [2], the authors give a matrix representation of the Leonardo numbers; this matrix
can also be expressed by the sums of the Fibonacci numbers. Let us consider the matrices
given below:

A =

 2 0 −1
1 0 0
0 1 0


and

B =

 GL2
GL1
GL0

.
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Then, it is easy to see that the following equation holds: GL3
GL2
GL1

 =

 2 0 −1
1 0 0
0 1 0

 GL2
GL1
GL0


and, by induction, we say: GLn+2

GLn+1
GLn

 =

 2 0 −1
1 0 0
0 1 0

n GL2
GL1
GL0

.

Moreover, the following amazing property also holds: GL2n+2
GL2n+1

GL2n

 =

 2 0 −1
1 0 0
0 1 0

n GLn+2
GLn+1

GLn

.

Theorem 4. For n ≥ 1,

An =

Fn+4 −Fn+2 −Fn+3
Fn+3 −Fn+1 −Fn+2
Fn+2 −Fn −Fn+1


where F1 = −1, F2 = 0, and Fk = ∑k−3

i=0 Fi = Fk−1 − 1 (k ≥ 3), and Fk is the kth Fibonacci
number.

Proof. By exploiting the well-known property for the Fibonacci sums

n

∑
i=1

Fi = Fn+2 − 1,

we have, for k ≥ 3,

Fk =
k−3

∑
i=0

Fi = Fk−1 − 1.

Then, by using the Mathematical Induction Method, it is easy to see that this is verified for
n = 1. Then, suppose that the following equation is true:

An =

Fn+4 −Fn+2 −Fn+3
Fn+3 −Fn+1 −Fn+2
Fn+2 −Fn −Fn+1

 =

Fn+3 − 1 −Fn+1 + 1 −Fn+2 + 1
Fn+2 − 1 −Fn + 1 −Fn+1 + 1
Fn+1 − 1 −Fn−1 + 1 −Fn + 1

.

Then,

An+1 = An A =

Fn+4 −Fn+2 −Fn+3
Fn+3 −Fn+1 −Fn+2
Fn+2 −Fn −Fn+1

 2 0 −1
1 0 0
0 1 0

 =

Fn+5 −Fn+3 −Fn+4
Fn+4 −Fn+2 −Fn+3
Fn+3 −Fn+1 −Fn+2


which shows that it holds for n + 1.

Proposition 1. det(An) = (−1)n.

Proof. By Theorem 4 and its proof:

An =

Fn+4 −Fn+2 −Fn+3
Fn+3 −Fn+1 −Fn+2
Fn+2 −Fn −Fn+1

 =

Fn+3 − 1 −Fn+1 + 1 −Fn+2 + 1
Fn+2 − 1 −Fn + 1 −Fn+1 + 1
Fn+1 − 1 −Fn−1 + 1 −Fn + 1

.
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Applying the suitable elementary row operations, one obtains the determinant, as shown
below:

det(An) = det

 1 −1 −1
Fn −Fn−2 −Fn−1

Fn+1 − 1 −Fn−1 + 1 −Fn + 1

 = F2
n−1 − FnFn−2 = (−1)n

where the last equality follows from the Cassini identity for the Fibonacci numbers.

4. On Hybrid Numbers with Gaussian Leonardo Coefficients

The main goal of this section is to define hybrid numbers with the Gaussian Leonardo
coefficients and to present some amazing results involving them.

Definition 2. Let us define hybrid numbers with the Gaussian Leonardo coefficients, as shown below:

HGLn = GLn + GLn+1i + GLn+2ε + GLn+3h ; n ≥ 0

where HGLn denotes the nth hybrid Gaussian Leonardo number.

By using the definition of the GLn, we can write:

HGLn = GLn + GLn+1i + GLn+2ε + GLn+3h

= (2GLn−1 − GLn−3)

+(2GLn − GLn−2)i

+(2GLn+1 − GLn−1)ε

+(2GLn+2 − GLn)h

and
HGLn−1 = GLn−1 + GLni + GLn+1ε + GLn+2h,

HGLn−2 = GLn−2 + GLn−1i + GLnε + GLn+1h.

In other words, the hybrid Gaussian Leonardo numbers can be rewritten by the following
recurrence, n ≥ 3:

HGLn = 2HGLn−1 − HGLn−3

with the initial conditions HGL0 = 1 + 3i + 6ε + 4h, HGL1 = 3 + 9i + 10ε + 6h, and
HGL2 = 5 + 15i + 18ε + 10h.

Some values of HGLn are given in Table 3.

Table 3. Some hybrid Gaussian Leonardo numbers.

n 0 1 2 3 4 5

HGLn 1 + 3i + 6ε + 4h 3 + 9i + 10ε +
6h

5 + 15i + 18ε +
10h

9 + 27i + 30ε +
16h

15 + 45i + 50ε +
26h

25 + 75i + 82ε +
42h

In order to find the generating function for the hybrid Gaussian Leonardo numbers,
we have to write the sequence as a power series in which each term of the sequence
corresponds to the coefficients of the series. For more details, please see [20].

Theorem 5. (Generating function) The generating function for the hybrid Gaussian Leonardo
numbers is given by

g(x) =
∞

∑
n=0

(HGLn)xn =
(1 + 3i + 6ε + 4h) + (1 + 3i− 2ε− 2h)x + (−1− 3i− 2ε− 2h)x2

1− 2x + x3 .
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Proof. The generating function of HGLn with a formal power series is

g(x) = HGL0 + HGL1x + HGL2x2 + ... + HGLnxn + ...

and

2xg(x) = 2HGL0x + 2HGL1x2 + 2HGL2x3 + ... + 2HGLn−1xn + ...

−x3g(x) = −HGL0x3 − HGL1x4 − HGL2x5 + ...− HGLn−3xn + ...

From here,

(1− 2x + x3)g(x) = HGL0 + (HGL1 − 2HGL0)x

+(HGL2 − 2HGL1)x2

+(HGL3 − 2HGL2 + HGL0)x3

.

.

.

+(HGLn − 2HGLn−1 + HGLn−3)xn + ...

and, as a result,

g(x) =
HGL0 + (HGL1 − 2HGL0)x + (HGL2 − 2HGL1)x2

1− 2x + x3

=
(1 + 3i + 6ε + 4h) + (1 + 3i− 2ε− 2h)x + (−1− 3i− 2ε− 2h)x2

1− 2x + x3 .

So, the proof is completed.

Theorem 6. (Binet formula) For n ≥ 0,

HGLn =
X(αn + βn) + Y(αn − βn)√

5
+ (−1− 3i− 2ε)

where X =
√

5(1 + 3i + 4ε + 2h), Y = 3 + 9i + 8ε + 4h.

Proof. By exploiting the generating function and the definition of the hybrid Gaussian
Leonardo numbers, we have

g(x) =
HGL0 + (HGL1 − 2HGL0)x + (HGL2 − 2HGL1)x2

1− 2x + x3

=
Ax + B

(1− x− x2)
+

C
(1− x)

where A = (2 + 6i + 4ε + 2h), B = (2 + 6i + 8ε + 4h), and C = (−1− 3i− 2ε). Then, we
write

Ax + B
(1− x− x2)

=
E

(1− xα)
+

F
(1− xβ)

where

E =
(3 + 9i + 8ε + 4h) +

√
5(1 + 3i + 4ε + 2h)√

5

and

F =
(1 + 3i + 4ε + 2h)

√
5− (3 + 9i + 8ε + 4h)√

5
.



Mathematics 2023, 11, 1551 9 of 12

This can be rewritten as

g(x) =
(1 + 3i + 6ε + 4h) + (1 + 3i− 2ε− 2h)x + (−1− 3i− 2ε− 2h)x2

1− 2x + x3

=
(3 + 9i + 8ε + 4h) +

√
5(1 + 3i + 4ε + 2h)√

5(1− xα)

+
(1 + 3i + 4ε + 2h)

√
5− (3 + 9i + 8ε + 4h)√

5(1− xβ)

+
(−1− 3i− 2ε)

(1− x)

=

(
∞

∑
n=0

Eαnxn

)
+

(
∞

∑
n=0

Fβnxn

)
+

(
∞

∑
n=0

Cxn

)

=
∞

∑
n=0

(Eαn + Fβn + C)xn

i.e.,

HGLn =
X(αn + βn) + Y(αn − βn)√

5
+ (−1− 3i− 2ε).

So, the proof is completed.

Example 2. For n = 2,

HGL2 =
X(α2 + β2) + Y(α2 − β2)√

5
+ (−1− 3i− 2ε)

=

(
3X + Y

√
5√

5

)
+ (−1− 3i− 2ε)

= 5 + 15i + 18ε + 10h.

5. On Permanents of Hessenberg Matrices Yielding the Leonardo and Gaussian
Leonardo Sequences

In this section, we define one type of Hessenberg matrix family and compute its
permanent by using the contraction method. Furthermore, we provide a Maple 13 source
code to calculate the permanent using the contraction method (Appendix A).

Let Pn = [pij] be an n× n Hessenberg matrix with p11 = p12 = p13 = 1, pmm = 2,
pm,m−1 = −1, and pt,t+2 = −1 for m = 2, 3, . . . , n and t = 2, 3, . . . , n− 2. Clearly:

Pn =



1 1 1 0
−1 2 0 −1

−1 2 0
. . .

−1 2
. . . −1

. . . . . . 0
0 −1 2


. (2)

Then, we have the following theorem.

Theorem 7. Let Pn be a matrix as in (2). Then,

perPn = Len−1.
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Proof. From the definition of the matrix Pn, this can be contracted on the first column. Let
us denote the kth contraction of Pn by P(k)

n . Namely,

P(1)
n =



1 −1 −1 0
−1 2 0 −1

−1 2 0
. . .

−1 2
. . . −1

. . . . . . 0
0 −1 2


(3)

and by continuing with this process with (n− 3) steps, we obtain for 2 ≤ k ≤ n− 3;

P(k)
n =



Lek Lek−2 −Lek−1 0
−1 2 0 −1

−1 2 0
. . .

−1 2
. . . −1

. . . . . . 0
0 −1 2


(4)

and the (n− 2)th step is given below:

P(n−2)
n =

[
Len−2 Len−4
−1 2

]
.

Then, we have
perPn = perP(n−2)

n = 2Len−2 − Len−4 = Len−1.

Let Kn = [kij] be an n× n Hessenberg matrix with k11 = k12 = k13 = 1, km,m = 2, knn =
2 + i, km,m−1 = −1, and kt,t+2 = −1 for m = 2, 3, 4, . . . , n − 1 and t = 2, 3, 4, . . . , n − 2.
Clearly:

Kn =



1 1 1 0
−1 2 0 −1

−1 2 0
. . .

−1 2
. . . −1

. . . . . . 0
0 −1 2 + i


. (5)

Then, we have the following theorem.

Theorem 8. Let Kn be a matrix as in (5). Then

perKn = GLn−1.
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Proof. The matrix Kn can be contracted on column 1, and, by following the same steps as
in the previous theorem, we obtain the following matrix for 1 ≤ r ≤ n− 3;

K(r)
n =



Lek Lek−2 −Lek−1 0
−1 2 0 −1

−1 2 0
. . .

−1 2
. . . −1

. . . . . . 0
0 −1 2 + i


(6)

and the (n− 2)th step is given below:

K(n−2)
n =

[
Len−2 Len−4
−1 2 + i

]
.

Then, we have

perKn = perK(n−2)
n = (2 + i)Len−2 − Len−4 = GLn−1.

6. Conclusions

In this study, we initially present the Gaussian Leonardo numbers. Then, we investi-
gate some of their amazing characteristic properties, such as the Binet formula, generating
function, Cassini identity, etc. Furthermore, we give some matrix representations. In the
following section, we define the hybrid Gaussian Leonardo numbers and obtain some
particular properties for them. Additionally, we define n× n Hessenberg matrices whose
permanents are the Leonardo and Gaussian Leonardo numbers. Finally, we give a Maple
13 source code to verify the permanent computation (Appendix A).
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version of the manuscript.
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Appendix A

Using the following Maple 13 source code, it is possible to obtain the matrix and the
steps of the contraction method.

restart:
with(LinearAlgebra):
permanent:=proc(n)
local i,j,k,c,C;
c:=(i,j)->piecewise(i=1 and j=1, 1, i=1 and j=2, 1, i=1
and j=3, 1, i=j,2,i=j-2,-1,
i=j+1, -1, 0);
C:=Matrix(n,n,c):
for k from 0 to n-3 do
print(k,C):
for j from 2 to n-k do
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C[1,j]:=C[2,1]C[1,j]+C[1,1]C[2,j]:
od:
C:=DeleteRow(DeleteColumn(Matrix(n-k,n-k,C),1),2):
od:
print(k, eval(C)):
end proc:with(LinearAlgebra):
permanent(n);
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