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1. Introduction

J. Kurzweil first proposed a solution to the primitives problem in 1957, and R. Henstock
did the same in 1963. It is commonly known that the Henstock–Kurzweil integral (HK-
integral) is a generalized form of the Riemann integral. J. Kurzweil and R. Henstock
each separately produced this generalization. The Henstock–Kurzweil integral has a
construction that is comparable to that of the Riemann integral but stronger than the
Lebesgue integral. Additionally, it is well known that the HK-integral can resolve the issue
of primitives in the real line. The Riemann sums limit over the appropriate integration
domain partitions is referred to as the HK-valued integrals. The HK-integral seems to
have a constructive definition. Within the HK-integral, a gauge-like positive function is
employed to assess a partition’s fineness rather than a constant as in the Riemann integral,
which is the fundamental distinction between the two definitions. Cao in [1] introduced
the Banach valued Henstock–Kurzweil integral, Boccuto et al. in [2] defined the Henstock–
Kurzweil-type integral for functions defined on a (possibly unbounded) subinterval on the
extended real line and with values in Banach spaces. A Fubini-type theorem was proved, for
the Kurzweil–Henstock integral of Riesz-space-valued functions defined on (not necessarily
bounded) subrectangles of the extended real plane (see [3]). The integral of the function
close to singular points is better approximated as a result. The problem turns out to be
more challenging for the integration of approximative derivatives. Finding relationships
between the Denjoy–Khintchine integral and its roughly continuous generalizations and
approximate Perron-type integrals was the focus of most studies in this area (see [4] for
Denjoy integral). John Burkill [5] was credited with the invention of the roughly continuous
Perron integral (AP-integral). According to the uniformly AP integrable in short UAP and
element-wise boundedness conditions, Jae Myung Park et al. [6] investigated convergence
theorems for the AP-integral. By demonstrating that the AP–Denjoy integral and the
AP–Henstock–Kurzweil integral are equal and identical, Jae Myung Park et al. [7] defined
the AP-Denjoy integral. In [8], Skvortsov et al. draw attention to results that are powerful
than those shown in Jae’s work. They demonstrate how some of them are amenable to
formulation in perspective of a derivation basis specified by a local system, of which it is

Mathematics 2023, 11, 1552. https://doi.org/10.3390/math11061552 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11061552
https://doi.org/10.3390/math11061552
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-0644-0600
https://orcid.org/0000-0002-8821-4040
https://doi.org/10.3390/math11061552
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11061552?type=check_update&version=1


Mathematics 2023, 11, 1552 2 of 16

known that the approximate basis is a specific case. They also consider how the σ-finiteness
of the variational measure generated by a function interacts with the conventional idea of
generalized bounded variation. The Riemann-type integral is equal to the properly defined
Perron-type integral on a large class of bases (see [9]). Skvortsov et al. [10] say only that
Burkill’s AP-integral is covered by AP–Henstock–Kurzweil integral. Shin and Yoon [11]
introduced the concept of approximately negligible variation and give a necessary and
sufficient condition that a function F be an indefinite integral of an AP–Henstock–Kurzweil
integrable function f on [a, b]. The concept of bounded variation is then used to describe the
characterization of AP–Henstock–Kurzweil integrable functions. Bongiorno et al. mention
in their research [12] a type of Henstock–Kurzweil integral defined on a complete metric
space X, using a Radon measure µ and a family of sets F which fulfill the covering theorem
of Vitali for µ. In particular, the traditional Henstock–Kurzweil integral on R, where R is the
set of reals, is enclosed by this integral; for more information, see [13]. The construction
of the µ–Henstock–Kurzweil integral motivated us to construct µAP–Henstock–Kurzweil
integrals on complete metric spaces with a non-atomic Radon measure. In this paper, we
analyze the AP-integral of Henstock–Kurzweil type, described on X, possessed by µ and a
class of “sets” F fulfilling the Vitali’s covering theorem. We finally enlarge this notion in
the setting of locally compact second countable Hausdorff spaces with bounded or locally
finite measures.

The paper is organized as follows: in Section 2, the basic concepts and terminology are
introduced together with some definitions and results. In Section 3, we introduce the AP–
Henstock–Kurzweil-type integral called µAP–Henstock–Kurzweil integral of a set-valued
function with respect to a Radon measure. Simple properties of µAP–Henstock–Kurzweil
integrals are discussed in Section 3.1. The relationships between µAP–Henstock–Kurzweil
integrable functions and Lebesgue integrable functions are discussed in Proposition 4. In
Section 4, we extend the theory of the µAP–Henstock–Kurzweil integral to locally finite
measures on locally compact second countable Hausdorff spaces. A few fundamental
results are discussed in this section. The main result in this section is the Saks–Henstock-
type Lemma on Theorem 12.

2. Preliminaries

Let us fix X = (X, d) as a Cauchy metric space with a non-atomic Radon measure
µ. Throughout the paper, the complete metric spaces or the Cauchy metric spaces will
be termed as Cauchy spaces. A σ-algebra is a collection M of subsets of X satisfying the
conditions:

1. X is in M.
2. A is in M implies X \ A ∈ M.

3. An is in M, n = 1, 2, . . . , implies
∞⋃

n=1
An ∈ M.

Let C be an arbitrary collection of subsets of X. The smallest σ-algebra σ(C) containing
C, called the σ-algebra generated by C, is the intersection of all σ-algebras in X which
contain C.

Let M be a σ-algebra of subsets of a set X. A positive function µ : M→ [0,+∞] is called
a measure if

1. µ(∅) = 0;

2. µ(
∞⋃

j=1
Aj) =

∞
∑

j=1
µ(Aj) for every sequence {Aj}j of pointwise disjoint sets from M.

Then, (X, M, µ) is termed as a measure space. Suppose U is the Borel σ-algebra of X.
Recall that a measure µ defined on U is called locally finite if for every x ∈ X, there is r > 0
such that µ(B(x, r)) < ∞, where B(x, r) is the open ball of center x and radius r. µ is called
a Radon measure if µ is a Borel measure with the followings:

1. µ(K) < ∞ for every compact set K ⊂ X.
2. µ(V) = sup{µ(K) : K ⊂ V, K is compact} for every open set V ⊂ X.



Mathematics 2023, 11, 1552 3 of 16

3. µ(A) = inf{µ(V) : A ⊂ V, V is open} for every A ⊂ X.

In the entire work, we consider µ a non-atomic Radon measure, F is a family of µ-
measurable sets in short µ sets and Q ∈ F. For E ⊂ X, we denote the indicator function,
diameter, interior and the boundary of E by χE, diam(E), E0 and ∂E, respectively. Through-
out the article, we denote d(x, E) as the distance from x to E. Let us define F as a family of
non-empty closed subsets of X.

If
m⋃

i=1
Qi = Q, then a partition of Q is a finite gathering of Q1, Q2, . . . , Qn pairwise

non-overlapping elements of F.
Let E ⊂ X and let F be a subfamily of F. We say that F is a fine cover of E if

inf
{

diam(Q) : Q ∈ F, x ∈ Q
}

= 0

for each x ∈ E.

Definition 1 ([13], Definition 2.14). We say that F is a µ-Vitali family if for each subset E of X and
for each subfamily F of F that is a fine cover of E, there exists a countable system

{
Q1, Q2, .., Qj, ..

}
of pairwise non-overlapping elements of F such that µ(E \⋃Qj) = 0.

Consider a fine cover F of E ⊂ X. Recall that a family F of non-void closed subsets of X
is a µ Vitali family if the following Vitali covering theorem is fulfilled:

Theorem 1 ([13], Theorem 2.1). For each subset E of X and for each subfamily F of F that is a
fine cover of E, there exists a countable system

{
Q1, Q2, . . . , Qj, . . .

}
⊂ F such that Qi and Qj

are non-overlapping (i.e., the interiors of Qi and Qj are disjoint), for each i 6= j, and such that
µ(E \ ∪Qj) = 0.

A µ-Vitali family F is said to be a family of µ sets if it satisfies the following conditions:

(a) Given Q ∈ F and a constant δ > 0, there exist Q1, Q2, . . . , Qm, . . . subsets of Q, such

that Qi and Qj are non-overlapping for each i 6= j,
m⋃

i=1
Qi = Q, and diam(Qi) < δ, for

i = 1, 2, . . . , m;
(b) Given A, Q ∈ F with A ⊂ Q, there exist Q1, Q2, . . . , Qm, . . . subsets of Q, such that

Qi and Qj are non-overlapping for each i 6= j and A = Q1;
(c) µ(∂Q) = 0 for each Q ∈ F.

The Vitali covering theorem is one of the most useful tools of measure theory. Given a
collection of sets that cover some set A, the Vitali theorem selects a disjoint subcollection
that covers almost all of A. Here, we recall Vitali’s covering theorem for Radon measures as
follows:

Theorem 2 ([14], Page 34). Let µ be a Radon measure on Rn, A ⊂ Rn and B a family of closed
balls such that each point of A is the center of arbitrarily small balls of B, that is

inf
{

r : B(x, r) ∈ B

}
= 0,

for each x ∈ A. Then, there are disjoint balls Bi ∈ B, i = 1, 2, . . . , such that µ

(
A \⋃

i
Bi

)
= 0.

Definition 2 ([15]). Consider a measurable set E included in R and c is a real number. At c, the
density of E equals

dc(E) = lim
h→0+

µ(E∩ (c− h, c + h))
2h
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provided the limit exists. Clearly, 0 ≤ dc(E) ≤ 1 when it exists. The point c is a point of density of
E if dcE = 1 and a point of dispersion of E if dc(E) = 0.

An approximate neighborhood of x ∈ [a, b] is a measurable set Nx ⊂ [a, b] containing
x as a point of density. Let E ⊂ [a, b]. For every x ∈ E ⊂ [a, b], choose an approximate
neighborhood Nx ⊂ [a, b] of x. Then, N =

{
Nx : x ∈ E

}
is a choice on E. If each point of

Nx is a point of density of Nx, then a tagged interval ([c, d], x) is said to be fine to the choice

N = {Nx} if c, d ∈ Nx and x ∈ [c, d]. A tagged subpartition P =

{
([ci, di], ti) : 1 ≤ i ≤ n

}
of [a, b] is a finite collection of non-overlapping tagged intervals in [a, b] such that ti ∈ [ci, di]
for i = 1, 2, . . . , n. If ([ci, di], ti) is fine to the choice N for each i = 1, 2, . . . , n; then, P is
N-fine. If P is N-fine and ti ∈ E for each 1 ≤ i ≤ n, then we say that P is (N, E)-fine.
If P is N-fine and ti ∈ E for each 1 ≤ i ≤ n, then P is (N, E)-fine. If P is N-fine and

[a, b] =
n⋃

i=1
[ci, di],, then P is an N-fine tagged partition of [a, b]. For a tagged partition

P =

{
(xi, [ci, di]) : 1 ≤ i ≤ n

}
of [a, b], the Riemann sum is S( f , P) =

n
∑

i=1
f (xi)(di − ci).

Consider a metric measure space (X, d, µ) in the sense that the metric induces a topol-
ogy T, and the measure is the Borel measure arising from the sigma field induced by the
metric d. If T is second countable locally compact and Hausdorff, we can consider a basis
consisting of relatively compact open sets. Let T1 be a basis for T consisting of relatively
compact open sets. If the topology T of X is induced by a metric d on X, then T1 is the set of
all d-open balls say B(x, r) are d−open balls with µ(B(x, r)) < ε.

Let u ∈ T1 and u 6= ∅; then, µ(u) > 0. In addition, if u is a closure of u, then
µ(u) = µ(u). This means µ(∂u) = 0 for all u ∈ T1. Consider

Q0 =

{
u1 \ u2, u1, u2 ∈ T1 with u1 * u2 and u2 * u1

}
and

Q1 =

{ ⋂
i∈N

vi 6= ∅; vi ∈ Q0

}
,

then Q0 includes all sets of the form u where u ∈ T1 and Q0 ⊆ Q1. Clearly, Q1 is closed
under finite intersections. If the intersection is non-empty and since µ is a σ-algebra,
members of Q1 are µ-measurable. A set Q is called elementary if Q is a finite union of
(possibly just one) mutually disjoint sets. We say that a set P = {(Qi, xi) : i = 1, 2, . . . , n}
is a partial partition of Q if Q1, Q2, . . . , Qn are mutually disjoint subsets of Q such that
Q \⋃n

i=1 Qi = ∅ or elementary subset of Q for each i, with xi ∈ Qi. Throughout the article,
the closure of Q is denoted by Q.

Let Γ : Q → T1 be a function such that for every x ∈ Q, we have x ∈ Γ(x) ∈ T1. We
call Γ as a gauge on Q. If T of X is induced by the metric d, then T1, the collection of all
d-open balls and a gauge Γ on Q be as Γ(x) = B(x, δ(x)) for all x ∈ Q with certain δ(x) > 0.
If Γ is a gauge on Q, then (Qi, xi) is N-fine if Q ⊆ Γ(x). If for all i = 1, 2, . . . , n, (Qi, xi) is
N-fine, then P = {(Qi, xi) : i = 1, 2, . . . , n} of Q is also N-fine. Given that partitions of Q
are only partial partitions of Q, an N-fine partition of Q can be defined similarly. Let Γ1
and Γ2 be two gauges on Q. Since T1 is a basis of T, for each x ∈ Q, there exists Γ(x) ∈ T1
such that Γ(x) ⊆ Γ1(x)∩ Γ2(x). We can then define a gauge Γ on Q which is finer than both
Γ1 and Γ2. As a result, P is both Γ1-fine and Γ2-fine if P is a N-fine partition of Q.

Proposition 1 ([13], Lemma 2.2.1). (Cousin’s-type lemma) if δ is a gauge on Q, then there exists
a δ-fine partition of Q.

Recalling the AP–Henstock–Kurzweil integral as follows:
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Definition 3 ([16], Definition 16.4). A mapping f : [a, b] → R is called an AP–Henstock–
Kurzweil integrable if a real number A exists such that for each ε > 0, there is a choice N on [a, b]
such that |S( f , P)− A| < ε whenever P is an N-fine tagged partition of [a, b]. In this case, A is
called the AP–Henstock–Kurzweil integral of f on [a, b], and is denoted by A =

∫ b
a f .

Given a set function F defined on F and given x ∈ X, the upper derivative of F at x,
with respect to µ, is defined as

UDF(x) = lim
B→x∈F

sup
F(B)
µ(B)

.

Here, B→ x implies µ(B) 6= 0, diam(B)→ 0 and x ∈ B.
The lower derivative LDF is defined similarly. UDF and LDF are studied in [12].
Let φ : F → R be a function. We say that φ is an additive function of set if for each

Qi ∈ F, for all i = 1, 2, . . . , m and for each division {Q1, Q2, . . . , Qm} of Q, we have

φ(Q) =
m

∑
i=1

φ(Qi).

Proposition 2 ([17], page 5). For every measurable set W and every ε > 0, there exist an open set
U and a closed set Y such that Y ⊆ W ⊆ U and µ(U \ Y) < ε.

3. AP–Henstock–Kurzweil Integral in Regard to a Radon Measure

In this section, we discuss the AP–Henstock–Kurzweil integral with respect to a Radon
measure. We consider µ a non-atomic Radon measure and Q ∈ F, where F is a family of
µ sets. An approximate neighbourhood x ∈ Q is a measurable set Nx ⊂ Q containing
x as a point of density. Suppose E ⊂ Q. For every x ∈ E ⊂ Q, choose an approximate
neighborhood Nx ⊂ Q of x. Then, N = {Nx : x ∈ E} is a choice on E. If each point of Nx is
a point of density of Nx, then a tagged (Ei, x) is said to be fine to the choice N = {Nx} if
Ei ∈ Nx and x ∈ Ei.

Definition 4 ([15]). Given a µ-measurable set E ⊂ Q, a set-valued function N : E→ 2Q is called
an AP-neighborhood function (ANF) on E if for every x ∈ E, there exists an ap-neighbourhood
Nx ⊂ Q of x such that N(x) = Nx.

A tagged subpartition, denoted by the symbol P = {(Ei, ti) : 1 ≤ i ≤ n}, consists of a
finite set of non-overlapping tagged subsets in Q that way ti ∈ Ei for i = 1, 2, 3, . . . , n. We
say that P is N-fine if (Ei, ti) is acceptable to the selection N for i = 1, 2, . . . , n. If P is N-fine
and ti ∈ E for each 1 ≤ i ≤ n, we may say that P is (N, E) fine. We refer to P as the tagged

partition of Q if P is N-fine and Q =
n⋃

i=1
Ei.

Definition 5. Let f be a function defined on µ set Q. We say f : Q ⊂ F → R is approximately
continuous at c ∈ Q if there exist a measurable set E ⊂ Q with density 1 at c such that

lim
x→c

f(x) = A for x ∈ E.

We say f is approximately differentiable at c if there exists a real number A and a measurable
set E ⊂ Q such that the density of E at c is 1 and

lim
x→c

f(x)− f(c)
x− c

= A for x ∈ E.

We denote A = f′ap(c). For a tagged partition P = {(Ei, ti) : 1 ≤ i ≤ n} of Q, we denote

S(f, P) =
n
∑

i=1
f(ti)µ(Ei) and f(P) = S(f, P). For a function F1 : Q → R, F1 can be utilized as a
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set-based function by specifying F1(Q) = µ(Q). We will denote F1(P) =
n
∑

i=1
F1(Qi) for an N-fine

tagged partition P = {(Qi, ti), 1 ≤ i ≤ n}.

Definition 6. A function f : Q→ R is called µAP–Henstock–Kurzweil integrable if there exists a
real number A such that for each ε > 0, there exists a choice N on Q such that |S(f, P)− A| < ε.

In this instance, A is referred to as the µAP–Henstock–Kurzweil integral of f on Q,
and we write

A = (AP)
∫

Q
fdµ. (1)

The collection of all integrable µAP–Henstock–Kurzweil functions on Q (in regard to
µ) shall be written as µAPHK(Q). It is observe that A of (1) is unique. The µAPHK integral
includes the AP-real line Henstock–Kurzweil integral.

Example 1. Using Euclidean distance in R along with the Lebesgue measure λ, let X be the interval
of the real line [0, 1]. If we consider

F = {I : I is non empty closed subinterval of X}

Clearly, F is a µ set in [0, 1] and the µAP–Henstock–Kurzweil integral is the usual AP–
Henstock–Kurzweil integral on [0, 1].

Remark 1. Since the intersection of two approximate full covers of Q is another approximate full
cover of Q, also the number A of (1) is unique. Every µ–Henstock–Kurzweil integrable function is
certainly µAP–Henstock–Kurzweil integrable and the integrals are equal.

3.1. Simple Properties

Here, we will study some fundamental characteristics of µAPHK(Q) integrable func-
tions.

Theorem 3. 1. Suppose f1, f2 ∈ µAP HK(Q) on this occasion f1 + f2 ∈ µAP HK(Q) along
with

(AP)
∫

Q
(f1 + f2)dµ = (AP)

∫
Q
f1dµ + (AP)

∫
Q
f2dµ.

2. Suppose f1 ∈ µAPHK(Q) α is a scalar, then αf1 ∈ µAP HK(Q) with (AP)
∫

Q αf1dµ =

(AP)α
∫

Q f1dµ.

Proof. For (1) Let ε > 0 be given and suppose A1, A2 are µAP–Henstock–Kurzweil
integrals of f1, f2, respectively. Since f1 ∈ µAPHK(Q), consider a gauge δ1 on Q such that

|S(f1, P1)− A1| <
ε

2
,

for each δ1-fine partition P1 of Q. Similarly, there exists a positive function (gauge) δ2 on Q
so that for every δ2-fine partition P2 of Q, we have

|S(f2, P2)− A2| <
ε

2
.

Assuming a gauge on Q, with δ = min{δ1, δ2}. Being aware of the fact that if δ is a
gauge on Q, then there is a δ-fine partition of Q. Since P is both δ1, δ2-fine, we can find

|S(f1 + f2, P)− (A1 + A2)| < ε.

Therefore, f1 + f2 ∈ µAPHK(Q).
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The proof of (2) is similar to the proof of (1).

Theorem 4. Suppose f ∈ µAPHK(Q) and suppose for every x ∈ Q, f(x) ≥ 0. This will give
(AP)

∫
Q fdµ ≥ 0.

Proof. Let ε > 0 be given. Since f ∈ µAPHK(Q), there exists a gauge δ on Q such that∣∣∣∣S(f, P)− (AP)
∫

Q
fdµ

∣∣∣∣ < ε,

for each δ-fine partition P =
{
(xi, Qi)

}m
i=1 of Q. Since f(x) ≥ 0 for each x ∈ Q, we have

S(f, P) =
m

∑
i=1

f(xi)µ(Qi) ≥ 0.

Therefore

S(f, P)− ε < (AP)
∫

Q
fdµ < S(f, P) + ε.

Since ε is arbitrary, we obtain (AP)
∫

Q fdµ ≥ 0.

Theorem 5. Suppose f1, f2 ∈ µAP HK(Q). In addition, if f1 ≤ f2 for every x ∈ Q, then
(AP)

∫
Q f1dµ ≤ (AP)

∫
Q f2dµ.

Proof. Let f = f2 − f1. By Theorem 3, we have f ∈ µAPHK(Q) and

(AP)
∫

Q
fdµ = (AP)

∫
Q
f2dµ− (AP)

∫
Q
f1dµ.

Since f1 ≤ f2 then f ≥ 0 for each x ∈ Q and by Theorem 4, we obtain that
(AP)

∫
Q fdµ ≥ 0. Therefore (AP)

∫
Q f1dµ ≤ (AP)

∫
Q f2dµ.

Theorem 6 (The Cauchy Criterion). A mapping f : Q → R is µAPHK integrable on Q if and
only if for every ε > 0, there exists a positive function (gauge) δ on Q such that

|S(f, P1)− S(f, P2)| < ε,

for each pair N-fine partitions P1 and P2 of Q.

Proof. Let us consider f : Q → R is µAPHK integable on Q. Given ε > 0, there exists a
gauge δ on Q such that ∣∣∣∣S(f, P)− (AP)

∫
Q
fdµ

∣∣∣∣ < ε

2
,

for each N-fine partition P of Q. If P1 and P2 are two N-fine partitions of Q, we have

|S(f, P1)− S(f, P2)| ≤
∣∣∣∣S(f, P1)− (AP)

∫
Q
fdµ

∣∣∣∣+ ∣∣∣∣S(f, P2)− (AP)
∫

Q
fdµ

∣∣∣∣
< ε.

Conversely, for each n ∈ N, let δn be a gauge on Q such that

|S(f, P
′
n)− S(f, P

′′
n )| <

1
n

for each pair N-fine partitions P
′
n and P

′′
n of Q. Let �n(x) = min{δ1(x), δ2(x), . . . , δn(x)} be

a gauge on Q. By the Proposition 1, there exists a �-fine partition (respectively, N-fine) of Pn
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of Q, for each n ∈ N. Let ε > 0 be given and choose a positive natural N such that 1
N < ε

2 . If
m and n are positive natural (n < m) such that n ≥ N, then Pn and Pm are N-fine partitions
on Q; hence

|S(f, Pn)− S(f, Pm)| <
1
n
<

ε

2
.

Consequently,
{
S(f, Pn)

}∞

n=1
is a Cauchy sequence of real numbers and hence con-

verges.
If A = lim

n→∞
S(f, Pn), then

|S(f, Pn)− A| < ε

2
,

for each n ≥ N. Let P be an N-fine partition on Q, then

|S(f, P)− A| ≤ |S(f, P)− S(f, PN)|+ |S(f, PN)− A|
< ε.

Hence, f is µAPHK integrable on Q.

Corollary 1. Corollary Suppose Q ∈ F and f ∈ µAPHK(Q). Assume there exists a partition D of
Q with A ∈ D. Then, f is in µAPHK(A) with (AP)

∫
A fdµ = (AP)

∫
Q fχAdµ.

Remark 2. 1. Let f : Q → R be µAP–Henstock–Kurzweil integrable on Q; then, f is µAP–
Henstock–Kurzweil integrable on every subset Ei ⊂ Q ∈ F.

2. If f is µAP–Henstock–Kurzweil integrable on each subset Ei ⊂ Q, then f is µAP–Henstock–
Kurzweil integrable on Q.

Proposition 3. Consider f : Q → R in µAP(HK)(Q) and a partition {Q1, Q2, . . . , Qm} of Q.
Then

f ∈ µAP(HK)(Q1) ∩ µAP(HK)(Q2) ∩ ..∩ µAP(HK)(Qm),

with (AP)
∫

Q fdµ =
m
∑

i=1
(AP)

∫
Qi
fdµ.

Proof. Since f : Q→ R is µAP–HK integrable on Q, for given ε > 0 and for a gauge δ, there
will be a choice N on Q so that∣∣∣∣S(f, P)− (AP)

∫
Q
fdµ

∣∣∣∣ < ε.

Now, according to Corollary 1, f is in µAP(HK)(Qi) for i = 1, 2, . . . ; m; then, there
exists a choice Ni for gauge δi on Qi for i = 1, 2, . . . , m such that δi(x) < δ(x) for each x, and∣∣∣∣S(f, Pi)− (AP)

∫
Qi

fdµ

∣∣∣∣ < ε

m
,

for each δi-fine partition Pi of Q. If δ = max{δi : 1, 2, . . . }, then P = P1 ∪ P2 ∪ · · · ∪ Pm is a
δ-fine partition on Q for the choice max{Ni} = N. Consequently,∣∣∣∣∣S(f, P)−

m

∑
i=1

(AP)
∫

Qi

fdµ

∣∣∣∣∣ ≤
∣∣∣∣S(f, P1)− (AP)

∫
Q1

fdµ

∣∣∣∣+ · · ·+ ∣∣∣∣S(f, Pm)− (AP)
∫

Qm
fdµ

∣∣∣∣
< ε.

So, (AP)
∫

Q fdµ =
m
∑

i=1
(AP)

∫
Qi
fdµ.
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Definition 7. We call the map F : E (AP)
∫
E f dµ defined on each subset E of Q the indefinite

µAPHK integral of f on Q.

Theorem 7. The map F → E (AP)
∫
E fdµ of Definition 7 is an additive set function.

Proof. The proof follows from Proposition 3.

Definition 8. A collection S of N-tagged in F is an approximate full cover of Q ⊂ F if for each
x ∈ Q there exists a measurable set Sx ⊂ F such that for a compact subset E, x ∈ Sx and (x, E) ⊂ S
if and only if xE ∈ E ∈ Sx. The collection S = {Sx : x ∈ Q} is called the collection of sets generated
by S. If Q1 ⊂ Q, then Sx = {(x, E) ∈ S : x ∈ Q1}.

Theorem 8. Let φ be a set function that is defined on the class of all subsets of Q. Suppose φ is
additive. A mapping f : Q→ R is µAPHK integrable on Q if and only if for each ε > 0, there exists
an N-fine gauge δ on Q with

∑
(xi ,Qi)∈P

|φ(Qi)− f(xi)µ(Qi)| < ε

for every P partial partition of Q that is N-fine.

Proof. Proof is similar to the ([13], Lemma 2.4.1), so we omit the proof.

Now, we discuss the properties of the µAP–Henstock–Kurzweil integral with approxi-
mate differentiation with respect to the Radon measure µ. Recall that a Radon measure µ is
a Borel regular measure if it is a Borel measure. Additionally, a Borel regular measure µ
becomes a Borel measure if for each E ⊂ X, there exists a Borel subset B of X such that E ⊂ B

and µ(B) = µ(E). In addition, see [13,14] for details.
In order to consider the upper approximate differentiation at the point of density, with

respect to µ, we define the following notions:

Definition 9. Let us consider F a set function defined on F. For a given x ∈ X, the upper approxi-
mate differentiation at x with regard to µ is determined by

UADF(x) = inf
{

α ∈ R : x is a point of dispersion of
{

x ∈ Q : lim
B→x∈F

F(B)
µ(B)

≥ α

}}
,

where B→ x means µ(B) 6= 0, diam(B)→ 0 and x ∈ B.

Similarly, we define the lower approximate derivative of F at x with respect to µ as

LADF(x) = sup
{

β ∈ R : x is a point of dispersion of
{

x ∈ Q : lim
B→x∈F

F(B)
µ(B)

≤ β

}}
,

where B→ x means µ(B) 6= 0, diam(B)→ 0 and x ∈ B.
When UADF(c) and LADF(c) are equal but different from ∞ and −∞, then F is called

approximate differentiable at c. The common value is known as the approximate derivative
of F at c. It is described as F′AP(x).

Clearly, LDF(x) ≤ LAPF(x) ≤ UAPF(x) ≤ UDF(x). The properties of the approxi-
mate derivatives are similar to those for ordinary derivatives with respect to µ.

Theorem 9. 1. If f is a non-negative µAPHK integrable function on a set Q and F is its
indefinite µAPHK-integral, then F is approximate differentiable µ-almost everywhere on Q

and F
′

AP = f µ-a.e.
2. The function F is µ-measurable.
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Proof. We prove (1) by contradiction. Suppose F′AP 6= f a.e on Q, then at least one of
the sets {

x ∈ Q : f(x)− LADF(x) > 0
}

(2)

{
x ∈ Q : −f(x) + LADF(x) > 0

}
(3)

has a positive outer measure. Due to the positive outer measure of Equation (2), there exists

positive numbers r0, r1 so that µ∗(A) > r0 where A =

{
x ∈ Q : f(x)− LADF(x) > r1

}
.

Let S be the system of all Borel sets B ⊂ Q such that F(B) > µ(B) and there exists x ∈ B∩ A
with diam(B) < δ(x). It is easy to see that S is a fine cover of A. Therefore, there exists a

system of pairwise non-overlapping sets
{
Bi
}m

i=1 ⊂ S such that µ(A) ≤
m
∑

i=1
µ(Bi) + ε. Now,

f being µAP–Henstock–Kurzweil integrable on Q, there exists an approximate full cover
S of Q so that |S(f, P)− F(P)| < r0r1, ∀ P ⊆ S. Let {Sx : x ∈ Q} be the collection of sets
generated by S. Since LADF(x) < f(x)− r1 for each x ∈ A, x is not a point of dispersion of
the set

Bx =

{
x ∈ Q : lim

B→x∈F
F(B)
µ(B)

≤ f(x)− r1

}
.

Since x is a point of dispersion of (x− δ, x + δ) \ Sx so, Bx ∩ (x− δ, x + δ) ∩ Sx 6= ∅
for each δ > 0. Let us choose a strictly monotone sequence {yx

n} ⊆ Bx ∩ Sx → x. Since
µ∗(A) > r0, so the collection J =

⋃
x∈A
{[yx

n, x] : n ∈ Z+} is a µ-Vitali cover of A. Now, by the

Vitali Covering Lemma, there exists a finite collection {Qi : 1 ≤ i ≤ q} of disjoints subsets

of J such that
q
∑

i=1
µ(Qi) > r0. Let P = {(Qi, xi) : 1 ≤ i ≤ q} and P ⊂ S. Now,

S(f, P)− F(P) =
q

∑
i=1
{f(xi)µ(Qi)− F(Q)}

=
q

∑
i=1
{f(xi)−

F(Q)
µ(Qi)

(µ(Qi))}

≥
q

∑
i=1

r1µ(Qi)

> r0r1

which is a contradiction. So, F′ = f a.e. on Q.
For (2): To prove the function F is µ-measurable, let Pk be a 1

k N-fine partial partition of
Q and let fk be the µ-simple functions as

fk(x) = ∑
(x,B)∈Pk

F(B)
µ(B)

,

where B is a Borel subset of X such that E ⊂ B and µ(B) = µ(E). Let C =
∞⋃

k=1

⋃
B∈Pk

∂B

also when D = {x ∈ Q : F′AP does not exist, or F′AP exists and F′AP(x) 6= f(x)}. Since
µ(∂B) = 0 for each B ∈ Q, and f is a non-negative µAPHK integrable function on a set Q

with F
′

AP = f µ-a.e, we obtain that Q1 = C ∪ D is µ-null. Let x ∈ Q \Q1. For each k ∈ N,
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there exists Qk,x ∈ F such that (x, Qk,x) ∈ Pk, diam(Qk, x) < 1
k and fk(x) = F(Qk,x)

µ(Qk ,x) . Then,

by F′AP = f µ-a.e., we obtain fk(x)→ f(x). Therefore, F is µ-measurable.

Theorem 10. Every non-negative µAP–Henstock–Kurzweil integrable function f on a set Q is
µ-measurable if its indefinite integral F is µAP–Henstock–Kurzweil integrable.

Proof. The proof is similar to the ([12], Theorem 5.3), so we omit the proof.

Recall that on a set Q, each Lebesgue integrable function coincides with the µ–
Henstock–Kurzweil integrable function. We recall the Vitali–Caratheódory Theorem below.

Theorem 11 ((Vitali–Caratheódory Theorem) [13], Theorem 2.5.1). Let f be a real function
defined on a set Q. If f is Lebesgue integrable on Q with respect to µ and ε > 0, then there exist
functions g and h on Q such that g ≤ f ≤ h, g is upper semicontinuous and bounded above, h is
lower semicontinuous and bounded below, and (L)

∫
Q(h− g)dµ < ε.

We find the relation between µAP–Henstock–Kurzweil integrable functions and
Lebesgue integrable functions on Q with the Lebesgue integral as follows:

Proposition 4. Every Lebesgue integrable function f1 : Q → R on Q with regard to µ is µAP–
Henstock–Kurzweil integrable on Q. Consequently, (L)

∫
Q f1dµ = (AP)

∫
Q f1dµ.

Proof. Suppose f1 : Q → R is Lebesgue integrable on Q. Using the Vitali–Caratheódory
Theorem, for ε > 0, there exist the functions f2 and f3 that are upper and lower semicontin-
uous, respectively, on Q such that −∞ ≤ f2 ≤ f1 ≤ f3 ≤ +∞ and (L)

∫
Q(f3 − f2)dµ < ε.

Let δ be an N-fine gauge on Q so that f2(t) ≤ f1(x) + ε and f3(t) ≥ f1(x)− ε for every
t ∈ Q along with d(x, t) < δ(x). For an N-fine partition P = {(Qi, xi)}n

i=1; i = 1, 2, . . . , n of
Q, we have

(L)
∫

Qi

f2dµ ≤ (L)
∫

Qi

f1dµ ≤ (L)
∫

Qi

f3dµ. (4)

Therefore,

(L)
∫

Qi

(f2 − ε)dµ ≤ (L)
∫

Qi

f1(xi)dµ.

Hence, (L)
∫

Qi
f2dµ − ε µ(Qi) ≤ f1(xi)µ(Qi). In addition, f1(xi)µ(Qi) ≤

(L)
∫

Qi
f3dµ + ε µ(Qi). Therefore, for i = 1, 2, . . . , n,

(L)
∫

Qi

f2dµ− ε µ(Qi) ≤ f1(xi)µ(Qi) ≤ (L)
∫

Qi

f3dµ + ε µ(Qi).

This gives

(L)
∫

Q
f2dµ− ε ≤ S(f1, P) ≤ (L)

∫
Q
f3dµ + ε. (5)

From (4) and (5), |S(f1, P)− (L)
∫

Q f1dµ| < ε. Hence, f1 is a µAP–Henstock–Kurzweil
integrable on Q with respect to µ with (L)

∫
Q f1dµ = (AP)

∫
Q f1dµ.

4. AP–Henstock–Kurzweil Integral with Respect to Locally Finite Measures on Locally
Compact Second Countable Hausdorff Spaces

We apply the fundamental findings from the theory of the µAP–Henstock–Kurzweil
integral to the case of bounded or locally finite measures on second countable Hausdorff
spaces that are locally compact. A second countable locally compact Hausdorff space will
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now be represented by X. Consider X =
⋃

i∈N
Xi, where (Xi)i∈N is an increasing sequence of

relatively compact open subsets of X so that Xi ⊆ Xi+1. Radon measures are always Borel
regular by definition, but in general, the converse is not true. Indeed, for example, the
counting measure n on X, defined by letting n(A) be the number of elements in A, where
A ⊂ X is Borel regular on any metric space X, but it is a Radon measure only if every
compact subset of X is finite, that is, X is discrete. A Borel measure µ on a locally compact
Hausdorff space is regular if for all Borel subsets B of X, we have

µ(B) = inf{µ(O) : B ⊆ O, O is open}.

That is,

µ(B) = sup{µ(K) : K ⊆ B, K is compact}.

In addition, any bounded Borel measure on a second countable locally compact
Hausdorff space is regular. So, the Borel measure is equivalent to the Radon measure
on a second countable locally compact Hausdorff space. Now, onwards, consider the
Radon measure µ on a σ-algebra M of X endowed with a second countable locally compact
Hausdorff topology T ⊆ M. We define the µAP–Henstock–Kurzweil integrable relative to µ
on Q as follows:

Definition 10. Let f : Q → R be a function. f is said to be µAP–Henstock–Kurzweil integrable
relative to µ on Q if there exists a real number A such that for each ε > 0, there exists a choice
N-fine gauge Γ on Q such that ∣∣∑ f(x)µ(Qi)− A

∣∣ < ε.

We denote the real number A = (AP)
∫

Q f. A is called the µAP HK integral of f relative to µ
on Q.

It is easy to see that the integral A is unique. An N-fine gauge on Q has to be outlined
on Q not simply on Q since for each pair of sets for each (Qi, xi) during a partition of
Q, the relevant point x ∈ Q while this is not true for Q. The set of all functions that are
µAP–Henstock–Kurzweil integrable relative to µ on Q shall be denoted by µrAPHK(Q).

We call a finite union of mutually disjoint µ sets as a µ-elementary set (in short,
an elementary set). Any subset of an elementary set is called a µ-elementary subset (in
short elementary subset). Say Q be an elementary set and Q0 be an elementary subset
of Q. We call Q0 a µ-fundamental set (in short fundamental set) if Q0 and Q \ Q0 are
µ-elementary sets.

Remark 3. If P = {(Qi, xi)}n
i=1 is an N-fine partial division of Q which is not a division of Q,

then Q \
n⋃

i=1
Qi is necessarily an elementary set. This means for each i = 1, 2, . . . , n the set Q \Qi

is an elementary subset of Q and thus each Qi is a fundamental subset of Q.

Fundamental Characteristics

Within this subsection, we lay out a few basic characteristics of the APHK integral. The
main result here is a Saks–Henstock-type Lemma. In the sequel, Q is a µ set and Q ∈ F.
Within this subsection, almost all x in Q means almost everywhere in Q. We consider a
property is said to hold almost everywhere in Q if it holds everywhere except perhaps in a
set of measure zero, that is that property holds for all x ∈ Q \Y where µ(Y) = 0.

Proposition 5. Let Q be a µ set and f : Q → R. If f(x) = 0 for almost all x in Q, then f is
µrAPHenstock–Kurzweil integrable with the value 0 on Q.
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Proof. Let f(x) = 0 for all x ∈ Q \Y, where µ(Y) = 0 and Y is the union of Xi, i = 1, 2, . . . ,
where Xi is a subset of Y such that i − 1 ≤ |f(x)| < i for x ∈ Xi. Each µ(Xi) = 0 as
0 ≤ µ(Xi) ≤ µ(Y) = 0. Given ε > 0 and for each i, using Proposition 2, we can choose an
open set Ui such that µ(Ui) <

ε
2i×i and Xi ⊆ Ui. Let us define an N-fine gauge Γ on Q such

that Γ(x) ⊆ Ui for x ∈ Xi, i = 1, 2, . . . . Then, for any N-fine partition P = {(Qi, xi)}n
i=1,

we have

|S(f, P)− 0| =
∣∣∑ f(xi)µ(Qi)− 0

∣∣
=

∣∣∣∣∣∣ ∑
xi∈Qi\Y

f(xi)µ(Qi) + ∑
xi∈Y

f(xi)µ(Qi)

∣∣∣∣∣∣
≤

∞

∑
i=1

∑
xi∈Xi

|f(xi)|µ(Qi)

<
∞

∑
i=1

(
i× ε

2i × i

)
= ε.

Proposition 6. If f1, f2 ∈ µrAP HK(Q), then for any scalars α and β, αf1 + βf2 ∈ µrAPHK(Q)
and

(AP)
∫

Q
(αf1 + βf2)dµ = α(AP)

∫
Q
f1dµ + β(AP)

∫
Q
f2dµ.

Proposition 7. Let the functions f1, f2 ∈ µrAPHK(Q) such that f1(x) = f2(x) almost ev-
erywhere in Q, then f1 ∈ µrAP HK(Q) if and only if f2 ∈ µrAP HK(Q), and (AP)

∫
Q f1dµ =

(AP)
∫

Q f2dµ µ-a.e.

Proposition 8 (Cauchy’s criterion). Let f be a real-valued function on Q. Then, f ∈ µrAPHK(Q)
if and only if for every ε > 0, there exists an N-fine gauge Γ on Q such that for all N-fine partitions
P1, P2 that are Γ-fine of Q, it holds

|S(f, P1)− S(f, P2)| < ε.

Proof. The necessity follows from Definition 10. To prove the sufficiency, let Γn be an
N-fine gauge on Q such that for each n ∈ N with each pair N-fine partitions P

′
n and P

′′
n

of Q,

|S(f, P′n)− S(f, P
′′
n )| < ε.

Let us consider an N-fine gauge Γ∆ = min{Γ1(x), Γ2(x), . . . , Γn(x)} on Q. Then, there
is a Γ∆-fine partition Pn which is an N-fine of Q for each n ∈ N. If m, n ∈ N, n < m : n ≥ N.
This implies: Pn and Pm are N-fine partitions of Q. Hence,

|S(f, Pn)− S(f, Pm)| <
ε

2
.

This implies
{
S(f, Pn)

}∞
n=1 is a Cauchy sequence that converges to real number A =

lim
n→∞

S(f, Pn). Then, |S(f, Pn)− A| < ε
2 for each n ≥ N. On the condition that P is an N-fine

partition on Q, then |S(f, P)− A| < ε. Hence, f ∈ µrAPHK(Q) and A = (AP)
∫

Q fdµ.

Proposition 9. Let f be a real-valued function defined on Q. If f ∈ µrAP HK(Q), then f ∈
µrAPHK(Q0) for every subset Q0 of Q.
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Proof. Let Q0 ⊂ Q. Let P1 = {(Qi, xi)}n
i=1 and P2 = {(Qj, xj)}m

j=1 be N-fine partitions of
Q0 and let P3 be an N-fine partition of Q \Q0. It is very clear that P1 ∩ P3 = ∅, P2 ∩ P3 = ∅
and P1 ∪ P3, P2 ∪ P3 are N-fine partitions of Q. Then, by Cauchy’s criterion

|S(f, P1 ∪ P3)− S(f, P2 ∪ P3)| < ε.

Consequently, we obtain |S(f, P1)− S(f, P2)| < ε so, f ∈ µrAPHK(Q0).

Proposition 10. Let Q be a disjoint union of subsets Q1, Q2, . . . , Qm. If f ∈ µrAPHK(Qi) for

each i = 1, 2, . . . , m, then f ∈ µrAPHK(Q) and (AP)
∫

Q fdµ =
m
∑

i=1
(AP)

∫
Qi
fdµ.

Proof. The proof is very straightforward by using the Cousin’s lemma.

Proposition 11. Let Y be a closed subset of Q. Then, χY is µrAP–Henstock–Kurzweil integrable
on Q with the value µ(Y).

Proof. Let ε > 0; then, from Proposition 2, there exists an open set U such that Y ⊆ U and
µ(U \Y) < ε. Let Γ be an N-fine gauge on Q such that Γ(x) ⊆ U if x ∈ Y and Γ(x) ⊆ Q \Y
if x ∈ Q \Y. Let P =

{
(Qi, xi)

}n
i=1 be an N-fine partition of Q. Then

∑
x∈Y

χY(x)µ(Qi) = ∑
x∈Y

µ(Qi)

and
∑
x/∈Y

χY(x, µ(Qi)) = 0.

Let Qi be the union of subsets of Q such that (Qi, xi) ∈ P and x ∈ Y, then Y ⊆ Qi ⊆ U.
So,

∣∣∑ χY(x, µ(Qi))− µ(Y)
∣∣ = ∣∣∣∣∣∑x∈Y

µ(Qi)− µ(Y)

∣∣∣∣∣
= µ(Qi \Y)

≤ ε.

Hence the proof.

Theorem 12 (Saks–Henstock-type Lemma). Let f ∈ µrAPHK(Q). For every ε > 0, there exists
an N-fine gauge Γ on Q such that for any N-fine partition P = {(xi, Qi)}n

i=1 of Q, we have

n

∑
i=1

∣∣∣∣f(xi)µ(Qi)− (AP)
∫

Qi

fdµ

∣∣∣∣ < ε.

Proof. Let ε > 0 be given and let Γ be an N-fine gauge on Q such that for any N-fine
partition P = {(Qi, xi)} on Q, we have∣∣∣∣∑ f(xi)µ(Qi)− (AP)

∫
Q
fdµ

∣∣∣∣ < ε.

Now, by Proposition 9 and Remark 3, the integral (AP)
∫

Qi
fdµ exists for i = 1, 2, . . .

such that f(xi)µ(Qi)− (AP)
∫

Qi
fdµ ≥ 0.
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By the µrAPHK integrability of f on each Qi, there exists an N-fine gauge Γ∗ finer than
Γ, and N-fine (Γ∗-fine) partitions P1, P2, . . . , Pn on Q1, Q2, . . . , Qn, respectively, such that for
i = 1, 2, . . . , we have ∣∣∣∣∑ f(xi)µ(Qi)− (AP)

∫
Qi

fdµ

∣∣∣∣ < ε

n
. (6)

Now, using (6), it results

n

∑
i=1

∣∣∣∣f(xi)µ(Qi)− (AP)
∫

Qi

fdµ

∣∣∣∣ ≤ ∣∣∣∣∑ f(xi)µ(Q1)− (AP)
∫

Q1

fdµ

∣∣∣∣+ . . .

+

∣∣∣∣∑ f(xi)µ(Qn)− (AP)
∫

Qn
fdµ

∣∣∣∣
< ε.

5. Conclusions

The concept of an AP–Henstock–Kurzweil-type integral is given on a Cauchy metric
measure space X with a Radon measure µ and a family of “sets” F that satisfy the Vitali
covering theorem with respect to µ. The classical Henstock–Kurzweil integral on the real
line is specifically enclosed by this integral. In this setting, Cauchy’s criterion of an AP–
Henstock–Kurzweil integral is discussed. Finally, we extend this idea to second countable,
locally compact Hausdorff spaces having bounded or locally finite measures. In this
approach, the Saks–Henstock-type lemma is discussed. As a future research topic, we will
investigate the validity of the converse of Proposition 4.
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