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Abstract: Robots are now widely used in product disassembly lines, which significantly improves
end-of-life (EOL) product disassembly efficiency. Most of the current research on disassembly
line balancing problems focuses on decomposing one product. More than one product can be
disassembled concurrently, which can further improve the efficiency. Moreover, uncertainty such as
the depreciation of EOL products, may result in disassembly failure. In this research, a stochastic
multi-product robotic disassembly line balancing model is established using an AND/OR graph.
It takes the precedence relationship, cycle constraint, and disassembly failure into consideration to
maximize the profit and minimize the energy consumption for disassembling multiple products. A
Pareto-improved multi-objective brainstorming optimization algorithm combined with stochastic
simulation is proposed to solve the problem. Furthermore, by conducting experiments on some
real cases and comparing with four state-of-the-art multi-objective optimization algorithms, i.e., the
multi-objective discrete gray wolf optimizer, artificial bee colony algorithm, nondominated sorting
genetic algorithm II, and multi-objective evolutionary algorithm based on decomposition, this paper
validates its excellent performance in solving the concerned problem.

Keywords: disassembly failure; machine learning; multiple product disassembly; robotic disassembly
line balancing problem

MSC: 90-08

1. Introduction

With the rapid updating and iteration of industrial technology, end-of-life (EOL) indus-
trial products in urgent need of treatment have been produced, and many environmental
problems have resulted. Recycling [1] is a crucial measure to solve the harm caused by EOL
products. The value of recycling and reusing EOL products is twofold: (1) they benefit
environmental protection; (2) they can save precious resources [2] and reduce production
costs. In the process of recycling, disassembly plays a connecting role [3,4]. Disassembly
breaks down EOL products into various parts that can then be used for other purposes.
Because of human being’s operational flexibility, most disassembly operations are per-
formed manually, but the disassembly cost is high [5]. In recent years, with the rapid
development of robotic-related technologies, they have been applied to various application
fields, including disassembly [5–9]. Robot disassembly technology can not only reduce
the risk of disassembly to operators, but also improve the disassembly efficiency and
ensure the quality of parts [10]. Therefore, it is of great significance to study the robotic
disassembly line balancing (RDLB) problem for recycling EOL. There are extensive studies
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on this problem. For instance, Çil et al. [6] investigated the use of RDLB to disassemble an
EOL product. Liu et al. [9] solved the RDLB of single product disassembly by taking the
disassembly form participated in by robots as the entry point. However, the above studies
only focused on disassembling a single product. Meeting the diversified disassembly needs
of customers, it is usually necessary to disassemble multiple products at the same time [11].
Hence, it is novel and meaningful to study the robot disassembly problem considering
multi-product disassembly forms.

Disassembly line balancing (DLB) is a multi-objective optimization problem whose
goal is to shorten the work cycle time as much as possible and quickly obtain the maximum
profit under the condition of rapid separation of hazardous parts [6,12–17]. DLB is divided
into complete, partial, and selective disassembly [18,19]. Complete disassembly denotes
dividing all components of a product into the smallest components. Partial disassembly
denotes separating some components of a product from other components. Selective
disassembly is the purposeful disassembly of components of a product based on a certain
target. In this paper, the complete disassembly of EOL products is considered. In DLB, the
balancing rate estimates the workload among workstations, which is one of the main indices
for evaluating the performance to solve DLB problems [20]. Therefore, this paper proposes
a multi-objective multi-product robotic disassembly line balancing problem (MMRDP)
for maximizing total profit and its balancing rate, as well as minimizing total energy
consumption. It is crucial to make a good tradeoff among these objectives.

To perform DLB, researchers have explored some efficient methods. Liu et al. [8]
and Fang et al. [10] improved the multi-objective discrete bee algorithm and problem-
specific bi-criterion evolutionary algorithm, respectively, to solve the RDLB and mixed-
model DLB under the condition of robot disassembly form. In this work, the proposed
MMRDP is solved by the improved brainstorming optimization (BSO) [21] algorithm.
Because of its superior performance, BSO has attracted scholars from various fields to
solve various optimization problems. For example, Duan et al. [22,23] successively solved
the optimization problem of the direct current brushless motor and Loney’s solenoid by
proposing a predatory quantum-behaved BSO algorithm and a quantum-behaved BSO,
respectively. On the basis of the above research and considering the complexity of MMRDP,
this work develops a Pareto-improved multi-objective brainstorming optimization (PIMBO)
algorithm based on the Pareto rule [24].

This paper also establishes a corresponding mathematical model of MMRDP where
the uncertainty of a disassembly process [25] is considered. Since EOL products are
subject to other external factors after being idle for a long time, their quality and shape
structure will change. This makes the disassembly more difficult and the disassembly time
uncertain, whereby the disassembly operations may not be carried out as planned. Hence,
disassembly failure risk [26] should be considered. This paper deals with MMRDP by
considering disassembly failure risks. This work intends to make the following unique
contributions to the disassembly field:

(1) It formulates a stochastic MMRDP model based on an AND/OR graph considering
disassembly failure risk. The objectives are to maximize disassembly profit and balancing
rate and minimize energy consumption;

(2) It designs a Pareto-improved multi-objective brainstorming optimization algorithm
combined with a stochastic simulation approach to handle the proposed problem. Fur-
thermore, a triple-vector list structure is designed to represent a solution. A Pareto-based
clustering algorithm, new individual generation algorithm, selection operator, and external
archive evolution approach are developed to improve the performance of the algorithm,
while a stochastic simulation method is designed to calculate the objective function value
of the obtained solutions.

In addition, this paper uses the proposed algorithm and other four popular algo-
rithms, i.e., multi-objective discrete gray wolf optimizer (MDGWO) [27], multi-objective
artificial bee colony (MOABC) algorithm [28], nondominated sorting genetic algorithm
II (NSGA-II) [24], and multi-objective evolutionary algorithm based on decomposition
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(MOEA/D) [29]. This paper validates the performance of the proposed approach in han-
dling the MMRDP.

2. Problem Description

This section first describes an AND/OR graph of a ballpoint pen [4] and a lamp [30],
and then defines two relationship matrices. Next, this paper establishes the corresponding
mathematical models.

2.1. Subsection AND/OR Graph

An AND/OR graph is a graph model, which can express not only the precedence
and conflict relationships between two disassembly operations but also the relationship
between subassemblies/parts and disassembly operations. For example, Figure 1 shows
the part structure schematic diagram of a ballpoint pen. Figure 2 shows the part structure
schematic diagram of the lamp. Figure 3i,ii show the AND/OR graphs of the ballpoint pen
and the lamp, respectively.
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In Figure 3, the disassembly operations are represented with hyper-arc indices,
1 − J, where J is the total number of disassembly operations required to disassembly
an EOL product. Nodes indicate subassemblies/parts with the index from <1> to <I>,
where I is the number of all subassemblies/parts and components. Let subassembly a be
a parent of subassembly b. If b is obtained by disassembling a, then b is called a child of
a, where a, b∈{1,2, · · · , I}. For example, in Figure 3i, subassembly <1> is the parent of <2>
and <15>, while <2> is the child of <1>.

As shown in Figure 3, a disassembly operation disassembles a subassembly into two
or more parts whose relationships are described by an “AND” relationship. An “OR”
relationship denotes that a part has many ways to disassemble, but these ways cannot be
performed simultaneously. For instance, parent subassembly <6> is disassembled into
<9> and <11> by operation 7, and <8> is disassembled into <10> and <14> by operation
9. A parent subassembly may have more than one hyper-arc; for example, subassembly
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<2> can be disassembled via disassembly operations 3 or 12. Operations 3 and 12 form an
OR relationship, which indicates that at most one of the two operations can be executed.
According to the definition of an AND/OR graph and the logic of disassembly of a product,
two matrices are proposed.

(1) Precedence matrix P = [pjk] is employed to describe the precedence and conflict
relations of two disassembly operations, which is defined as

pjk =


1, if operation k can be performed after opration j;
−1, if operations j and k conflict with each other;
0, otherwise.

Precedence matrix P of a multi-product instance for a ballpoint pen and lamp is given as

P =



0 −1 1 −1 1 −1 1 1 1 1 −1 1 1 0 0 0 0 0 0
−1 0 −1 1 1 1 1 1 −1 1 1 −1 1 0 0 0 0 0 0
0 −1 0 −1 1 −1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0
−1 0 −1 0 1 −1 1 1 −1 1 −1 −1 1 0 0 0 0 0 0
0 0 0 0 0 −1 1 −1 −1 1 −1 −1 −1 0 0 0 0 0 0
−1 0 −1 −1 −1 0 −1 1 −1 0 0 −1 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 −1 0 1 −1 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 −1 0 −1 0 0 −1 0 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 0 −1 0 0 −1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 −1 −1 −1 1 −1 1 −1 1 0 −1 −1 0 0 0 0 0 0
0 −1 −1 −1 −1 −1 1 −1 1 1 −1 0 −1 0 0 0 0 0 0
0 0 0 0 −1 −1 −1 1 −1 1 −1 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 1 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 −1 0



.

(2) Disassembly-incidence matrix D = [dij] expresses the corresponding relations
between subassemblies/parts and disassembly operations, which is defined as

dij =


1, if subassembly i is obtained by operation j.
−1, if subassembly i is disassembled via operation j.
0, otherwise.

The disassembly-incidence matrix D of a multi-product instance for a ballpoint pen
and lamp is as follows:

D =



−1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 1 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0
0 0 1 1 −1 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 −1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 −1 1 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1



.

2.2. Robotic Disassembly Line

In Figure 3, 15 subassemblies/parts of a ballpoint pen correspond to 13 disassembly
operations, and a lamp includes seven subassemblies/parts and six disassembly operations.
In Figure 4, the number in the pentagon represents a disassembly operation, the number
in the circle represents a type of robot that performs a disassembly operation, the number
in the rectangle represents parts, and the number in the rectangle on the workstation
represents the subassembly that is disassembled into subassemblies/parts. The disassembly
operations are assigned to the workstation and then executed by the corresponding robot.
As shown in Figure 3, disassembly operations 1–13 and subassemblies/parts 1–15 are
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related to the ballpoint pen, and disassembly operations 14–19 and subassemblies/parts
16–22 are related to the lamp. A robot in type i is denoted as ri. A feasible disassembly
scheme contains a disassembly operation sequence 1, 3, 14, 5, 17, 7, and 10 and a robot
type sequence 1, 3, 2, 3, 2, 2, and 1. Each disassembly operation in the disassembly
operation sequence is mapped to the corresponding workstation according to a cycle
time constraint. The robot types of each workstation are based on the robot type of the
disassembly operation assigned to each workstation. For instance, disassembly operations
1, 3, and 14 are performed on the first workstation 1, and the robot types that perform these
disassembly operations are 1, 3, and 2, respectively. Thus, r1, r2, and r3 are assigned to
workstation 1. In addition, the parts 15, 14, 22, 10, 21, 20, 11, 12, and 13 are obtained by a
feasible disassembly scheme where r1, r2, and r3 are assigned to workstation 1 to perform
operations 1, 3, and 14, r2 and r3 are assigned to workstation 2 to perform operations 5 and
17, and r1 and r3 are assigned to workstation 3 to perform operations 7 and 10.
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2.3. Mathematical Model

This paper makes the following assumptions to formulate a mathematical model of a
stochastic MMRDP:

(1) The average disassembly time and setup time of each disassembly operation of each
type of robot are known.

(2) The disassembly cost, setup cost, disassembly energy consumption, and setup energy
consumption per unit time of each type of robot disassembly operation are given.

(3) Only one robot is allowed to perform disassembly operations. Any robot can only
handle one disassembly operation assigned to it at a time, and one disassembly
operation can only be completed by one robot.

(4) The supply of EOL products is unlimited.
(5) AND/OR graphs of multiple EOL products to be disassembled are known.

Some notations and decision variables are listed below.

2.3.1. Notations

g—EOL product indices, g∈{1, 2, . . . , G}, where G represents the number of disassem-
bled products.

i—subassembly/part index, i∈{1, 2, . . . , N}, where N denotes the total number of
subassemblies/parts of all products.

j, k—operation indices, j, k∈{0, 1, . . . , J}, where J means the total number of operations
of all products, and 0 is a dummy operation.

l, m—workstation indices, l, m∈{1, 2, . . . , M}, where M is the number of workstations.
r—robot type index, r∈{1, 2, . . . , R}, where R denotes the number of robot types.
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IS
g—the start index set of subassembly/part of product g, IS

g =
{

I0
1 , . . . , I0

g , . . . , I0
G

}
,

where I0
g is the start index of subassembly/part of product g.

IE
g

{
I1
1 , . . . , I1

g , . . . , I1
G

}
, where I1

g is the start index of subassembly/part of product g.

JS
g—the start index set of tasks of product g, JS

g =
{

J0
1 , . . . , J0

g , . . . , J0
G

}
, where J0

g is the
start index of tasks of product g.

JE
g —the end index set of tasks of product g, JE

g =
{

J1
1 , . . . , J1

g , . . . , J1
G

}
, where J1

g is the
end index of tasks of product g.

tjr—disassembly time for operation j by robot r.
tjkr—setup time of performing operation k which is performed immediately after

operation j by robot r.
ejr—energy consumption per unit of time of robot r performing operation j.
ejkr—setup energy consumption per unit of time in performing operation k performed

immediately after operation j by robot r.
el—energy consumption per unit of time during the l-th workstation operation.
cjr—cost per unit of time of robot r performing operation j.
cjkr—setup cost per unit of time in performing operation k performed immediately

after operation j by robot r.
cl—cost per unit of time during the l-th workstation operation.
vi—reuse value of subassembly/part i.
Tl—cycle time of the l-th workstation.
qjkr—failure probability of operation k performed immediately after operation j in

product g by robot r.
θ—preset minimum probability value
Ḟ—maximum failure cost of a disassembly process.
P—multiple products precedence matrix
D—multiple products disassembly-incidence matrix
pjk—an element in the j-th row and k-th column of P.
dij—an element in the i-th row and j-th column of D.
Notice that tg

jr, tg
jkr, and tgϕ

jkr are random variables with normal distribution.

2.3.2. Decision Variables

xjr—if operation j is performed by robot r, xjr = 1; otherwise, xjr = 0.
yjkr—if operation k is performed immediately after operation j by robot r, yjkr = 1;

otherwise, yjkr = 0.
zjrl—if operation j is performed by robot r and assigned to the l-th workstation, zjrl = 1;

otherwise, zjrl = 0.
ul—if the l-th workstation is used, ul = 1; otherwise, ul = 1.
On the basis of AND/OR graphs and relationship matrices, multiple EOL products to

be disassembled can be mathematically described. The mathematical model is given below.
The expected maximal disassembly profit is the total profit obtained from disassembly

minus total disassembly cost in the disassembly process. As shown in Equation (1), the
latter consists of three main parts, i.e., the cost of disassembly operations, the setup cost of
adjacent operations, and the cost of workstations.

max f1 = E(
G

∑
g=1

J1
g

∑
j=J0

g

I1
g

∑
i=I0

g

R

∑
r=1

dijvixjr −
G

∑
g=1

J1
g

∑
j=J0

g

R

∑
r=1

tjrcjrxjr −
G

∑
g=1

G

∑
ϕ=1

J1
g

∑
j=J0

g

J1
ϕ

∑
k=J0

ϕ

R

∑
r=1

tjkrcjkryjkr −
M

∑
l=1

Tlclul). (1)

The expected minimal energy consumption mainly takes into account three aspects
of energy consumption, i.e., the total energy consumption of disassembly operations, the
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total setup energy consumption of adjacent operations, and the energy consumption of
workstations, as shown in Equation (2).

min f2 = E(
G

∑
g=1

J1
g

∑
j=J0

g

R

∑
r=1

tjrejrxjr +
G

∑
g=1

G

∑
ϕ=1

J1
g

∑
j=J0

g

J1
ϕ

∑
k=J0

ϕ

R

∑
r=1

tjkrejkryjkr +
M

∑
l=1

Tlelul). (2)

The expected maximal balancing rate is equal to the average of the total operating time
divided by the total cycle time of the switched-on workstations, as shown in Equation (3).

max f3 = E((
G

∑
g=1

J1
g

∑
j=J0

g

R

∑
r=1

tjrxjr +
G

∑
g=1

G

∑
ϕ=1

J1
g

∑
j=J0

g

J1
ϕ

∑
k=J0

ϕ

R

∑
r=1

tjkryjkr)/
M

∑
l=1

Tlul). (3)

The fact that each product is disassembled by at least one disassembly operation
excluding operation 0 is constrained by Equation (4).

J1
g

∑
j=J0

g

R

∑
r=1

xjr ≥ 1, g = 1, 2, · · · , G. (4)

Each disassembly operation in multiple products should be performed at most once,
which is constrained by Equation (5).

R

∑
r=1

xkr =

J1
g

∑
j=J0

g

R

∑
r=1

yjkr, g = 1, 2, · · · , G, k = 1, 2, · · · , J. (5)

Each disassembly operation of any product can only be assigned to one workstation
and can only be performed by one robot, which is constrained by Equation (6).

R

∑
r=1

xjr =
M

∑
l=1

R

∑
r=1

zjrl , g = 1, 2, · · · , G, j = 1, 2, · · · , J. (6)

Each switched-on workstation must be assigned at least one operation, which is
constrained by Equation (7).

G

∑
g=1

J1
g

∑
j=J0

g

R

∑
r=1

xjrzjrl ≥ 1, l = 1, 2, · · · , M. (7)

To ensure that a feasible disassembly sequence of multiple products satisfies prece-
dence constraint, this paper explicitly defines

M

∑
l=1

R

∑
r=1

lzjrl ≤
M

∑
m=1

R

∑
r=1

mzkrm, g = 1, 2, · · · , G, ∀pjk = 1. (8)

To ensure that a feasible disassembly sequence of multiple products satisfies conflict
constraint, this paper proposes Equation (9).

M

∑
l=1

R

∑
r=1

zjrl +
M

∑
l=1

R

∑
r=1

zkrl ≤ 1, g = 1, 2, · · · , G, ∀pjk = −1. (9)
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The operation time of all workstations used is no more than the disassembly line total
cycle time, represented by Equation (10).

G

∑
g=1

J1
g

∑
j=J0

g

R

∑
r=1

tjrxjr +
G

∑
g=1

G

∑
ϕ=1

J1
g

∑
j=J0

g

J1
ϕ

∑
k=J0

ϕ

R

∑
r=1

tjkryjkr ≤
M

∑
l=1

Tlul , l = 1, 2, · · · , M. (10)

The probability for the failure cost of a disassembly process being less than or equal to
its maximum failure cost is greater than a preset value θ > 0, required by Equation (11).

P

 G

∑
g=1

G

∑
ϕ=1

J1
g

∑
j=J0

g

J1
ϕ

∑
k=J0

ϕ

R

∑
r=1

(
tkrckrxkr + tjkrcjkryjkr

)
qjkr < Ḟ

 ≥ θ. (11)

The range of decision variables is given by Equation (12).

xjr, yjkr, zjrl , ul ∈ {0, 1}, g, ϕ = 1, 2, · · · , G, j, k = 1, 2, · · · , J, l = 1, 2, · · · , M, r = 1, 2, . . . , R. (12)

3. Proposed Algorithm
3.1. Base Brainstorming Optimization Algorithm

Brainstorming conference is the process of discussing solutions to difficult problems.
The brainstorming optimization (BSO) algorithm is inspired by this feature of group discus-
sion and speaking freely [21]. There are three roles involved in a brainstorming conference,
i.e., several owners of problems to be solved, and a group of members with different back-
grounds. Since practical experience and ways of thinking are different, for the same problem,
they can put forward different solutions. The conference stipulates that the host presides
over and urges the team members to generate as many ideas as possible, but the host does
not participate in an idea generation process. In addition, four rules are given as follows:

(1) Any idea is meaningful. All ideas, good or bad, cannot be judged until the end of a
brainstorming process.

(2) Brainstorming team members should be unreserved, and any ideas generated in
their minds should be shared and studied.

(3) Many new ideas are generated by associating with the existing ideas.
(4) Many new ideas are generated as possible and then choose from abundant ideas to

get excellent solutions.
In BSO, each solution is represented separately by an individual idea. In a human

brainstorming conference, each idea is inspired by other individual ideas and becomes
more mature. The same is true in BSO, where one individual is updated through individual
evolution and fusion. The algorithm consists of three strategies: solution clustering, new
individual generation, and solution selection.

The MMRDP is a multi-objective, stochastic, and discrete optimization problem. How-
ever, the basic BSO algorithm was originally proposed to solve single-objective and con-
tinuous optimization problems. Therefore, some special strategies need to be designed
according to the characteristics of MMRDP. This paper proposes a PIMBO algorithm incor-
porated with a stochastic simulation approach.

3.2. Encoding

A solution is represented by a triple-vector list designed for this work, i.e., π = (π1,
π2, π3), where π1 = (o1, o2, . . . , oJ) is an integer string. It denotes a disassembly operation
sequence, where oj indicates an operation index of the j-th disassembly operation, and J is
the maximum index of disassembly operations for multiple products to be disassembled.
π2 = (x1, x2, . . . , xJ) is a binary vector with J binary values indicating whether the disas-
sembly operation at the corresponding position is performed. If xj = 1, the operation oj in
π1 is performed; otherwise, oj is not performed. π3 = (r1, r2, . . . , rJ) represents a robot type
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sequence, whose element is an integer between 1 and R and corresponds to the robot type
performing a disassembly operation.

3.3. Population Initialization

The key to solve the proposed problem is to design a reasonable population initial-
ization strategy according to the above encoding rules. The proposed algorithm employes
the random initialization method of MMRDP solutions to generate diversified initial pop-
ulation in the searching space. Notice that a solution may be infeasible in the case that
it disobeys precedence and conflict constraint conditions. In this work, an adjustment
approach is developed to initialize individuals so that each solution becomes feasible. The
following steps detail its adjustment process:

Step 1: Randomly generate π, i.e., π1, π2, and π3.
Step 2: Adjust the disassembly operation sequence in π1 according to the rules speci-

fied in matrix P to meet the precedence relationship between disassembly operations of
multiple products. It is required to traverse the whole disassembly operation sequence π1.
If the disassembly operation oj is after ok, but pjk = 1 in matrix P, which is a contradiction,
then oj and ok need to be interchanged in the correct order, and rj and rk are swapped at
the same time; otherwise, it indicates that operation j and k are in accordance with the
disassembly sequence. Lastly, check the next disassembly operation.

Step 3: In order to make the disassembly proceed smoothly, the first disassembly
operation must be performed. Hence, if operation oj in π1 is the first disassembly operation
of a product but xj = 0 in π2, then adjust xj to 1; otherwise, go to Step 4.

Step 4: Adjust the binary values in π2 based on matrix P to meet the precedence
relationship between disassembly operations of the same product. It is required to traverse
the whole binary vector π2. If xk = 1 and pjk = 1 in matrix P, then xj is set to 1.

Step 5: Adjust the binary values in π2 based on P to remove the conflict relationship
between operations of the same product to be disassembled. The above process needs to
traverse the entire vector π2. If xj = 1 and pjk = −1, then xk = 0.

After completing the strategy steps described above, an initial population set P which
contains Q solutions (individuals) is obtained.

3.4. Decoding

The decoding task is completed by assigning the selected disassembly operations and
the robot to each corresponding workstation. Therefore, a disassembly operation and the
robot performing it should be assigned to the same workstation at the same time. Moreover,
a cycle time constraint needs to be satisfied when assigning disassembly operations to
workstations. Figure A1 of Appendix A.1 shows the decoding procedure, the detailed steps
of which are as follows:

Step 1: Set disassembly operation k = 1.
Step 2: Verify that the disassembly operation k is performed. If xk = 1 and k = kf

where kf is the first disassembly operation in the whole disassembly sequence, open the
l-th workstation; the processing time of the l-th workstation Tld is set to 0, the disassembly
operation set Cl in the l-th workstation is set to ζ, where ζ represents an empty set, and the
robot set Rl of the l-th workstation is set to r, where r means a type of robot performing
disassembly operation k. If xk = 1 and k 6= kf, perform disassembly operation k, followed by
Step 3; otherwise, perform Step 8.

Step 3: Set Tld = Tld + tjkr, and determine the relationship between the cycle time Tl
and the current processing time of the l-th workstation Tld. If Tld > Tl, then perform Step 4;
otherwise, perform Step 5.

Step 4: Start the next workstation; let l = l + 1, Cl = ζ, Rl = r, and Tld = tjkr.
Step 5: Set Tld = Tld + tkr, and determine the relationship between Tl and Tld. If

Tld > Tl, then perform Step 6; otherwise, perform Step 7.
Step 6: Start the next workstation; let l = l + 1, Cl = ζ, Rl = r, and Tld = tjkr + tkr.
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Step 7: Disassembly operation k is assigned to the l-th workstation; then, update Cl
and Rl, and let Cl = Cl ∪ k and Rl = Rl ∩ r.

Step 8: If k 6= J, then set k = k + 1, and repeat Steps 2–7. Otherwise, output a
feasible solution.

3.5. Objective Function Evaluation

After performing the relevant operations in Sections 3.2–3.4, many feasible solutions
of MMRDP are generated, and the next step is to evaluate them. The MMRDP is different
from a deterministic optimization problem. The objective function values of the latter can
be straightforwardly calculated according to its objective functions and constraints. In the
MMRDP, the disassembly and setup times of the products are randomly generated, and
the objective functions in Equations (1)–(3) are expressed as their expected values. They
cannot be calculated directly as deterministic optimization problems. Hence, Monte Carlo
simulation is used to successfully solve the above problems [31].

Let π be a solution; Γ denotes the number of samples equaling 10. This paper adopts
the following steps to evaluate the objective function values and feasibility of π. It should
be noted that since the objective functions f1 and f3 are to find their maximum values, the
values of the objective functions f1 and f3 obtained are multiplied by −1 to facilitate the
comparison of the quality of the solutions later.

Step 1: f1(π) := 0, f2(π) := 0, f3(π) := 0, fc(π) := 0, and Γ := 10.
Step 2: Generate δ samples; each sample ρδ is a sample of disassembly and setup times

produced from their normal distributions, δ = 1, 2, · · · , Γ.
Step 3: Calculate the disassembly profit f1δ(π), energy consumption f2δ(π), balancing

rate f3δ(π), and disassembly failure cost fcδ(π), where δ = 1, 2, · · · , Γ.
Step 4: Sort the disassembly failure cost fcδ(π) of all samples in ascending order; let

δ′ be equal to bθ·Γc. If fcδ′(π) < Ḟ, π is feasible and fc(π) := fcδ′(π), then go to Step 5.
Otherwise, π is infeasible, where f1(π), f2(π), and f3(π) are equal to larger integers; then,
go to Step 6.

Step 5: Approximate the expected disassembly profit f1(π), energy consumption
f2(π), and balancing rate f3(π) as follows:

f1(π) := −1× ∑Γ
δ=1 f1δ(π)

Γ
. (13)

f2(π) :=
∑Γ

δ=1 f2δ(π)

Γ
. (14)

f3(π) := −1× ∑Γ
δ=1 f3δ(π)

Γ
. (15)

Step 6: Return f1(π), f2(π), and f3(π) as the approximated values of Equations (1),
(2), and (3).

3.6. Multi-Objective Processing Method

In order to distinguish the advantages and disadvantages of the obtained solutions,
this work uses Pareto dominance relationship. The process of comparison is the decision-
making process of a choice of solutions.

An external archive A is constructed to store the obtained nondominated solutions.
First, it is updated by using all newly generated solutions based on the Pareto rule. After
each iteration is finished, A is updated by using the current population based on the
Pareto rule to ensure that all nondominated solutions in A are always the current global
nondominated solutions.

3.7. Pareto-Based Clustering

During the clustering stage, this work uses the fast nondominated sorting approach
proposed in [24]. The individuals are ranked according to the Pareto rule, and then the indi-
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viduals of the same rank are classified into the same cluster. The k-means clustering constantly
calculates the new clustering center after adjusting the sample classification, thus resulting in
a large amount of calculation. However, the Pareto-based clustering algorithm reduces the
computational complexity, and the number of clusters needs not to be predetermined. The
pseudo-code of Pareto-based clustering is shown in Algorithm A1 of Appendix A.2.

3.8. New Individual Generation

The pseudo-code of new individual generation is shown in Algorithm A2 of
Appendix A.3, where X denotes the set of new individuals, pc is the probability of re-
placing a cluster center, pg is the probability that a new individual is generated from one
subcluster, po is the probability that a new individual is generated concerning a subcluster
center, and pt is the probability that a new individual is generated by combining with two
subcluster centers.

In the original BSO, when a random number ϑg is less than pg, only one individual
contributes to generate a new individual. This paper combines the center of the first cluster
with the current selected individual to generate a new individual, which improves the
convergence speed of the algorithm. Moreover, this paper adopts a precedence preserv-
ing crossover (PPX) [32] operator and a position-based mutation (PBM) [27] operator to
generate a new individual.

3.9. Selection Operator

The selection algorithm is used to retain the solutions with better quality among all
the solutions found so far. To accelerate the convergence of the algorithm, the first Q
individuals in the combination of C and A are chosen as the next population by using rank
and crowding distance approaches in [24].

3.10. Procedure of PIMBO

The procedure of PIMBO is summarized as follows:
Firstly, all parameters involved in the algorithm are set initially and then an initial

population is generated and evaluated.
Secondly, with the given termination condition, the algorithm enters the following

loop: the Pareto-based clustering, new individual generation, and selection are performed
repeatedly until a given termination condition is reached.

Lastly, all solutions in A are output.
In this paper, the iterations of the PIMBO and its comparison algorithm are determined

by the fitness value. Before the PIMBO starts to iterate, the fitness value is equal to 0. When
evaluating a new individual, the fitness value is increased by 1 until the current fitness
value fv reaches the preset total fitness value ftv; then, the algorithm stops the iteration.
Algorithm 1 gives the pseudo-code of PIMBO.

Algorithm 1: PIMBO

Input: pc, pg, po, pt, |P|, ftv,cl,Tl,θ, R, crossover probability, and mutation probability.
Output: all solutions in A.
Begin

Set algorithm parameters.
Initialize population as shown in Sections 3.2 and 3.3.
Perform decoding process as shown in Section 3.4.
Evaluate solutions as shown in Section 3.5.
while ( fv < ftv)

Perform Pareto-based clustering as shown in Section 3.7.
Execute new individual generation as shown in Section 3.8.
Construct next population as shown in Section 3.9.

end while
Output all solutions in A.

End.
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4. Experiments

To test the performance of PIMBO in handling the considered problem, this work
conducts experiments by adopting the set of EOL products given in [4,12,33]. Additionally,
MDGWO [27], MOABC [28], NSGAII [24], and MOEAD [29] are compared. They have
shown excellent performance in solving various optimization problems and have been
used as a benchmark for comparison by many scholars and practitioners [34]. Accordingly,
this paper chooses MDGWO, MOABC, NSGAII, and MOEAD as the peer methods. In this
work, the position-based crossover and position-based mutation operations are adopted by
these algorithms to generate new solutions.

4.1. Test Instance Generation

In order to have sufficient experimental data, this work collects a large amount of
product data in the literature as examples: ballpoint pen (BP) [4], hammer drill (HD) [12],
washing machine (WM) [35], and radio set (RS) [4]. A BP contains 15 subassemblies/parts,
and 13 disassembly operations are needed to disassemble it. An HD includes 62 subassem-
blies/parts, and 46 disassembly operations should be adopted to disassemble it. A WM
contains 15 subassemblies/parts, and 13 disassembly operations are used to disassemble it.
There are 29 subassemblies/parts in an RS, and 30 disassembly operations are needed to
disassemble it. Their schematic diagrams and AND/OR graphs are shown in Figures A2–A7
of Appendix A.4. By adopting BP, HD, WM, and RS, 10 test instances of small and medium-
sized disassembly tasks are generated, and each instance contains multiple disassembled
products. Their corresponding relationships are given in Table 1, where Ḟ represents the
maximum failure cost of all disassembly operations performed in each case.

Table 1. Products in instances.

No. 1 2 3 4 5 6 7 8 9 10

Products BP, WM BP, HD BP, RS HD, WM HD, RS WM, RS BP, HD, WM BP, HD, RS BP, WM, RS BP, HD, WM, RS

Ḟ 25 95 40 100 120 45 120 135 60 155

4.2. Performance Metrics

This work utilizes three metrics to examine the results obtained by PIMBO and its
peers to verify the performance of PIMBO algorithm, i.e., C-metric [29], IGD metric [35],
and hypervolume metric [35]. The C-metric can measure the dominated percentage of two
solution sets.

IGD calculates the average distance of the obtained solutions to their nearest solutions
in an optimal solution set. A smaller IGD of a solution set denotes a better approximation
and distribution. Notice that this work cannot acquire an optimal solution set for the
proposed MMRDP beforehand. Thus, an optimal solution set is composed of all solution
sets obtained by PIMBO and its peers.

Hypervolume can comprehensively evaluate the convergence and distribution of
nondominated solution sets. It focuses on computing the volume as constructed by the
obtained solutions and the reference point. A bigger hypervolume of a solution set denotes
a better approximation and distribution. It is worth noting that, when calculating the
hypervolume of the solutions, this work multiplies the first objective value and the third
objective value of all solutions by −1 since the first and third objective functions in the
investigated problem are to maximize the profit and balancing rate, respectively.

PIMBO and its comparison algorithms were used to solve each instance 20 times,
and then these solutions were used to calculate the average value of the three metrics of
each algorithm. Additionally, this paper analyzes the experimental results by employing
a one-tailed t-test [36] with 38 degrees of freedom at a 0.05 level of significance. In the
following analysis of experimental results, we use the symbols “+”, “−”, or “~” to illustrate
the comparison results between P and other algorithms The symbol “+” means that PIMBO
is significantly better than its peer methods, The symbol “−” indicates that PIMOB is
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significantly worse than its peers, while “~” denotes that PIMBO is statistically equivalent
to its peers.

4.3. Parameter Setting

In order to improve the performance of the proposed PIMBO algorithm, the parameters
are set as follows: pc = 0.2, pg = 0.8, po = 0.4, and pt = 0.5 [37]. The parameters used in
all algorithms are set as follows: population size |P| = 120, crossover probability = 1,
mutation probability = 0.3, and total fitness value ftv = 2000. The parameters involved in the
objective functions are set as follows: cl = 0.03, el = 0.05, Tl = 50, θ = 0.90, and R = 3 [6,14].
To avoid chance, each algorithm is executed 20 times independently, and their average
running time in each instance is shown in Table 2. This work concludes that PIMBO could
find a promising solution set in less time.

Table 2. The average running time in each instance on five algorithms.

No.
Average Running Time (s)

PIMBO MDGWO MOABC NSGAII MOEAD

1 2.5828 3.5572 3.5451 2.9422 2.7086

2 12.6085 23.5503 13.6601 13.1815 12.5823

3 6.7303 12.5189 9.5496 7.0042 6.7609

4 12.4917 24.7326 16.5742 15.3582 12.5347

5 20.4667 44.7032 22.1236 20.9711 20.4619

6 6.7068 12.2596 8.7577 7.2507 6.4053

7 19.1543 46.0592 23.1308 19.7624 18.5889

8 29.2066 60.1669 36.2157 30.2257 28.7547

9 11.7235 21.7302 14.7726 12.0219 11.4901

10 38.8173 93.6209 51.7922 39.5651 36.6670

4.4. Case Analyzes

Table 3 shows 10 nondominated solutions generated by solving instance 2 through
PIMBO, where f 1, f 2, f 3, fc, and rs denote profit, energy consumption, balancing rate, failure
cost, and robot type set assigned to switched-on workstations, respectively. According to
the previous description, BP has 13 disassembly operations, and HD has 46 disassembly
operations. Therefore, disassembly operations 1–13 in these solutions represent the disas-
sembly operations of BP, and 14–59 represent the disassembly operations of HD. In the first
solution, disassembly operations 2 and 11 are from BP, and disassembly operations 14, 15,
17, 20, 24, 32, 42, 49, and 31 are from HD. A robot in type i is denoted as ri. Disassembly
operations 14, 15, and 17 are performed by r1 and r2 in the first workstation, disassem-
bly operations 2, 20, 11, and 24 are performed by r1 and r3 in the second workstation,
and disassembly operations 32, 42, 49, and 31 are performed by r3 in the third worksta-
tion. The profit, energy consumption, balancing rate, and failure cost are 978.94, 998.13,
0.9459, and 63.03, respectively. Therefore, this solution to the considered problem in this
research is satisfactory.

4.5. Results

In this section, the five algorithms are used to calculate the 10 test instances provided,
and the C-metric, IGD metric, and hypervolume metric are employed to analyze the
previous calculation results. In Tables 4–6, the symbols “t-te”, “m”, and “v” represent the
“t-test”, “mean”, and “variance”, respectively.
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Table 3. The disassembly sequence and related data of instance 1 obtained by PIMBO algorithm program.

No. Disassembly Sequence f 1 f 2 f 3 fc rs

1 14,15,17---2,20,11,24---32,42,49,31 978.94 998.13 0.9459 63.03 1,2---1,3---3
2 14,15,17,1---21,28,38,47,27—24,12,32 1053.38 1054.99 0.9201 52.12 1,2---2,1,3---3,2
3 14,15,17,2---20,11,24,32---31 1069.02 724.80 0.6404 28.69 1,2,3---1,3---3
4 14,15,17,1---20,24,31,32 803.73 654.17 0.9005 42.03 1,2,3---1,2,3
5 14,15,17,2---21,11,28,38---47,27,24,31---32,37,46 1524.12 1341.82 0.8452 60.02 1,2,3---1,2---1,3---2,3
6 14,15,17,2---20,11,24,32---6,42 978.31 815.96 0.7801 37.20 1,2---1,3---1,3
7 14,15,17,2---11,20,24,32---6 969.73 776.50 0.6595 35.46 1,2---1,3---1
8 14,15,16---2,19,11,23---30,24,32,42 1056.80 1048.14 0.9008 43.61 1,2,3---1,3---2,3
9 14,15,17,2---21,28,38,11,47---24,32,42 1228.71 1043.00 0.8334 44.21 1,2---1,3---3

10 14,15,17,2---11,21,28,38,47---27,24,31,37---46 1392.76 1171.49 0.7497 60.56 1,2---1,2,3---1,3---1

Table 4. Comparison of the experimental results of the five algorithms through the C-metric.

No. C(A, B) C(B, A) t-te C(A, E) C(E, A) t-te C(A, U) C(U, A) t-te C(A, V) C(V, A) t-te

1 0.6129 0.1079 + 0.5392 0.1207 + 0.7189 0.0536 + 0.2555 0.1344 +
2 0.6994 0.1245 + 0.8039 0.0514 + 0.9148 0.0113 + 0.1487 0.3698 -
3 0.7203 0.0958 + 0.7029 0.0953 + 0.8822 0.0271 + 0.2245 0.3140 ~
4 0.8151 0.0474 + 0.8533 0.0237 + 0.9354 0.0113 + 0.2200 0.2549 ~
5 0.8055 0.0888 + 0.8284 0.0343 + 0.9543 0.0014 + 0.0992 0.4923 -
6 0.5602 0.1932 + 0.6472 0.1226 + 0.8750 0.0230 + 0.3131 0.1614 +
7 0.6930 0.1291 + 0.9017 0.0263 + 0.9188 0.0059 + 0.1370 0.4439 -
8 0.7472 0.1244 + 0.8190 0.0579 + 0.9311 0.0108 + 0.0902 0.5125 -
9 0.8608 0.0389 + 0.8774 0.0266 + 0.9580 0.0061 + 0.3539 0.2229 +

10 0.8172 0.0524 + 0.9055 0.0263 + 0.9685 0.0043 + 0.1134 0.4556 -

Table 5. Comparison of the experimental results of the five algorithms through the IGD metric.

No.
PIMBO MDGWO MOABC NSGAII MOEAD

m v t-te m v t-te m v t-te m v t-te m v t-te

1 0.0549 0.0003 0.0971 0.0031 + 0.0775 0.0003 + 0.1163 0.0008 + 0.1481 0.0010 +
2 0.1360 0.0008 0.1865 0.0013 + 0.2104 0.0006 + 0.2478 0.0006 + 0.1693 0.0016 +
3 0.1059 0.0005 0.1736 0.0030 + 0.1604 0.0008 + 0.2012 0.0009 + 0.1416 0.0011 +
4 0.1157 0.0003 0.2123 0.0041 + 0.1986 0.0003 + 0.2453 0.0009 + 0.1432 0.0006 +
5 0.1693 0.0009 0.2579 0.0034 + 0.2516 0.0008 + 0.2967 0.0010 + 0.1645 0.0015 ~
6 0.1115 0.0036 0.1673 0.0063 + 0.1558 0.0016 + 0.2296 0.0009 + 0.1733 0.0044 +
7 0.1581 0.0005 0.2125 0.0031 + 0.2486 0.0008 + 0.2868 0.0006 + 0.1660 0.0013 ~
8 0.1850 0.0015 0.2721 0.0053 + 0.2858 0.0011 + 0.3332 0.0011 + 0.1605 0.0016 -
9 0.1056 0.0003 0.2326 0.0053 + 0.2069 0.0013 + 0.2621 0.0010 + 0.1632 0.0005 +
10 0.1959 0.0013 0.2928 0.0048 + 0.3194 0.0011 + 0.3797 0.0018 + 0.1872 0.0007 ~

Table 6. Comparison of the experimental results of the five algorithms through the hypervolume metric.

No.
PIMBO MDGWO MOABC NSGAII MOEAD

m v t-te m v t-te m v t-te m v t-te m v t-te

1 0.6803 0.0035 0.6399 0.0121 ~ 0.6788 0.0034 ~ 0.6384 0.0093 ~ 0.6000 0.0129 +
2 0.4583 0.0159 0.3704 0.0088 + 0.3310 0.0105 + 0.2964 0.0089 + 0.4215 0.0289 ~
3 0.5560 0.0264 0.4584 0.0265 + 0.5690 0.0276 ~ 0.4426 0.0097 + 0.5208 0.0210 ~
4 0.4168 0.0178 0.3630 0.0101 ~ 0.3784 0.0094 ~ 0.3431 0.0056 + 0.3988 0.0136 ~
5 0.2980 0.0078 0.3115 0.0064 ~ 0.2715 0.0040 ~ 0.2625 0.0040 ~ 0.3587 0.0282 ~
6 0.5102 0.0202 0.4487 0.0258 ~ 0.4321 0.0142 + 0.3702 0.0072 + 0.4299 0.0158 +
7 0.4282 0.0155 0.4118 0.0076 ~ 0.3761 0.0053 ~ 0.3437 0.0063 + 0.4681 0.0261 ~
8 0.3414 0.0146 0.3648 0.0172 ~ 0.3949 0.0122 ~ 0.2970 0.0060 ~ 0.3841 0.0329 ~
9 0.5434 0.0090 0.4090 0.0213 + 0.4815 0.0139 + 0.3686 0.0085 + 0.5095 0.0209 ~
10 0.3803 0.0091 0.4504 0.0053 - 0.4383 0.0055 - 0.3745 0.0067 ~ 0.3855 0.0125 ~
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Table 4 gives the comparative experimental results of five algorithms with respect to
the C-metric, where the symbols A, B, E, U, and V denote PIMBO, MDGWO, MOABC,
NSGAII, and MOEAD, respectively. Analyzing the experimental results of this metric,
we can conclude that all solutions obtained by PIMBO could dominate those found by
MDGWO, MOABC, and NSGAII since C(A, B), C(A, E), and C(A, U) were greater than
C(B, A), C(E, A), and C(U, A), respectively. However, there are three instances where more
solutions obtained by PIMBO could dominate those acquired by MOEAD. The average
values of C(A, B), C(B, A), C(A, E), C(E, A), C(A, U), C(U, A), C(A, V), and C(V, A) were
0.7332, 0.1002, 0.7879, 0.0585, 0.9057, 0.0155, 0.1956, and 0.3362, respectively. These results
confirm that PIMBO outperformed MDGWO, MOABC, and NSGAII, whereas it was
inferior to MOEAD for coping with the concerned problem.

Table 5 reveals the comparative experimental results of the five algorithms according
to the IGD metric. By analyzing the comparison results of this metric, we can clearly
conclude that PIMBO performed better than MDGWO, MOABC, NSGAII, and MOEAD for
solving the concerned problem since the IGD values of PIMBO were smaller than those of
MDGWO, MOABC, NSGAII, and MOEAD in most instances. The average values of the
five algorithms for 10 instances were 0.1338, 0.2105, 0.2115, 0.2599, and 0.1617, respectively.
According to the analysis of the above experimental results, the algorithm designed in
this paper could obtain a nondominated solution set with fast convergence speed and rich
diversity when solving the concerned MMRDP.

In order to reveal the performance of PIMBO and its peers more comprehensively,
the hypervolume metric was adopted to analyze the experimental results in Table 6. It
can be found that the hypervolume values obtained by PIMBO were bigger than those
of NSGAII in all instances. There were seven instances where the hypervolume values
obtained by PIMBO were bigger than those of MDGWO and MOABC, and there were six
instances where the hypervolume values obtained by PIMBO were bigger than those of
MOEAD. Through more detailed calculation, the average values of the five algorithms
for 10 instances were 0.4613, 0.4228, 0.4352, 0.3737, and 0.4477, respectively. Hence, this
demonstrates that, compared with MDGWO, MOABC NSGAII, and MOEAD, PIMBO
provided more uniformly distributed solutions in the solution set when solving MMRDP.
In order to further and more visually describe the experimental results, this paper presents
the boxplots of experimental results of the five algorithms for 10 instances in terms of the
IGD metric and hypervolume metric in Figures A5 and A6 of Appendix A.4, respectively.
In Figure A5, “HV” denotes the hypervolume value. From the experimental results and
Figures A5 and A6, this work can conclude that PIMBO had better performance than
MDGWO, MOABC, NSGAII, and MOEAD in dealing with the proposed problem.

5. Conclusions

This work introduced the MMRDP in an uncertain environment with objectives of
maximization of profit and balancing rate, as well as minimization of energy consumption.
A detailed and complete mathematical model was developed to display the MMRDP. Then,
an improved PIMBO algorithm was formulated by incorporating a stochastic simulation
approach to solve the MMRDP. Through the comparison of multiple groups of experiments,
the proposed algorithm was shown to have excellent phenotype under the measurement of
the selected metrics The experimental results can assist producers to make more diversified
decision plans.

For future work, we plan to strive in two directions: (1) to consider more practi-
cal issues based on this model such as U-type, circular type, and parallel disassembly
lines [38,39]; (2) to design much better intelligent algorithms to deal with highly complex
optimization problems [40–45].
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Figure A1. The flowchart of decoding.

Appendix A.2. Clustering

The pseudo-code of Pareto-based clustering is shown in Algorithm A1, where Cp
represents a subcluster in cluster C, and τ denotes the rank level of individuals.

Algorithm A1: Pareto-Based Clustering

Input: all individuals in population P.
Output: the cluster C.
Begin
Initialize two sets δ and Cp. Define an integer r to represent the rank level of an individual. δ := P,
Cp := ∅, τ := 1. Rank individuals in δ according to Pareto rule.

while (δ 6= ∅)
for (i := Q to 1) do

Choose all individuals of the same rank level r from δ.
Move them to Cp and delete it from δ.

end for
Add Cp to C and the first individual in Cp as center.
Cp := ∅. r++.
end while

End

https://pan.baidu.com/s/1LdDNgwoiO06uWyZMTbXy3A
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Appendix A.3. New Individual Generation

Algorithm A2: New Individual Generation

Input: Q individuals in population P, the cluster C.
Output: X, A.
Begin
Randomly generate a value ϑc in the range [0, 1).
if (ϑc < pc) then

Select a cluster center randomly.
Generate an individual to replace the chosen cluster center.

end if
for (i = 1 to Q)

Randomly generate a value ϑg in the range [0, 1).
if (ϑg < pg) then

Randomly select a cluster and generate a random value ϑo in the range [0, 1).
if (ϑo < po) then

Select a cluster center in the chosen cluster and a center of the first cluster to execute PPX operation to generate
new individual.
Perform PBM operation on this new individual. Evaluate and store this new individual inX. Update A usingX.

else
Select a common individual randomly in the chosen cluster and a center of the first cluster to execute PPX operation to
generate new individual. Perform PBM operation on this new individual.
Evaluate and store this individual inX. Update A usingX.

end if
else

Randomly select two clusters and generate a random value rt in the range [0, 1).
if (ϑt < pt) then

Select a cluster center in the chosen clusters. Execute PPX operation on these to generate new individual.
Perform PBM operation on this new individual. Evaluate and store this individual inX. Update A usingX.

else
Select a common individual randomly in the chosen clusters, respectively. Execute PPX operation on these to generate new
individual. Perform PBM operation on this new individual. Evaluate and store this individual inX. Update A usingX.

end if
end if

end for
End

Appendix A.4. Schematic Diagrams and AND/OR Graphs
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Appendix A.6. Complexity Analysis

This section analyzes the complexity of the algorithms involved in PIMBO.

(1) Crossover operator (PPX): According to the analysis in [32], the time complexity of
crossover operator is O(J), where J represents the total number of operations.

(2) Mutation operator (PBM): According to the analysis presented in [27], the time com-
plexity of mutation operator is O(1).

(3) Pareto-based clustering: According to the analysis of Algorithm A1, the time complexity
of Pareto-based clustering is O(QlogQ), where Q represents the number of populations.

(4) New individual generation: According to the analysis of Algorithm A2, the time
complexity of new individual generation is O(J), where J represents the total number
of operations.
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