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Abstract: Consider a set of n players. We suppose that each game involves two players, that there is
some unknown player who wins each game it plays with a probability greater than 1/2, and that our
objective is to determine this best player. Under the requirement that the policy employed guarantees
a correct choice with a probability of at least some specified value, we look for a policy that has a
relatively small expected number of games played before decision. We consider this problem both
under the assumption that the best player wins each game with a probability of at least some specified
value p0 > 1/2, and under a Bayesian assumption that the probability that player i wins a game
against player j is vi

vi+vj
, where v1, . . . , vn are the unknown values of n independent and identically

distributed exponential random variables. In the former case, we propose a policy where chosen
pairs play a match that ends when one of them has had a specified number of wins more than the
other; in the latter case, we propose a Thompson sampling type rule.

Keywords: best arm identification; dueling bandit

MSC: 90-10; 62L99

1. Introduction

Consider a set of n players, numbered 1, . . . , n. Suppose that each game played in-
volves two players, and that a game between i and j is won by i with some unknown
probability pi,j = 1 − pj,i. Assuming that there is an unknown player i∗ such that
pi∗ ,j > 1/2, j 6= i∗, our objective is to identify player i∗. To do so, at each stage, we
choose two of the players to play a game, with the winner of the game being noted. With a
policy being a rule for determining whether to stop and make a choice as to which is the
best player (namely, which player is i∗) or to choose a pair to play the next game, we want
to find a policy that, with probability at least 1− δ, makes the correct choice, while at the
same time minimizing the expected number of games that need be played before a choice
is made. We do this both under the Cordorcet assumption that pi∗ ,j ≥ 0.5 + ε, j 6= i∗,
where ε ∈ (0, 0.5) is a known number, as well as under a Bayesian model that makes the
Bradley–Terry–Luce [1,2] assumption that Pi,j =

vi
vi+vj

, where v1, . . . , vn are the unknown
values of n independent exponential random variables with a mean of 1.

Our problem is closely related to the multi-arm bandit problem, where the objective is
to find the best arm. In the conventional stochastic setting, the learner is asked to sample a
single arm at each stage and receive a real-valued feedback generated from the unknown
distribution associated with the sampled arm. There is a variety of works addressing the
identification of the best arm (see, for instance, [3–6]). However, in many scenarios, such
as search engine and online recommendation, it is often difficult to obtain explicit and
reliable feedback regarding a single arm, as the feedback often shows the preference of the
user among a list of options (e.g., ‘A looks better than B’). A more appropriate framework,
known as dueling bandit, utilizes the pairwise comparison as actions and learns through
pairwise preference. Though most dueling bandit algorithms focused on minimizing the
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cumulative regret [7–9], many recent works (such as [10–12]) were developed under various
notions of the best arm.

In Section 2, we look at the Condorcet winner setting. We propose two policies that
use a knockout tournament structure to successively eliminate players. We suppose that,
in each round, players still in contention are randomly paired and play a match, where a
round j match ends when one of them has mj more wins than the other. The match winners
move on to the next round and the losers are eliminated from contention. The winner of
the final match is then chosen as being the best. We show how to determine the critical
numbers mj so as to guarantee that the probability that i∗ is the chosen player is at least
1− δ. We also consider a modification of this rule such that if in a round j match there has
not been a winner after nj games, then that match is ended and both of its participants
are eliminated. We present upper bounds on the mean number of games needed by these
policies as well as numerical evidence that these rules outperform others in the literature.

In Section 3, we turn our attention to the Bradley–Terry–Luce model. We propose a
randomized policy whose logic uses a Thompson sampling approach to determine how to
choose the next pair. To utilize this policy, we show how to effectively simulate from the
posterior joint distribution of the player’s values and how to effectively use simulation to
determine the posterior probability that a given player has the largest value.

Conclusions are presented in the final section.

2. The Condorcet Winner Model

In this section, we make the Condorcet assumption that there is an unknown player
i∗ such that pi∗ ,j ≥ p0 = 0.5 + ε, j 6= i∗, where ε ∈ (0, 0.5) is a known number. Let k be
the positive integer for which 2k−1 < n ≤ 2k. Our policy utilizes a knockout tournament
structure as follows.
Knockout Tournament Framework

• Initialization: all players are alive
• For round t = 1, 2, . . . , k

– If the number of alive players is odd, one of the players is randomly selected
and given a bye. The others are randomly paired up.

– If the number of alive players is even, randomly pair up these players.
– Each pair then plays a match, consisting of a series of games. Depending on

the match rules, at some point one of the players is declared the winner of the
match.

– The match winners along with the player given a bye, if there was such a player,
remain alive and move on to the next round. The match losers are eliminated.

• Claim the winner of the match in round k as the best dueler.

In the following two sections, we will present two ways of determining the winner for
each match. Note that players who receive a bye in some rounds automatically advance to
the next round.

2.1. A Gambler’s Ruin Rule

Adopting the framework above, we propose a Gambler’s Ruin Rule (GRR) to deter-
mine the winner of each match. Let r0 = p0

1−p0
= 1+2ε

1−2ε , let k be the positive integer for

which 2k−1 < n ≤ 2k, let m∗t = logr0
(2t/δ) = ln(2t/δ)

ln(r0)
, and let mt = ceil(m∗t ), t ≥ 1, where

ceil(a), called the ceiling of a, is the smallest integer at least as large as a.
Gambler’s Ruin Rule

• In round t, each pair plays a sequence of games until one of them has achieved mt
more wins than the other, with the one with more wins being declared the winner.

Lemma 1. GRR identifies the best dueler i∗ with probability at least 1− δ.
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Proof. Given that i∗ successfully proceeds to round t, the probability that i∗ is eliminated
in round t, denoted by Pt, can be upper bounded by using the gambler’s ruin probability

Pt ≤
1− rmt

0

1− r2mt
0

=
1

1 + rmt
0

<
1

rm∗t
0

=
δ

2t

To win the tournament, i∗ needs to win all k rounds. Hence,

P(i∗ is eliminated) = P(∪k
t=1{i∗ is eliminated at round t})

≤
k

∑
t=1

P(i∗ is eliminated at round t)

<
k

∑
t=1

Pt

< δ

which indicates that the probability of finding the best arm is at least 1− δ.

Next, we show how to upper bound the expected number of games played when
using GRR.

Let Nm(p) be the total number of games for a match between players A and B, which
ends when one of the players is ahead by m, where p is the probability that player B wins
each game. The following Lemma shows that E[Nm(p)] is a unimodal function that is
maximized when p = 0.5.

Lemma 2. The expected number of plays until one of the players is ahead by m is a decreasing
function of p when p ≥ 1/2.

Proof. Suppose that p 6= 1/2, and let r = p/(1− p). We first show that E[Nm(p)] is a
decreasing function of p for p > 1/2. Let, for i ≥ 1, Xi = 1 if player A wins game i and let
it be −1 otherwise. Then, Wald’s equation gives that

E[Nm(p)](2p− 1) = E[
Nm(p)

∑
i=1

Xi]

=
m

1 + rm −
mrm

1 + rm

where the final equality used the gambler’s ruin probability

P(
Nm(p)

∑
i=1

Xi = m) =
1− rm

1− r2m =
1

1 + rm

Because 2p− 1 = r−1
r+1 , the preceding gives

E[Nm(p)] = m
r + 1
r− 1

rm − 1
rm + 1
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As r is an increasing function of p, it suffices to show that f (r) ≡ r+1
r−1

rm−1
rm+1 is a decreasing

function of r when r > 1. Now,

f ′(r) =
(

rm−1+m(r+1)rm−1
)
(r−1)(rm+1)

(r−1)2(rm+1)2

−
(

rm+1+(r−1)mrm−1
)
(r+1)(rm−1)

(r−1)2(rm+1)2

= 2mrm+1−2mrm−1−2r2m+2
(r−1)2(rm+1)2

Let g(r) = mrm+1 −mrm−1 − r2m + 1. It suffices to show that g(r) < 0 for all r > 1. Now,

g(r) = (r2 − 1)mrm−1 − r2m + 1

= (r2 − 1)mrm−1 − (r2 − 1)(
m−1

∑
i=0

r2i)

= (r2 − 1)(mrm−1 −
m−1

∑
i=0

r2i)

By the arithmetic and geometric means’ inequality,

∑m−1
i=0 r2i

m
≥ m

√√√√m−1

∏
i=0

r2i = rm−1

Thus,
g(r) ≤ (r2 − 1)(mrm−1 −mrm−1) = 0

Hence, E[Nm(p)] decreases in p when p > 1/2. Because E[Nm(p)] is a continuous function
of p that is symmetric about 1/2, it follows that its maximal value occurs when p = 1/2,
which completes the proof.

Corollary 1. E[Nm(p) ≤ m2.

Proof. This follows as it is well known that E[Nm(1/2)] = m2.

Now, let Gt be the number of games played in round t, and let G = ∑k
j=1 Gt be

the total number of games played. As Lemma 2 implies that E[Xm] ≤ m2, we see that
E[G] ≤ ∑k

t=1 2k−tm2
t . This upper bound can be improved by using that the m2 upper

bound can be decreased if the best player is involved in the match. Indeed, it follows from
Lemma 2 that the mean number of games in a match involving the best player ,which ends
when one of the players is ahead by m, is upper bounded by

b(m) = m
r0 + 1
r0 − 1

rm
0 − 1

rm
0 + 1

.

Proposition 1.

E[number of plays] ≤ ∑k
t=1 2k−tm2

t −∑k
t=1
(
m2

t − b(mt)
)

∏
j−1
s=1

rmt
0

1+rmt
0



Mathematics 2023, 11, 1568 5 of 12

Proof. Let R be the number of rounds played by the best player. Conditioning on whether
the best player plays in round t yields that

E[Gt] ≤ (2k−t − 1)m2
t + P(R ≥ t)b(mt) + P(R < t)m2

t

= 2k−tm2
t − P(R ≥ t)(m2

t − b(mt))

and the result follows because the proof of Lemma 1 implies that P(R ≥ t) ≥ ∏t−1
s=1

rms
0

1+rms
0

.

Remark 1. The upper bound of Proposition 1 is attained when n = 2k, pi∗ ,j = p0, j 6= i, and
pi,j = 0.5, i, j 6= i∗.

Of other methods considered in the literature, the closest to ours is the rule proposed
in [13]. (Other rules, such as those of [12,14], deal with more specific models that typically
assume, among other things, that there is a ranking of the players such that the probability that
a higher ranked player will win a game against a lower ranked one is at least 0.5. In addition,
numerical results cited in [13] indicate that its rule tends to outperform the others.)

Although the rule of [13], like GRR, uses a knockout tournament structure that elimi-
nates half the remaining players in each round, it differs in two ways from GRR. The first is
in how a match is decided, with the rule in [13] having a match consisting of a fixed odd
number g of games and then letting the winner of the match be the one with more wins.
The second way is that g is fixed and does not depend on the round. We now argue that
the GRR way of deciding the winner of a match is superior.

Let the m-rule be the rule where each match, in any round, is decided when one of the
players has m more wins than the other, and let the g-rule be one where each match consists
of g games. To compare these, let L1(m, p) and L2(g, p) be the probabilities that the better
player would lose a match when using an m-rule and when using a g-rule, when the better
player wins each game with probability p. (Thus, L2(g, p) = P(Bin(g, p) < (g + 1)/2),
where Bin(g, p) is a binomial random variable with parameters (g, p).) The following table
gives some values for these quantities when p = 0.6.

Thus, for instance, if p0 = 0.6, then the use of the g-rule with g = 77 would result in
each match being 77 games and have a resulting success probability of about 1− k× 0.0376.
On the other hand, use of the m-rule with m = 8 would lead to the same success probability,
with the mean number of games in a match between i and j having a value that ranges
between 8 and m2 = 64 as |Pi,j − 0.5| ranges from 0.5 to 0. On the other hand, if one wanted
a larger success probability, then a g-rule with g = 93 and the m-rule with m = 9 both
would result in a success probability of approximately 1− k × 0.02536, with the g-rule
requiring 93 games per match, and the m-rule requiring a mean number of games per
match ranging from 9 to a maximum of 81.

The GRR rule modifies the m-rule by allowing a different value of m in each round.
Because the number of matches in each round decreases exponentially, it seems intuitive
to have shorter matches in earlier rounds, which is what GRR does. For instance, in the
case where k = 5 and Pi∗ ,j = 0.6, j 6= i and Pi,j = 0.5, i, j 6= i∗, Table 1 indicates that if
mt = 11, t ≤ k, then the probability of an incorrect choice is approximately 0.057, with
the mean number of games needed being 3422.31. On the other hand, the mean number
of games needed in this case by the GRR rule with δ = 0.057 is 3093.72 (The means are
computed by using Proposition 1).

The next section considers a modification of the GRR rule.
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Table 1. Comparison of match win probabilities for g- and m-rules when p = 0.6.

m L1(m, 0.6) g L2(g, 0.6)

8 0.0376 77 0.0376
9 0.02535 93 0.02537
10 0.01704 109 0.01724
11 0.0114 125 0.0118
15 0.00228 197 0.00226

2.2. Modified Gambler’s Ruin Rule

One underlying drawback of GRR is that it may play too many games between two
suboptimal arms to determine which seems better. In such cases, one might consider
eliminating both arms as none of them show the potential to be best. Therefore, we can
often improve GRR by limiting the number of games in each match, and drop both arms
if none of them can win the match by the end. The resulting rule, called the Modified
Gambler’s Ruin Rule (MGRR), is as follows.
Modified Gambler’s Ruin Rule

• Let w∗t = 1
4ε ln(2t/δ), let wt = ceil(w∗t ), and let nt = ceil(3w∗t /ε), t ≥ 1. In round t,

play each pair until either one is ahead by wt, with the leader being the winner, or until
the total number of games reaches nt, in which case both arms are eliminated.

As a preparation of showing the strength of MGRR, we need the following Lemma.

Lemma 3. For 0 ≤ x ≤ 1
1− x
1 + x

≤ e−2x.

Proof. Let f (x) = (1− x)e2x − (1 + x). It suffices to show that f (x) ≤ 0 for 0 ≤ x ≤ 1.
Now,

f ′(x) = e2x − 2xe2x − 1

f ′′(x) = −4xe2x

Since f ′′(x) ≤ 0, it follows that f ′(x) is decreasing, which, since f ′(0) = 0, shows that f (x)
is decreasing. Hence, f (x) ≤ f (0) = 0.

Lemma 4. MGRR identifies the best arm i∗ with probability at least 1 −δ.

Proof. Given that the best player successfully advances to round t and that she wins each
game played in round t with probability a, let Pt(a) denote the conditional probability that
the best player is eliminated in round t. Let Xi, i ≥ 1 be independent Bernoulli random
variables such that

Xi =

{
1 with probability a
−1 with probability 1− a

and let Sr(a) = ∑r
i=1 Xi, r ≥ 1. Then,

Pt(a) = P(Sr(a) hits− wt before wt ∪ Sr(a) does not hit wt within nt steps)

≤ P(Sr(a) hits− wt before wt) + P(Sr(a) does not hit wt within nt steps)

≤ P(Sr(a) hits− wt before wt) + P(Snt(a) < wt)
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Because a ≥ p0 = 1/2 + ε and both terms on the right side of the preceding inequality are
decreasing in a, we have that

P(Sr(a) hits− wt before wt) ≤ (1/r0)
wt

≤ (
1− 2ε

1 + 2ε
)

1
4ε ln(2t/δ)

≤ e− ln(2t+1/δ)

=
δ

2t+1

where the second inequality follows by Lemma 4. In addition,

P(Snt(a) < wt) ≤ P(Snt(p0) < wt)

= P(Snt(p0))− 2ntε < wt − 2ntε)

≤ exp(− (wt − 2ntε)2

2nt
)

≤ exp(−25
24

ln(2t+1/δ))

< exp(− ln(2t+1/δ))

=
δ

2t+1

where the third inequality uses Azuma inequality (see [15]). Hence, Pt(a) ≤ δ
2t , which

shows that the conditional probability that the best player is eliminated in round t given that
she advances to that round is at most δ

2t . However, by the same argument as in Lemma 1,
this shows that the probability that the best arm is identified is at least 1− δ.

Remark 2.

• Since the number of games is upper bounded in each match, we are able to derive the upper
bound of the total number of games when using MGRR:

number of game ≤
k

∑
t=1

2k−tXt

=
3

4ε2

k

∑
t=1

2k−t(ln 2t+1 + ln
1
δ
)

=
3n
4ε2

k

∑
t=1

ln 2t+1 + ln 1
δ

2t

<
3n
4ε2 (4 + ln

1
δ
)

= O(
n ln 1

δ

ε2 )

• There is basically no downside in using MGRR as opposed to GRR. Although w∗t > m∗t , the
difference is usually small and often wt = mt. To see this, note that

w∗t
m∗t

=
ln( 1+2ε

1−2ε )

4ε
(1)
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Since 1+2ε
1−2ε − 1 = 4ε

1−2ε , the Taylor series expansion of f (x) = ln(x) about 1 gives that

ln(
1 + 2ε

1− 2ε
) ≈ 4ε

1− 2ε
− (

4ε

1− 2ε
)2/2 + (

4ε

1− 2ε
)3/3

For an illustration, suppose ε = 0.05, δ = 0.01. Then, w∗3 = 33.42, m∗3 = 33.31, n3 = 2006,
so w3 = m3 = 34. Now, if Pi,j = 1/2, then the mean and variance of the number of games
needed between players i and j until one is up by m is m2 and 2m2(m2 − 1)/3 (see [16] for
the variance formula). Letting NGRR and NMGRR be the number of round 3 games such a
match would take when using GRR and when using MGRR, it follows that the mean and
standard deviation of NGRR are 1156 and 943.46. Hence, as NMGRR = min(NGRR, 2006),
it follows that MGRR stops the match when the number of games played is roughly one
standard deviation above the mean of NGRR, which should result in a reasonable decrease
in the mean number of games needed. (For instance, if X is exponential with mean 1, then
E[min(X, 2)] = 1− e−2 = 0.865.)

• The validity of w∗t > m∗t follows from (1) upon using Lemma 3.

The following Table 2 compares the performances of GRR and MGRR when pi∗ ,j =

p0, pi,j = 0.5, i∗ 6= i 6= j, and n = 2k.

Table 2. Mean number of games needed by GRR and MGRR.

ε = 0.1, δ = 0.05 k = 2 k = 3 k = 4 k = 5

GRR 203.18 591.48 1482.14 3415.14
MGRR 196.82 565.21 1378.99 3112.67

k = 3, δ = 0.05 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3

GRR 2240.49 591.48 153.51 61.40
MGRR 2156.00 563.03 148.96 75.65

3. The Bradley–Terry–Luce Bayesian Model

Suppose now that player i has an unknown associated value vi, and that a game
between players i and j is won by i with probability vi

vi+vj
. Furthermore, suppose that

v1, . . . , vn are the values of n independent exponential random variables V1, . . . , Vn having a
mean of 1. As before, our objective is to identify player i∗, where i∗ = argmax vi. However,
because we are assuming a prior distribution on the values, we now require that the
posterior probability that our decision is correct is at least 1− δ. That is, if C is the event that
we made the correct choice, then we require that our rule is such that P(C|all data) ≥ 1− δ.
Subject to this constraint, we want the expected number of games played to be relatively
small. Because we want to finish as soon as possible and we require that the posterior
probability that we have made the correct decision is at least 1− δ, it is clearly optimal to
stop as soon as there is some r for which P(Vr = maxj Vj|all data) ≥ 1− δ. More precisely,
if wi,j is the number of times that i has beaten j, then we should stop and declare for r if
P(Vr = maxj Vj|wi,j, i 6= j) ≥ 1− δ.

The rule we suggest for determining the pair to play the next game is a randomized
policy that relates to the Thompson sampling approach used in bandit problems (see [17,18]).
Letting V(1) > V(2) > . . . > V(n) be the ordered values of V1, . . . , Vn, and Pi,j, i 6= j, be the
posterior probability that V(1) = Vi, V(2) = Vj, then i and j are chosen to be the next pair
with probability Pi,j + Pj,i. We can implement this rule by simulating a random vector
V∗1 , . . . , V∗n having the conditional distribution (given all data) of V1, . . . , Vn. If V∗i and V∗j
are the two largest of V∗1 , . . . , V∗n then i and j are chosen to play the next game. Because it is
difficult to directly simulate from the posterior distribution of V1, . . . , Vn, we next develop
a Markov chain Monte Carlo approach for doing so.



Mathematics 2023, 11, 1568 9 of 12

3.1. The Sampling Approach: MCMC

With wi,j denoting the current number of times player i has beaten j, the conditional
(e.g., posterior) density of V = (V1, . . . , Vn) is

f (x1, . . . , xn) = Ce−∑i xi ∏
i 6=j

(
xi

xi + xj

)wi,j

(2)

for a normalization factor C.
As noted previously, we now want to simulate from the preceding distribution and let

the next game be between the two indices whose simulated values are largest. However, be-
cause directly simulating V from (2) does not seem computationally feasible (for one thing,
C is difficult to compute), we utilize the Hasting–Metropolis algorithm (see [19]) to generate
a Markov chain whose limiting distribution is given by (2). The Markov chain is defined as
follows. When its current state is x = (x1, . . . , xn), a coordinate that is equally like to be any
of 1, . . . , n is selected. If i is selected, a random variable Y is generated from an exponential
distribution with mean xi, and if Y = y, then y = (x1, . . . , xi−1, y, xi+1, . . . , xn) is consid-
ered as the candidate next state. In other words, if we let y = (x1, . . . , xi−1, y, xi+1, . . . , xn),
the density function for the candidate next state is

q(y|x) = 1
n

1
xi

e−y/xi

The next state of the Markov chain, call it x∗, is such that

x∗ =
{

y with probability α(x, y)
x with probability 1− α(x, y)

where

α(x, y) = min

{
f (y)
f (x)

q(x|y)
q(y|x) , 1

}
The limiting distribution of this Markov chain is the posterior distribution of V1, . . . , Vn.

Consequently, we can approximately simulate from the posterior by generating a large
number of states of the chain and then choosing the two largest indices of the final state
to play the next game. However, as it probably makes little difference if we choose i and j
to play the next game not with the exact posterior probability that these are the two arms
with largest values but with a probability close to the exact one, in practice, we do not
need to determine many states of the Markov chain. Indeed, it is not clear that using the
exact probabilities would lead to improved results. (In practice, for n ≤ 10, 100 states of
the Markov chain should suffice.) Moreover, after choosing a pair and observing the result
of their game, then because of the new posterior distribution, which given the result of
the last game should not be much different from the previous one, the initial state of the
Markov chain used to determine the next pair should be chosen to be the final state of the
previous chain.

Whereas the preceding simulations can be used to estimate the probability that a given
player is best, we do not recommend using it to determine when to stop. Indeed, if a player’s
probability of being best appears to have a reasonable chance of being as large as 1− δ, we
propose to use the method in the next subsection to estimate P(Vr = maxj Vj|all data).
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3.2. The Stopping Criteria: A Simulation Approach

In this subsection, we will present a simulation approach to estimate P(Vr = maxj Vj|
all data). It follows from (2) that for r = 1, . . . , n

P(Vr = max
i

Vi|wi,j, i 6= j) =
E[I{Vr = maxi Vi}∏i 6=j(

Vi
Vi+Vj

)wi,j ]

E[∏i 6=j(
Vi

Vi+Vj
)wi,j ]

(3)

=
E[∏i 6=j(

Vi
Vi+Vj

)wi,j |Vr = maxi Vi]

nE[∏i 6=j(
Vi

Vi+Vj
)wi,j ]

= K E[∏
i 6=j

(
Vi

Vi + Vj
)wi,j |Vr = max

i
Vi], (4)

where V1, . . . , Vn are iid exponentials with rate 1.
Thus, we can use simulation to estimate Pr ≡ P(Vr = maxi Vi|wi,j, i 6= j), r = 1, . . . , n as

follows. In the tth simulation run, generate n independent exponentials with rate 1, V1, . . . , Vn

and let i∗ be such that Vi∗ = maxi Vi. To estimate E[∏i 6=j(
Vi

Vi+Vj
)wi,j |Vr = maxi Vi], let

Xj(r) =


Vj, if j 6= i∗, j 6= r
Vi∗ , if j = r
Vr, if j = i∗

and let b(t)r = ∏i 6=j(
Xi(r)

Xi(r)+Xj(r)
)wi,j . Perform the preceding for each r = 1, . . . , n. If we

conduct m simulation runs, then the estimator of P(Vr = maxi Vi|wi,j, i 6= j) is ∑m
t=1 b(t)r

∑n
r=1 ∑m

t=1 b(t)r
.

In practice, it turns out that the variance of ∏i 6=j(
Vi

Vi+Vj
)wi,j is very large. While this

might not make much difference when using the proposed policy, it makes simulation stud-
ies of the effectiveness of the procedure difficult. To ameliorate this difficulty, we suggest
using the following importance sampling estimator, which in our numerical experiments
tended to reduce the variance by over 30%.

An Importance Sampling Estimator

Suppose we are at a stage where every player has at least one win. Let wi = ∑j 6=i wi,j
be the total number of wins of player i, and let w = ∑n

i=1 wi be the total number of
games played. Further, let Y1, . . . , Yn be independent, with Yi being exponential with rate

w
nwi

, i = 1, . . . , n. Then, the importance sampling identity (see [19]) gives

E[I{Vr = max
i

Vi}∏
i 6=j

(
Vi

Vi + Vj
)wi,j ]

= (
n

∏
i=1

nwi
w

) E[I{Yr = max
i

Yi}∏
i 6=j

(
Yi

Yi + Yj
)wi,j

n

∏
i=1

exp
(
(

w
nwi
− 1)Yi

)
] (5)

Thus, each simulation run generates Y1, . . . , Yn and, for each r = 1, . . . , n, yields an
unbiased estimator of E[I{Vr = maxi Vi}∏i 6=j(

Vi
Vi+Vj

)wi,j ]. In each run, all but one of these
n estimators will equal 0.

We now give numerical examples comparing the Thompson sampling rule with the
MGRR rule. It is worth noting that the implementation of Thompson sampling rule does
not require knowledge of ε, which specifies the least gap between the best player and an
arbitrary player. We consider two examples with 5 players, where in the first example
we use fixed strength v = (0.3, 0.5, 0.7, 0.9, 1.5) and in the second example we randomly
generate strengths from exponential (1) for each replication—that is, all replications in the
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first example use the same strength vector, whereas in the second example each replication
starts by simulating player strengths from an exponential with rate 1.

In all cases, when using the MGRR rule, we take ε =
V(1)

V(1)+V(2)
− 1/2. We run 100

iterations of MCMC to determine the next pair and we utilize importance sampling in
estimating the probabilities that check for stopping. The results, using δ = 0.05, are
summarized in Tables 3 and 4. The standard deviation columns refers to the standard
deviation of the estimator of the expected number of games until stopping.

Table 3. Numerical example of Thompson sampling rule where strengths v = (0.3, 0.5, 0.7, 0.9, 1.5).
Replication = 5000.

Method Percentage of
Correct

Mean Number of
Games Standard Deviation

MGRR 0.99 115.612 1.39
Thompson Sampling 0.9886 98.9916 0.8671405

Table 4. Numerical example of Thompson sampling rule where strengths are randomly generated
from exponential (1). Replication = 3000.

Method Percentage of
Correct

Mean Number of
Games Standard Deviation

MGRR 0.99 8520 354
Thompson Sampling 0.953 248.3 13.5

4. Conclusions

We have considered the problem of finding the best among a set of n players when
we learn about the player’s skills by successively choosing a pair of players and having
them play a game. Our objective is to find a policy that minimizes the expected number
of games to find the best player, subject to the condition that the probability of a correct
choice is at least some specified value.

In our first model, we suppose that it is known that one of the players, called the best,
will win each game it plays with a probability of at least 1/2+ ε, where ε is a known positive
value. The policy we suggest is based on a knockout tournament structure, where we have
pairs play a match, with the winner of the match remaining in contention and the loser
being eliminated. Whereas other policies in the literature using a knockout tournament
structure let a match consist of a fixed number of odd games, with the winner being the
one with more wins, we let a match end when one of the players has won a fixed number
of games more than the other. We argue that our sequential-type matches lead to superior
results. We also show how to improve this policy by letting the number of games one must
be ahead to win the match depend on the number of remaining players, and by allowing
for the stopping of a match after a fixed number of games if neither player has won by then,
with both players being eliminated in this case.

Our second model supposes that each player has an unknown value, and that a
game between two players with values v and w is won by the player with value v with
probability v

v+w . Supposing that these values have a known exponential prior distribution,
the objective is to minimize the expected number of games needed to identify the player
with the largest value, subject to the condition that the posterior probability that our
decision is correct is at least some specified value. We present a Thompson sampling type
policy and give a simulation approach to estimate its resulting expected number of games
needed. The simulation results give evidence of the strength of this policy. Additional
numerical work is planned for future research.
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