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Abstract: In order to ensure reliable and secure image exchange, chaotic systems are often considered
for their good performance in information security. In this work, we first propose an extended version
of a chaotic tent map (TM)—the multiparametric 1D tent map (MTM). The latter contains six control
parameters defined over an unlimited range. These parameters strongly influence the MTM output
when they are slightly modified by ∓10−13, which makes MTM stronger than the existing TM and
other 1D chaotic maps in terms of security key space. Then, this paper proposes a simple, yet powerful
method to make uniform the distribution of chaotic sequence values, making the latter suitable for
use in cryptosystems. Next, a new image cryptosystem is introduced based on MTM and parallel
computing. This computing mode is incorporated to boost the security level of our scheme and to
speed up its runtime. Indeed, in only one running round, our encryption scheme generates a security
key of space equal to 1078×n with n indicating the number of the available CPU cores. Therefore,
the suggested scheme achieves a good trade-off between safety and efficiency. The results of the
performed comparisons and numerical experiments indicate on the one hand that MTM exhibits
good chaotic characteristics in comparison to its original version. On the other hand, the suggested
cryptosystem demonstrates good strength against various kinds of attacks (brute force, statistical,
classical, noise, differential, etc.). Furthermore, comparison with similar schemes indicate that the
proposed scheme is competitive in terms of execution time and superior in terms of security level.

Keywords: image encryption; tent map; 1D chaotic systems/maps; multiparametric chaotic map;
parallel computing; cryptosystem

MSC: 94A08

1. Introduction

In recent years, communication technologies have made impressive advances, offering
easy and large-scale access to information for individuals and organizations around the
world. However, the transmission of information through communication channels, espe-
cially unsecured ones such as the internet, remains vulnerable to cyberattacks. To counter
this risk, scientists are focusing on the development of information security techniques
such as steganography [1,2] and encryption [3,4]. These techniques are commonly used
to provide secure communication of various data forms, including audio signals [5,6],
biomedical signals [7], medical images [7,8], satellite images [9], videos [10], text [11], etc.
Images are particularly important in this context, as they serve as a reliable medium for
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many forms of data that include visual information (text, biosignals, video, barcodes, QR
codes, etc.). For this reason, extensive encryption systems have been developed to protect
the visual content of images during their communication between internet users.

Several schemes have been implemented for image encryption. The implementation of
these schemes is frequently conducted in either the transform domain or in the spatial one.
In the transform domain, encryption schemes are usually relying on discrete orthogonal
transforms such as discrete Fourier transform (DFT) [12], Meixner moments transform [7],
discrete cosine transform (DCT) [13], Hahn moments transform [14], fast Fourier transform
(FFT) [15], etc. However, transform-based encryption schemes are generally more expensive
in terms of computational and implementation complexity in comparison to spatial-based
encryption schemes, which makes them less feasible for real-time applications. To overcome
this limitation, encryption systems are frequently designed in the spatial domain due to
their high security and low computational complexity. Such schemes can be designed by
using DNA encoding [16], elliptic curves [17], fractal sorting matrix [4], Rubik’s cube [18],
quantum walks [19], etc.

The most popular spatial encryption approaches relies on chaotic systems, which gen-
erate chaotic sequences used in image encryption schemes. Chaotic systems can be classified
into two groups: (i) one-dimensional (1D) and multidimensional (nD) chaotic systems. The
latter are increasingly used for image encryption [20–23] due to their multiple parameters
and complex models. However, the implementation of nD chaotic systems is challenging
due to the complexity of their models [24]. Regarding 1D chaotic maps/systems, they are
popular in image encryption because of their simple structure, making them easy to imple-
ment on both software and/or hardware levels [25–28]. However, 1D chaotic systems are
limited by some major drawbacks: (i) the limited number of their control parameters that
are used as security keys; this problem makes these schemes vulnerable to cyberattacks and
can therefore be easily cracked through brute-force attacks; (ii) the limited chaotic ranges
of the 1D chaotic systems’ control parameters and/or the periodicity of these systems for
specific values within their control parameter ranges; and (iii) the nonuniform distribution
of the chaotic sequences produced via 1D chaotic systems.

To overcome problem (i), this work proposes a chaotic map called a multiparametric
tent map (MTM). The latter is introduced as extension of the well-known 1D tent map
(TM). MTM contains six control parameters, whereas its original version (MT) has only
one parameter. The proposed model can also solve problem (ii) as the MTM parameters
are defined on an infinite interval (R-space). In contrast, the control parameter interval of
the original MT is defined on limited interval. To solve problem (iii), a new, simple, yet
efficient method is proposed to unify the distribution of chaotic sequences. This method
is based on ascending or descending sort of chaotic sequence elements. Then, the index
vector associated with the sorted elements is normalized to a given interval.

The implementation of chaos-based encryption schemes usually involves the confusion
and diffusion stages. The confusion (permutation) process reduces the correlation between
adjacent pixels, and the diffusion phase is used to modify the statistical characteristics of the
input image. In general, these phases require the use of long chaotic sequences to achieve
high security of the encryption scheme. However, generating large chaotic sequences
is a time-consuming process, especially for real-time applications, where execution time
is a crucial factor. This problem limits the use of chaotic systems in real-time security
application. To speed up the execution time of chaos-based encryption systems, parallel
computing strategies can be exploited [29–32]. Indeed, the parallel execution mode can
considerably accelerate the encryption speed through the utilization of the full resources of
a multicore processor. This type of processor is increasingly used in many recent machines
such as smartphones [33], computers [34], Raspberry boards [35], etc. Therefore, the design
of encryption schemes that can be run on multicore processors is of obvious interest. Given
this fact, the present work includes a novel encryption scheme, which is based on MTM
and parallel computing. This computing mode is incorporated to boost the security level of
our scheme and to speed up its runtime.
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Our scheme consists of three essential phases. The first one consists in the generation
of MTM-based chaotic sequences through parallel computing. This phase allows the
maximum exploitation of the processor’s cores for both reach minimal execution time and
maximal security level. The second phase consists in diffusing the pixels of the input image
in order to cancel its statistical characteristics. For this purpose, the bitwise XOR operation
is performed between the original image and a chaotic matrix produced in the previous
phase. The third phase consists in confusing the pixels of the diffused image by employing
MTM-based chaotic sequences. This phase considerably increases the security level of the
proposed scheme.

This work also presents a simple, yet powerful method to equalize the histogram of
chaotic sequences used in image cryptosystems. This method is based on the ascending
(or descending) sorting of a chaotic sequence, then normalizing (scaling) the indices of the
sorted chaotic sequence values.

The main contributions of this article can be summarized as follows:

(i) the introduction of a new 1D multiparametric tent map (MTM) for improving the
chaotic behavior and the key space of the existing 1D tent map.

(ii) the suggestion of a simple yet efficient method to equalize the histogram of chaotic
sequence values.

(iii) the introduction of novel encryption scheme based on MTM and parallel computing
for fast and secure image communication.

(iv) the proposed parallel encryption algorithm offers a good trade-off between security
level and efficiency.

(v) demonstrating the performances of the proposed scheme by providing diverse tests
and comparisons with similar schemes.

The rest of the work consists of the following sections. The Section 2 contains related
work with discussion focusing on 1D chaotic systems. The Section 3 presents the suggested
1D chaotic map—the MTM. The Section 4 details the design and implementation of the
suggested cryptosystem, which is based on MTM with parallel computing. In the Section 5,
results of both tests and comparisons are reported, demonstrating the efficiency and
superiority of our encryption scheme. The Section 6 concludes the paper and suggests
possible extensions of the proposed cryptosystem.

2. Related Work

One-dimensional chaotic systems are frequently exploited in the design of various
image encryption schemes. One of the reasons that makes 1D systems widely applied
in image encryption schemes is their simple mathematical models, which facilitates their
software and hardware implementation.

Table 1 presents a review of recent literature related to image encryption schemes
based on 1D chaotic maps. This table also lists some characteristics related to the 1D chaotic
systems used: the number of control parameters that are used as security keys in the
cryptosystems, the range of the control parameters (limited/infinite), and the distribution
of the sequence values generated via the 1D chaotic maps (uniform/not uniform).

Table 1. Literature review of existing 1D chaotic maps applied to image encryption with characteris-
tics related to the used chaotic maps.

Image
Encryption Schemes Used 1D Chaotic Map Number of

Control Parameters
Range of

Control Parameters
Chaotic

Value Distribution

[36–41] Logistic map 1 Limited Not uniform

[42–46] Sine map 1 Limited Not uniform

[47–51] Chebychev map 1 Infinite Not uniform

[52–55] Bernoulli map 1 Limited Not uniform
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Table 1. Cont.

Image
Encryption Schemes Used 1D Chaotic Map Number of

Control Parameters
Range of

Control Parameters
Chaotic

Value Distribution

[56–58] Tent map 1 Limited Not uniform

[28] Quadratic map 3 Limited Not uniform

[59] q-deformed logistic
map 2 Limited Not uniform

[60] Modified logistic map 2 Limited Not uniform

[26,61,62] Improved 1D maps 1 Limited Not uniform

Proposed scheme
Multiparametric

dynamical tent map
(MTM)

6 Infinite Uniform after
histogram equalization

By analyzing the items in Table 1, we can conclude on the one hand that the 1D
chaotic maps are widely used in various image encryption schemes, which demonstrates
the powerful capability of these maps in the secure image communication. In addition,
we can notice that the majority of 1D chaotic systems include only a few of the control
parameters (from 1 to 3). Therefore, the size of the security keys is small for 1D chaotic
system-based security systems. To increase this size, two strategies can be implemented.
The first one involves the generation of several chaotic sequences during the execution
of a security system algorithm, and for each generated sequence, a different value of
the 1D map parameter is used. This strategy allows us to increase the security level of
the algorithms used in security systems. However, when a large chaotic sequences are
generated sequentially on a computing machine, the execution time of 1D chaos-based
algorithms becomes high. Therefore, this strategy is less efficient, especially for real-time
applications. To speed up the process of generating large chaotic sequences, the parallel
computing mode can be exploited. Indeed, the use of this mode allows us to generate
simultaneously (in a parallel way) several large chaotic sequences by exploiting all the
available resources of the computing systems [29,31,32]. Therefore, parallel computing
can significantly accelerate the generation of large chaotic sequences in comparison to
sequential computing. To exploit the advantages of parallel computing, the encryption
system proposed in this work is designed to run on computer systems that support the
parallel computing mode.

The second strategy focuses on the use of multiparametric 1D chaotic systems. Typi-
cally, this strategy can be achieved via two methods: the first consists in proposing new
multiparametric 1D chaotic map models [28]. This method constitutes an interesting field
for further research. The second method involves the modification of existing 1D chaotic
map models in order to introduce additional control parameters [59,60]. This method
has become increasingly interesting and has demonstrated its success in certain security
system studies [59,61,62]. In general, the use of 1D multiparametric chaotic maps provides
good security for security systems while using minimal chaotic sequences produced by
these maps. In this sense, the present work introduces an extended version of the tent
map named multiparametric tent map (MTM). Compared to its original version and in
comparison with other 1D chaotic maps, MTM has a higher number of parameters. In
addition, the parameter ranges of MTM are unlimited. In contrast, the control parameter
ranges of most existing 1D systems are limited. These benefits of MTM can be effectively
exploited to achieve higher security levels for security systems. Furthermore, from Table 1,
we can notice that 1D chaotic systems face a common problem: the nonuniformity of
the chaotic sequences generated from such systems. This drawback can be exploited by
attackers who try to crack security systems based on statistical analysis. To avoid this
drawback, this article presents a simple but effective solution. Our solution is based on
the normalization of indices, which are generated by sorting the components of chaotic
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sequences. The advantages of MTM and the proposed method for the uniform distribution
of chaotic sequences are demonstrated in the context of a new encryption scheme. The
central idea in designing this scheme is to achieve a strong level of safety while using a
minimum number of MTM-based chaotic sequences.

3. Proposed Multiparametric Dynamical Tent Map

The tent map is one of the famous 1D nonlinear dynamical systems that exhibit chaotic
behavior. One of the main reasons for the extensive use of 1D TM in security applications
is the linear piecewise character of this map [63]. The 1D TM has attracted increasing
attention in image encryption applications. Some excellent image encryption schemes are
designed based on 1D TM [58,64–66]. However, the main drawback of 1D TM and other
1D chaotic maps is the limited number of their control parameters. The 1D TM contains
a single parameter that leads to the occurrence of chaos in a limited interval. This failure
makes 1D chaotic map-based encryption schemes highly vulnerable to brute-force cracking
attempts by cyberattackers.

Assuming that a 1D chaotic system with multiple control parameters can improve
the security level of cryptosystems, a new improved version of 1D TM is proposed in this
section—a multiparametric dynamical tent map (MTM). It is worth mentioning that the
present framework can be easily applied to other one-dimensional or multidimensional
chaotic maps for introducing their multiparametric versions. In this regard, the proposed
multiparametric version of a tent map is provided for illustration purposes.

3.1. Tent Map

The classical 1D TM is defined by the following relation [67]:

Tn+1 =

{
λTn for Tn < 0.5

λ(1− Tn) for Tn ≥ 0.5
(1)

where λ is the control parameter of TM and 0 ≤ T0 ≤ 1 its initial value. For 0 ≤ λ ≤ 2,
TM exhibits a chaotic behavior. Figure 1 shows the bifurcation diagram and the values of
Lyapenov exponent (LE) corresponding to TM. The latter is computed by the next relation [37]:

LE = lim
m→∞

[
1
m

m

∑
j=1

log2

∣∣∣∣∣dxj+1

dxj

∣∣∣∣∣
]

(2)

where log2 is the log base 2 function.
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Figure 1. (a) Bifurcation diagram and (b) LE of TM for [0,2]λ ∈  with 0 0.5T = . Figure 1. (a) Bifurcation diagram and (b) LE of TM for λ ∈ [0, 2] with T0 = 0.5.

From Figure 1, it can be observed that TM becomes rich in chaotic dynamics when
the value of λ tends to 2. However, the “white areas” in the bifurcation diagram and the
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negative values of LE indicate the lack of the chaotic behavior for particular ranges of λ
values. These values should be avoided when designing TM-based security schemes. We
can also notice that the interval of λ that leads to a positive value of LE is very limited, which
makes TM-based security systems vulnerable to cyberattacks due to their low security
level. For significantly improving the chaotic behavior of TM, an extended version of TM is
proposed in the next section: the multiparametric tent map (MTM).

3.2. Proposed MTM Model

Driven by the idea that a 1D chaotic system with large number of parameters can
provide high security level to encryption schemes, a new 1D chaotic system with multiple
parameters is proposed as extension of the existing TM. The following relation defines the
proposed MTM model:

Xn+1 =

{
(10/7)× (1− α|cos(λ1)| − α|sin(λ2)| − α|atan(λ3)|)Xn for Xn < 0.7
(10/3)× (1− α|cos(λ4)| − α|sin(λ5)| − α|atan(λ6)|)(1− Xn) for Xn ≥ 0.7

(3)

where λ1, λ2, λ3, λ4, λ5 and λ6 represent the MTM control parameters with cos(x), sin(x) and
atan(x) denote the trigonometric cosine, sine and arctangent functions, respectively. The
variable x of these functions is defined on R domain. Therefore, a wide range of possibilities
is available when selecting the λ1, λ2, λ3, λ4, λ5, λ6 parameters that are used as security
keys. The symbol |.| in Equation (3) denotes the absolute value symbol and α is a constant
value that must be selected in the range α ∈ [10−4, 10−2] to guarantee the chaotic behavior
of the MTM and 0 < X0 ≤ 1 is the initial value of the MTM.

It is worth mentioning that the use of the ratios 10/7, 10/3 and the threshold 0.7 in
Equation (3) guarantee the chaotic behavior of MTM and ensure both positive and maximal
LE values of MTM (see Figure 2). It is also worth mentioning that the incorporation of
6 control parameters in the MTM model is intended to achieve a high security level for
MTM-based security schemes (see Sections 5.1 and 5.2).
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Figure 2. (a) LE values corresponding to TM and MTM parameters within the range [0, 2] and (b) LE
values of MTM in the range [−1000, 1000].

From Equation (3), it can be deduced that the MLM control parameters range is R. This
range is very large compared to the original λ-parameter of TM domain and in comparison
to other 1D chaotic systems [26,28,59,61,62]. However, it is necessary to examine the chaotic
behavior of MTM within the definition domain of its control parameters.
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3.3. Bifurcation Diagrams and LE Analysis of MTM

To compare the chaotic behavior of TM and MTM, LE criterion is used in the present
test. For this purpose, the control parameter values of TM and MTM are varied in [0, 2].
Then, the result of the present comparison is displayed in Figure 2a. From this figure, it
can be observed that LE of MTM remains positive over the entire interval [0, 2] and it
remains equal to or greater than LE of the original TM (blue curve). This finding indicates
that MTM exhibits better chaotic behavior in comparison to its original version. In the
current test, the values of T0 and α parameters of MTM are set to 0.5 and 10−4, respectively.
For TM, its initial value is set to T0 = 0.5. To further demonstrate the chaotic behavior
of MTM, the values of LE corresponding to this map are calculated in the range [−1000,
1000]. Subsequently, the obtained LE values are presented in Figure 2b. From this figure,
it becomes apparent that LE values remain positive on the full considered interval that
indicate the chaotic behavior of MTM.

To further support the results thus far discussed, the graphical bifurcation diagrams
are plotted in Figure 3 for the six MTM parameters, which are varied in the range [−1000,
1000]. From this figure, we notice that MTM has bifurcations on this interval for all its
six parameters. Therefore, these parameters are suitable for use as security keys when
designing MTM-based information security systems.
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3.4. Time Series and Sensitivity Analysis of MTM Control Parameters

The tests presented in this subsection are performed to analyze the effect of a slight
variation of MTM control parameters on the time-series generated by this map. Firstly,
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two chaotic sequences are generated by TM for (λ, T0) = (1.9, 0.5) and by MTM for
(λ1, λ2, λ3, λ4, λ5, λ6, α, X0) =

(
1, 1, 1, 1, 1, 1, 10−2, 0.5

)
, respectively. These sequences are

displayed in Figure 4a and their difference in absolute values is displayed in Figure 4b.
From this figure, one can clearly distinguish that TM and MTM generate different chaotic
sequences, which validates that MTM can be considered as a new chaotic system.
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Figure 4. (a) The first 512 iterations of chaotic sequences respectively generated by TM for
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(
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with

(b) their difference in absolute values.

In the following test, one examines the effect of a small variation in MLM parameters on
the output values of this map. For this purpose, MLM is used to produce a chaotic sequence
noted Xn with size L = 512 by using the parameter values listed in the caption of Figure 4.
Then, each MLM parameter is modified by a slight variation of the order ∆ = 10−13. Next,
MLM is used to generate a chaotic sequence noted Xn

∗ as response to the performed variation.
The findings of this test are displayed in Figure 5, which indicates that a minor variation of
10−13 in one of the MTM parameters leads to a significant fluctuation in the output values of
this map. Therefore, MTM is highly sensitive to its six control parameters.
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Figure 5. (a) Original MTM sequences (red color) and MTM sequences (blue color) generated by
following a variation of its control parameters by ∆ = 10−13. (b) The difference in absolute value
between the chaotic sequences.

3.5. Histogram Equalization of MTM Chaotic Sequences

Generally, 1D chaotic systems produce sequence values with nonuniform distribution.
This limitation of such systems restricts their application in security systems, particularly for
image encryption. Figure 6 shows the distribution of chaotic sequences with different sizes
generated by MTM for different values of its control parameters. One can notice from the above
figure that the histograms of MTM output values are approximately flat, which means that
MTM generates chaotic values with nearly uniform distribution. However, this distribution
remains imperfectly uniform. In order to improve its uniformity, Algorithm 1 is involved.
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Figure 6. (a) Chaotic sequence with different sizes generated by MTM with their histograms
with (λ1, λ2, λ3, λ4, λ5, λ6) are randomly set to (a) (6, 2, 1, 7, 5, 3), (b) (0.5, 2, 8.9, 3.6, 10, 0.1), and
(c) (1, 0.5, 1, 0, 1000, 0.0002), respectively, with (α, X0) =

(
10−2, 0.5

)
.
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Algorithm 1: Chaotic sequence normalization and histogram equalization

Inputs:
X Chaotic sequence of length L generated by MTM
Lb Lower bound value
Ub Upper bound value

Output: Y Normalized chaotic sequence with equalized histogram
1: L = length (X) // Get the length of X sequence

2:
[IndX] = argsort (X) // argsort () function [68] returns the indices of the ascending
sorted elements of the input X

3: A = (Ub− Lb)/(L− 1)
4: B = (Lb× L−Ub)/(L− 1)
5: for i = 1 to L; i++ do
6: Y(i) = IndX(i)× A + B
7: end for
8: return Y

After an ascending (or descending) sort of the chaotic sequence X of size L, Algorithm 1
produces a sequence, denoted IndX, of chaotic indices of size L. The latter contains integer
values in the interval [1, . . . , L]. where each value appears only once, which makes this
sequence useful for cryptosystems where the use of chaotic sequences with nonredundant
elements is strongly required, especially in the diffusion process, in order to generate an
encrypted image with flat histogram. This important property can be effectively exploited
in encryption schemes to avoid statistical attacks.

In order to use the IndX sequence in the proposed encryption scheme, it is necessary
to normalize the values of this sequence in certain intervals: [0–N], [0–M] and [0–255]
with N ×M represents the input image size while [0–255] is the range the grayscale image
values. For this purpose, each x element in IndX sequence is normalized (scaled) into the
range [Lb, Ub] according to the following formula:

y = (Ub− Lb)
x−min(IndX)

max(IndX)−min(IndX)
+ Lb (4)

where min(IndX) = 1, max(IndX) = L represent the minimal and the maximal values in
the IndX sequence, respectively. Lb and Ub represent respectively the lower and upper
bounds of the interval [Lb, Ub], and y is the scaled x value in the range [Lb, Ub].

By expanding Equation (4), it is easy to show that:

y = x× (Ub− Lb)
L− 1

+
Lb× L−Ub

L− 1
(5)

Note that Equation (5) is implemented in lines 3–7 of Algorithm 1.
To test the performance of Algorithm 1, it is used for the histogram equalization of a

chaotic sequence of size L = 1000 generated by MTM. Figure 7 shows the illustration of
original chaotic sequence and its version produced after the histogram equalization using
Algorithm 1 with Lb = 0 and Ub = 1. This figure shows on the one hand that the histogram
of the original sequence is not uniform. On the other hand, we can observe that following
the histogram equalization by using Algorithm 1, the distribution of the chaotic sequence
values becomes uniform. Therefore, Algorithm 1 is useful in equalizing the histogram of
chaotic sequences generated by MTM or by other 1D chaotic maps. Indeed, Figure 8 shows
the histograms of chaotic sequences each of size L = 1000 generated by the logistic map [69],
tent map [70] and sine map [71]. Then, the distribution of these sequences is uniformed by
Algorithm 1.
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Figure 7. (a) Original chaotic sequence produced via MTM with (λ1, λ2, λ3, λ4, λ5, λ6, α, X0) =(
6, 1, 7, 3, 1, 9, 10−2, 0.5
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4. Proposed Image Cryptosystem Based on MTM and Parallel Computing

In order to illustrate the practical utility of MTM and Algorithm 1 in information
security scenarios, they are utilized in designing a new image encryption scheme. The
flowchart of the proposed scheme is presented in Figure 9. This system is implemented by
using parallel computing on multiple cores for maximizing their performance in terms of
both runtime and security level. The proposed cryptosystem involves three main processes:
the generation of the confusion and diffusion keys, the diffusion of the input image, and
the confusion of the diffused image. The full details of these processes are presented below.
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4.1. Confusion and Diffusion Key Generation

The first phase of the proposed scheme consists in generating MTM-based chaotic
sequences for use in the diffusion and confusion of the input image. For this purpose, the
following steps are implemented.

Step 1: In this step, the sender composes a security key noted KEY of 6n real values,
where n represents the number of the available cores on the computer CPU.
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Step 2: In this step, executed at the master core level, the user-entered security key is
decomposed into n sub-keys where each one contains 6 real values:
KEY = {KEY_1 ; KEY_2 ; . . . ; KEY_n} with KEY_1 = (λ11, λ21, λ31, λ41, λ51, λ61);
. . . ; KEY_n = (λ1n, λ2n, λ3n, λ4n, λ5n, λ6n).

Step 3: This step is executed in parallel mode on the n cores of the computing machine.
For illustration purposes, one assumes that the following process is executed on Core 1 of
the computer’s processor.

(a) Use Equation (3) to produce an MTM-based chaotic sequence noted V1 with size
N ×M/n where N ×M represents the size of the input image and n is the available
CPU cores number. In the present process, the six components of KEY_1 are used as
MTM control parameters.

(b) Select from V1 a sub-vector noted V_R of size L = N with V_R = V1(1: N). The latter will
be useful for generating a key for confusing the pixels along the input image rows. Next,
use Algorithm 1 to normalize the distribution of V_R between Lb = 0 and Ub = N. Then,
the output vector values, noted VR_1, are rounded to unsigned integers.

(c) Select from V1 a sub-vector noted V_C of size L = M with V_C = V1(N:N + M). The
latter will be useful for generating a key that confuses the pixels along the columns
of the plain image. Then, use Algorithm 1 to normalize the distribution of VC_1
between Lb = 0 and Ub = M. Next, the output vector values, noted VC_1, are rounded
to unsigned integers.

(d) Use Algorithm 1 to equalize the histogram distribution of V1 sequence values where
the bounds of this sequence are set to Lb = 0 and Ub = 255. Then, the resulting vector
values are rounded to unsigned integers coded on 8 bits (uint8), which enables to
create D1 vector.

Step 4: At the master core level, concatenate the vectors D1, . . . , Dn generated by
Core 1, . . . , Core n, respectively. This procedure leads to the creation of VD vector with size
L = N ×M. Next, reshape the VD vector into 2D array denoted Diff_KEY of size N ×M.

Step 5: In the main core, perform the following bitxor operations between VR_1, . . . ,
VR_n vectors produced by core 1, . . . , core n, respectively:

VR = bitxor(VR_1, VR_2)
VR = bitxor(VR, VR_3)

...
VR = bitxor(VR, VR_n)

(6)

where the bitxor function meets the rule:

k = bitxor(i, j)⇔ i = bitxor(k, j) with i, j, k ∈ {0, 1} (7)

Step 6: In a similar way to Step 5, generate VC vector of size 1×M as follows:

VC = bitxor(VC_1, VC_2)
VC = bitxor(VC, VC_3)

...
VC = bitxor(VC, VC_n)

(8)

The VC vector is constructed to scramble the pixels along the input image columns.
It should be mentioned that steps 5 and 6 generate VR and VC vectors of size 1× N and

1×M, respectively. These vectors will then be used in the confusion phase of the input image.
These vectors provide logical links between the chaotic sequences derived from each CPU core.
In other words, steps 5 and 6 ensure that if an incorrect value is used in the 6n components of
the security key (KEY), the receiver cannot decrypt the ciphered image. Therefore, these steps
significantly improve the security level of the proposed cryptosystem.
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Figure 10 shows examples of KEY_Diff arrays of various sizes produced by the pro-
posed method. For this purpose, a computer equipped with RAM of 4 GB and CPU
incorporating four-core technology with speed of 2.40 GHz is used. To perform the parallel
computation on the four cores of the machine, the Python package MPI (Message Passing
Interface) [72] is used. The latter allows us to run Python applications on machines with
multiple processors. From Figure 10, we can notice that the histograms of KEY_Diff arrays
are uniform, which indicates that the use of such keys in the diffusion process can pre-
vent statistical attacks. In addition, the correlation coefficient (CC) values of KEY_Diff are
computed along the horizontal, vertical and diagonal directions by using the next formula:

CC =
C(I, J)√

V(I)
√

V(J)
(9)

where C(I, J) is the covariance between two adjacent pixel sequences (I and J) that are
selected from the KEY_Diff matrix. V(I) and V(J) are the variance in I and J sequences,
each of size 8000 samples, respectively. Obviously, if the CC tends to zero, the neighboring
I and J values are considered independent. From the results shown in Figure 10, one can
observe that the CC values tend towards zero, which confirms the suitability of Diff_KEY
for use in the next diffusion phase.
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4.2. Diffusion Phase

The current phase allows the modification of the input image’s statistical properties in
order to avoid crypto analysis statistical attacks. The current phase is obtained by applying
the next operation:

D = bitxor(In, Di f f _KEY) (10)

where In refers to the input image of size N × M and bitxor() refers to the bit-wise
XOR operation.

To further boost the security of our scheme, the next phase is performed with the aim
of re-distributing the pixels within the diffused image.



Mathematics 2023, 11, 1589 15 of 29

4.3. Confusion Process

The current phase redistributes the pixels of the diffused image in a pseudo-random
manner throughout the entire image area, which reduces the correlation between adjacent
pixels. As result, the security level of an encryption system becomes higher and the
cryptosystem becomes more resistant to cropping attacks. To this end, the following steps
are involved.

Step 1: Use VR vector of size 1× N to confuse the pixels along the D image rows
as follows:

C1(i, :) = circ_shi f t(D(i, :), VR(i)), i = 1, 2, . . . , N (11)

where circ_shift(I,j) designates the circular shifting operation that circularly translates the I
vector elements by j positions [73].

Step 2: Use VC vector of size 1×M to confuse the pixels along the C1 image columns
as follows:

C2(i, :) = circ_shi f t(C1(i, :), VC(i)), i = 1, 2, . . . , M (12)

Step 3: To guarantee a maximum distribution of D image pixels, a third round of
circular shifting operation is performed for C2 rows using the VRC key, which is obtained
by the following bitxor operation:

VRC = bitxor(VC(1 : N), VR(1 : N)) with N ≤ M (13)

Next, the confusion of C2 is performed according to the next circular shifting process:

EI = bitxor(C2(i, :), VRC(i)) with i = 0, 1, . . . , N (14)

where EI represents the encrypted image according to the proposed scheme. Figure 11 shows an
illustration of our confusion method applied to 8× 8 matrix by using three chaotic sequences.
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To highlight the performance of the confusion method used, it is employed for con-
fusing standard 512× 512 grayscale images selected from the database [74]. Then, the CC
values are computed for random 8000 adjacent pixels selected from the original images
and its confused versions along three directions: horizontal, vertical, and diagonal. The
outcomes of the performed test are plotted in Figure 12. The achieved results indicate that
the confusion method used reduces significantly the correlation between adjacent pixels
as the CC values tend to zero within the confused images. Moreover, one can notice that
the visual information of the original confused fully hides the input images data, which
indicates that the confusion method used is efficient.
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To further support the validity of the confusion method used, it is employed for
retrieving the visual information from confused cropped test images, as shown in Figure 13.
From the latter, it becomes apparent that the visual information of the retrieved images
from the confused cropped ones remains recognizable even if the scrambled images are
cropped up to 25%. These results demonstrate the validity of the suggested MTM-based
confusion method.

After demonstrating the good performance of the suggested confusion and diffusion
phases, the following section presents the overall performance of the suggested cryptosystem.

To encrypt/decrypt a color image I of size 3× N ×M defined in the RGB color space
by the proposed cryptosystem, it is necessary to decompose this image into three grayscale
level channels (R, G, and B) each of size N × M. Then, each channel is encrypted by
the proposed method to obtain its encrypted version. Next, the encrypted channels are
concatenated to produce the encrypted color image of size 3× N ×M.

It should be noted from Figure 9 that the proposed encryption scheme is symmetric.
Thus, the user must follow the reverse procedure of the encryption phase indicated in
Figure 9b for recovering the original image while using the correct security key.

5. Simulation Results with Discussions

The present section covers the various experiments undertaken to validate the good
performance of the proposed MTM-based encryption algorithm. It is worth mentioning
that all the simulations in this section are performed using a PC equipped with RAM of
4 GB and CPU of 4 cores and frequency equal to 2.40 GHz and four cores. In addition,
Python v3.7 is used as programming language, where the Python package MPI (Message
Passing Interface) [72] is used to implement the proposed scheme in parallel mode on the
four CPU cores.
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Figure 13. Standard test images of sizes 512× 512 with its confused, confused cropped, and recovered
versions by using the proposed scrambling method.

5.1. Sensitivity Analysis of the Secret Keys

Typically, a high-security image cryptosystem is intended to be extremely sensitive to
any variation in its security keys. Indeed, a small variation in any key parameters must lead
to a complete failure in recovering the original image from the ciphered one. To test the sen-
sitivity of the proposed scheme to its security keys, the following test is conducted. For this
purpose, a set of 512× 512 test images is selected from the databases [74,75]. These images
are then encrypted/decrypted by the proposed algorithm. The security key used in the
encryption phase is KEY = {KEY_1; KEY_2; KEY_3; KEY_4}. Each KEY_i (i = 1, . . . , 4)
is formed by six real values that represent the MTM control parameters. To simplify the
presentation of the proposed scheme outputs, let us select KEY = KEY_1 = KEY_2 =
KEY_3 = KEY_4 = {λ1, λ2, λ3, λ4, λ5, λ6} = {8, 1, 4, 2, 5, 9} with x0 = 0.5 and α= 0.09.
Subsequently, during the decryption phase, only one parameter of the latter is varied by
∆ = 10−13, and the decrypted images are plotted in Figure 14. From this figure, it appears
on the one hand that the original image is successfully decrypted only if a symmetrical
security KEY is used in both encryption and decryption phases. On the other hand, the test
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results demonstrate that any modification by ∓∆ of any parameter of KEY leads to com-
plete failure in recovering the original images. These findings provide a strong indication
about the dependence of the proposed encryption scheme on its security KEY.
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following a minor modification of KEY parameters by ∓∆ = 10−13.

5.2. Space of Our Scheme’s Secret Keys

The security KEY size of our scheme is composed of 6n real type values. By considering
the accuracy of floating point computing and sensitivity of the KEY parameters (see
the previous subsection), the total space of the proposed security scheme key equals(
1013)6n

= 1078n, with n being the number of the available cores on the machine’s CPU.
In this work, we use a quad-core CPU (n = 4) of PC, so the key space of the proposed
cryptosystem is about

(
1013)6×4

= 10312 ∼= 21033, considering that the sensitivity order
of each KEY parameter is ∓∆ = 10−13. Thus, the key space of our scheme far exceeds
the minimum recommended key space—2100 [76]—to resist brute-force attacks. Table 2
presents a comparison between the proposed encryption scheme and other schemes recently
presented [29–32,77–79]. The comparison is performed in terms of the key space. The
comparison outcomes indicate the superiority of the proposed scheme over the competing
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schemes. That is, the proposed scheme can provide more security when communicating
images via unsecured communication channels.

Table 2. Comparison in terms of security key space of recent encryption scheme, including the
proposed one.

Encryption Scheme Proposed Ref. [31] Ref. [79] Ref. [77] Ref. [78] Ref. [29] Ref. [32]

Key space 21033 2630 2564 2505 2507 2480 2371

5.3. Histogram Analysis

The histogram feature provides statistical information concerning the image’s content.
Thus, an attacker can predict the content of an encrypted image from the analysis of its
histogram. In order to hide the statistical information of encrypted images, cryptosystems
attempt to generate encrypted images with equalized histograms, which prevent attacks
by statistical analysis of encrypted images. To assess the ability of the proposed scheme
to withstand statistical attacks, it is used for the encryption of standard and color images
selected from the dataset [80]. Figure 15 shows the original test color images with their
encrypted versions and the corresponding histograms. From this figure, it can be seen that
our scheme is able to produce encrypted images with balanced (flat) histograms, regardless
of the visual content of the input images. These results can be explained by the fact that
our scheme uses diffusion keys with balanced histograms generated, which ensures the
generation of encrypted images of near-fully balanced histograms. The findings of the
current test are a strong indication of the robustness of our scheme against statistical attacks.
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Figure 15. Color test images of size 512 512   with their encrypted versions and the 

corresponding R-, G-, and B-channel histograms. 

5.4. Correlation Analysis 
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selected pixels. Figures 16 and 17 show grayscale and color medical images selected from 

the databases [75,81], respectively. The CC scores related to the test images and their 

ciphered version are listed in Table 3. Note that for MRI 3 (Figure 17), the CC are calculated 

from the averaged CC of the three-color image channels. 

Figure 15. Color test images of size 512 × 512 with their encrypted versions and the corresponding
R-, G-, and B-channel histograms.
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5.4. Correlation Analysis

Naturally, the digital images are captured with certain information redundancy, which
causes a high degree of correlation of adjacent values within the captured image. To reduce
this correlation, confusion methods are involved in the encryption scheme. A successful
encryption scheme is able to significantly reduce the correction of neighboring pixels
within a given input image. To assess the capacity of the proposed scheme to greatly
reduce correlations between neighboring pixels, 4000 adjacent pixels are arbitrarily selected
from the original images and their encrypted versions in three directions: horizontal,
vertical, and diagonal. Then, (7) is used to measure the correlation between the selected
pixels. Figures 16 and 17 show grayscale and color medical images selected from the
databases [75,81], respectively. The CC scores related to the test images and their ciphered
version are listed in Table 3. Note that for MRI 3 (Figure 17), the CC are calculated from the
averaged CC of the three-color image channels.
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Table 3. CC values in the horizontal, vertical and diagonal directions of the original medical images
and their encrypted versions.

MRI 1 Ciphered
MRI 1 MRI 2 Ciphered

MRI 2 MRI 3 Ciphered
MRI 3

Horizontal 0.9613 0.0062 0.9156 0.0051 0.0039

Vertical 0.9150 0.0082 0.9653 −0.0016 −0.0005

Diagonal 0.9482 −0.0072 0.9611 0.0082 −0.0019

The results of the present analysis show on the one hand that the distribution of
adjacent pixels in the plain images are around the diagonal, which indicates the presence
of strong correlation between the pixels. By contrast, the adjacent pixels in the encrypted
images exhibit a flat distribution in the plot, which reflects the weak correlation between the
pixels within the ciphered images. Therefore, the proposed encryption scheme is effective
in breaking the correlation between the input image pixels.

5.5. Robustness against Differential Attack

When attackers attempt to crack cryptosystems, they can deploy differential attacks. By
such attacks, the hacker introduces modifications to the input plaintext image and analyses the
effect of performed modifications on the output ciphered image, which may lead to finding
a correspondence between the plain image and its encrypted version and thus cracking an
encryption system [82]. To evaluate the robustness of an encryption scheme against differential
attacks, the criteria of number of pixels change rate (NPCR) and unified average changed
intensity (UACI) are usually employed. These metrics are defined below [83]:

UACI = 100×
∑i,j
∣∣Ii,j − I′ i,j

∣∣
255× N ×M

; i = 1, . . . , N and j = 1, . . . , M (15)

NPCR = 100× ∑i,j DIi,j
N×M

with DIi,j =

{
0 if Ii,j = I′ i,j

1 Otherwise
(16)

where Ii,j and I′ i,j denote the original image and its modified version, respectively.
Since the proposed encryption system is very sensitive to any minor variation by

δ = 10−13 of its control parameters, we exploit this property to avoid differential attacks.
For this, a small constant is defined (i.e., δ = 10−11). Then, this constant is used to increment
one of the proposed system security KEY parameters (i.e., λ1 = λ1 + ∆). This addition
is performed at each iteration of the proposed encryption algorithm, resulting in the
generation of a unique security key for each iteration of the cryptosystem. That is, the same
input image produces different ciphered version for different iterations of the proposed
scheme. To test the ability of this method to withstand differential attacks, it is used when
encrypting an “Einstein” image of size 256× 256, “Mandrill” image of size 512× 512 and
{“Pirate”, “White”, “Black”} images of size 1024× 1024. These images are encrypted in two
consecutive iterations of the proposed cryptosystem, and the achieved results are reported
in Figure 18. In accordance with the discussion given in [83], the values of NPCR and UACI
obtained by the proposed algorithm indicate the efficiency of our encryption scheme to
resist the differential attacks.
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versions at two consecutive iterations of the proposed scheme with the corresponding NPCR and 
UACI values. 
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to 50%. Then, the suggested scheme is used to decrypt the attacked image. The outcomes 
of the current test are shown in Figure 19. These results indicate that the decrypted image 
retains distinguishable visual features, despite the loss of significant data content from the 
encrypted image. Thus, the proposed scheme appears strongly resistant against the data 
loss issue. The test related to the noise effect on the encrypted image is reported in Figure 
20. The test findings indicate that the decrypted “Lena” image from its encrypted noised 
versions is still visually recognizable, indicating that the suggested algorithm maintains 
its validity in noisy environments. 

Figure 18. Plain {“Einstein”, “Mandrill”, “Pirate”, “White”, “Black”} images with their encrypted
versions at two consecutive iterations of the proposed scheme with the corresponding NPCR and
UACI values.

5.6. Noise and Data Loss Robustness Analysis

When transmitting encrypted images using communication protocols such as User
Datagram Protocol (UDP) [84], it is possible to damage the transmitted images due to
noise or data loss. For this purpose, our scheme is tested against noise and data loss
effects. To perform the current test, the encrypted “Lena” image is cropped by raising
data loss to 50%. Then, the suggested scheme is used to decrypt the attacked image.
The outcomes of the current test are shown in Figure 19. These results indicate that the
decrypted image retains distinguishable visual features, despite the loss of significant data
content from the encrypted image. Thus, the proposed scheme appears strongly resistant
against the data loss issue. The test related to the noise effect on the encrypted image is
reported in Figure 20. The test findings indicate that the decrypted “Lena” image from
its encrypted noised versions is still visually recognizable, indicating that the suggested
algorithm maintains its validity in noisy environments.
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Figure 20. Encrypted ʺLenaʺ image and its decrypted versions after : (a) 0 % noise addition, (b) 3% 
salt and pepper, (c) 3% Gaussian noise, (d) 3% speckle noise and (e) Poisson noise. 
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5.7. Randomness Analysis Test

To measure the randomness in an input image, Shannon entropy (E) is widely used as
criterion that is defined by:

E = −
r

∑
i=1

P(Ki) log2
1

P(Ki)
(17)

where Ki, i = 0, 1, . . . , r are the pixel values with r = 255 for grayscale images. P(Ki)
represents the probability of Ki symbol. In a grayscale image, all the pixels are randomly
distributed in the encrypted image if E = 8.

To perform the present test, we use standard grayscale images shown in Figure 21.
These images are then encrypted by the proposed method and the entropy values (E)
are calculated for both original images and these encrypted versions. From the results
presented in Figure 21, we can notice that the E values are very close to 8, which indicates
that the proposed encryption scheme leads to the generation of encrypted images with
highly random grayscale values. This result is explained by the fact that the Diff_Key
generated via our scheme has an equalized histogram.
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the proposed scheme with the corresponding entropy values.

5.8. Robustness to Classical Attacks

Kerckhoff’s principle assumes that the cryptanalyst has all the information about the
cryptosystem, with the exception of the security keys (Pareek et al., 2005). Therefore, the
robustness of our system is discussed in this section against classical attacks, which can
be easily used by a cyberattacker. There are four classical attacks that can be used by an
attacker (Wang et al., 2012):

(i). Known plaintext: the hacker disposes of an encrypted string with its plaintext version.
(ii). Cipher text only: the hacker only has a string of encrypted text.
(iii). Chosen plaintext: the hacker is able to access to the encryption process for restricted

period. He/she can then randomly use a plaintext to create its ciphered form.
(iv). Chosen cipher text: the hacker can access to the decryption system for a limited

period. He/she can then select a random string of cipher text and construct its
plaintext format.

Obviously, the most powerful attack is the chosen plaintext attack. Thus, by demon-
strating that a cryptographic system is capable of resisting this attack, one can affirm that
this system is capable of withstanding the classical attacks (Wang et al., 2012).

Since the proposed system is very sensitive to its control parameters, we adopt a
strategy that assigns a unique security key to each input image in order to resist classical
attacks. This strategy is summarized as follows:

(i). Define a security KEY to encrypt the first image in a dataset.
(ii). Choose one (or more) parameter(s) of the KEY, and then increment the selected

parameter by a small constant value (e.g., λ∗1 = λ1 + ∆ with ∆ = 10−13) to generate a
new security key (KEY*) that is used to encrypt the next image in the dataset, and so
on. This strategy creates dynamic security keys, which prevents conventional attacks.
For more information regarding this strategy, the reader is referred to [14,85].

5.9. Comparative Analysis

This section provides a comparison between the performance of the proposed encryption
scheme with similar parallel-based computing schemes presented in [29,31,32,77,78]. The
comparison is conducted in terms of entropy values, CC values and encryption/decryption
runtime in seconds. For this purpose, we use two groups of standard grayscale (Figure 22a)
and color (Figure 22b) images. Then, the average value of each comparison criterion is
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computed for the encrypted images, reported in Table 4. It should be mentioned that each
value of the comparison criteria is computed 100 times. Then, the average value of the
comparison criterion is computed and reported in Table 4.
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Table 4. Comparison results in terms of the average CC, entropy and encryption/decryption runtime
for different encryption schemes including the proposed one.

Averaged CC (in Absolute Values) Values Along:
Average

Entropy (E)

Average Encryption
& Decryption

Runtime (in Sec.)
Horizontal
Direction Vertical Direction Diagonal Direction

Image
Group (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

Encryption
Algorithms

Proposed 0.0019 0.0024 0.0036 0.0028 0.0033 0.0020 7.9998 7.9997 0.4507 1.3533

Ref. [29] 0.0018 0.0022 0.0041 0.0030 0.0032 0.0022 7.9993 7.9996 0.4602 1.3812

Ref. [32] 0.0086 0.0074 0.0030 0.0036 0.0032 0.0069 7.9992 7.9993 0.4706 1.4136

Ref. [77] 0.0066 0.0036 0.0041 0.0040 0.0037 0.0028 7.9926 7.9931 0.3803 1.1406

Ref. [31] 0.0082 0.0072 0.0072 0.0060 0.0101 0.0088 7.9979 7.9968 0.5103 1.5306

Ref. [78] 0.0065 0.0061 0.0069 0.0054 0.0062 0.0069 7.9993 7.9992 0.6302 1.8936

The comparison results shown in Table 4 indicate on the one hand that the proposed
scheme is competitive with the compared schemes in terms of CC values. The compared
schemes, including the proposed one, are able to significantly reduce the correlation
between adjacent pixels of the input image as the CC numbers tend to zero. On the
other hand, we notice the superiority of the proposed scheme over the compared ones
in terms of obtained E values. This result can be explained by the fact that our scheme
involves the process of equalizing the distribution of the chaotic sequences used, which
ensures a pseudo-random distribution within the encrypted images. On the other hand,
the compared schemes ignore this task. The execution time of the proposed scheme
is found to be competitive to the compared parallel-based schemes. Consequently, the
suggested scheme can be effectively deployed in encryption systems to ensure both fast
communication and high security.
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6. Conclusions

In this work, an extended version of the existing TM, MTM, was proposed to improve
the chaotic behavior of the existing TM. Then, we introduced a simple, yet efficient method
to balance the distribution of chaotic sequence values. Next, a novel image encryption
scheme was presented using MTM and parallel computing mode. The latter is employed
to both speed up the encryption/decryption time and to significantly boost the security
level of the offered scheme. Analysis and comparison results have shown on the one hand
that the proposed scheme can withstand several types of attacks (brute force, statistical,
differential, noise addition, slicing, etc.) On the other hand, the large key size of the
proposed scheme ensures its considerable advantage in terms of security level during the
communication of encrypted data. In future work, the proposed scheme will be extended
to encrypt other kinds of multimedia (volumetric images, videos, medical images, etc.).
Furthermore, improvements will be made to make our scheme fully parallel and deployable
on hardware boards (i.e., Raspberry Pi, Arduino, FPGA, etc.).

Author Contributions: Conceptualization, A.D. and A.A.A.E.-L.; Methodology, A.D. and A.A.A.E.-L.;
Formal analysis, A.D. and M.Y.; Investigation, S.A.C. and M.A.W.; Resources, S.A.C. and M.A.W.; Data
curation, M.A.W.; Writing—review & editing, A.D., M.Y., S.A.C. and A.A.A.E.-L.; Visualization, M.Y.;
Supervision, A.A.A.E.-L.; Project administration, M.A.W.; Funding acquisition, S.A.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by Princess Nourah bint Abdulrahman University Researchers
Supporting Project (PNURSP2023R239), Princess Nourah bint Abdulrahman University, Riyadh,
Saudi Arabia. This work was also supported by the EIAS Data Science Lab, College of Computer and
Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are available from the first author (Achraf Daoui,
achraf.daoui@usmba.ac.ma) upon reasonable request.

Acknowledgments: The authors would like to acknowledge the support of the Deanship of Scientific
Research at Princess Nourah bint Abdulrahman University. This work was supported by Princess
Nourah bint Abdulrahman University Researchers Supporting Project (PNURSP2023R239), Princess
Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was also supported by the
EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University,
Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mandal, P.C.; Mukherjee, I.; Paul, G.; Chatterji, B.N. Digital Image Steganography: A Literature Survey. Inf. Sci. 2022, 609,

1451–1488. [CrossRef]
2. Liao, X.; Yin, J.; Chen, M.; Qin, Z. Adaptive Payload Distribution in Multiple Images Steganography Based on Image Texture

Features. IEEE Trans. Dependable Secur. Comput. 2022, 19, 897–911. [CrossRef]
3. Hua, Z.; Zhou, Y.; Huang, H. Cosine-Transform-Based Chaotic System for Image Encryption. Inf. Sci. 2019, 480, 403–419.

[CrossRef]
4. Xian, Y.; Wang, X. Fractal Sorting Matrix and Its Application on Chaotic Image Encryption. Inf. Sci. 2021, 547, 1154–1169.

[CrossRef]
5. Kordov, K. A Novel Audio Encryption Algorithm with Permutation-Substitution Architecture. Electronics 2019, 8, 530. [CrossRef]
6. Daoui, A.; Karmouni, H.; Sayyouri, M.; Qjidaa, H. Efficient Methods for Signal Processing Using Charlier Moments and Artificial

Bee Colony Algorithm. Circuits Syst. Signal Process. 2021, 41, 166–195. [CrossRef]
7. Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Ahmad, M.; Abd El-Latif, A.A. Biomedical Multimedia Encryption

by Fractional-Order Meixner Polynomials Map and Quaternion Fractional-Order Meixner Moments. IEEE Access 2022, 10,
102599–102617. [CrossRef]

8. Wu, Y.; Zhang, L.; Berretti, S.; Wan, S. Medical Image Encryption by Content-Aware DNA Computing for Secure Healthcare.
IEEE Trans. Ind. Inform. 2023, 19, 2089–2098. [CrossRef]

http://doi.org/10.1016/j.ins.2022.07.120
http://doi.org/10.1109/TDSC.2020.3004708
http://doi.org/10.1016/j.ins.2018.12.048
http://doi.org/10.1016/j.ins.2020.09.055
http://doi.org/10.3390/electronics8050530
http://doi.org/10.1007/s00034-021-01764-z
http://doi.org/10.1109/ACCESS.2022.3203067
http://doi.org/10.1109/TII.2022.3194590


Mathematics 2023, 11, 1589 27 of 29

9. Naim, M.; Pacha, A.A.; Serief, C. A Novel Satellite Image Encryption Algorithm Based on Hyperchaotic Systems and Josephus
Problem. Adv. Space Res. 2021, 67, 2077–2103. [CrossRef]

10. Song, X.-H.; Wang, H.-Q.; Venegas-Andraca, S.E.; Abd El-Latif, A.A. Quantum Video Encryption Based on Qubit-Planes
Controlled-XOR Operations and Improved Logistic Map. Phys. Stat. Mech. Its Appl. 2020, 537, 122660. [CrossRef]

11. Rajesh, S.; Paul, V.; Menon, V.G.; Khosravi, M.R. A Secure and Efficient Lightweight Symmetric Encryption Scheme for Transfer
of Text Files between Embedded IoT Devices. Symmetry 2019, 11, 293. [CrossRef]

12. Joshi, A.B.; Kumar, D.; Gaffar, A.; Mishra, D.C. Triple Color Image Encryption Based on 2D Multiple Parameter Fractional Discrete
Fourier Transform and 3D Arnold Transform. Opt. Lasers Eng. 2020, 133, 106139. [CrossRef]

13. Wang, X.; Liu, C.; Jiang, D. A Novel Triple-Image Encryption and Hiding Algorithm Based on Chaos, Compressive Sensing and
3D DCT. Inf. Sci. 2021, 574, 505–527. [CrossRef]

14. Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Ahmad, M.; El-Latif, A.A.A. Color Stereo Image Encryption and
Local Zero-Watermarking Schemes Using Octonion Hahn Moments and Modified Henon Map. J. King Saud Univ. Comput. Inf.
Sci. 2022, 34, 8927–8954. [CrossRef]

15. Wen, H.; Wu, J.; Ma, L.; Liu, Z.; Lin, Y.; Zhou, L.; Jian, H.; Lin, W.; Liu, L.; Zheng, T.; et al. Secure Optical Image Communication
Using Double Random Transformation and Memristive Chaos. IEEE Photonics J. 2023, 15, 1–11. [CrossRef]

16. Zhang, C.; Zhang, W.; Chen, C.; He, X.; Qiu, K. Physical-Enhanced Secure Strategy for OFDMA-PON Using Chaos and
Deoxyribonucleic Acid Encoding. J. Light. Technol. 2018, 36, 1706–1712. [CrossRef]

17. Hayat, U.; Azam, N.A. A Novel Image Encryption Scheme Based on an Elliptic Curve. Signal Process. 2019, 155, 391–402.
[CrossRef]

18. Chen, L.; Yin, H.; Yuan, L.; Machado, J.A.T.; Wu, R.; Alam, Z. Double Color Image Encryption Based on Fractional Order Discrete
Improved Henon Map and Rubik’s Cube Transform. Signal Process. Image Commun. 2021, 97, 116363. [CrossRef]

19. Abd-El-Atty, B.; Iliyasu, A.M.; Alanezi, A.; Abd El-latif, A.A. Optical Image Encryption Based on Quantum Walks. Opt. Lasers
Eng. 2021, 138, 106403. [CrossRef]

20. Nestor, T.; De Dieu, N.J.; Jacques, K.; Yves, E.J.; Iliyasu, A.M.; Abd El-Latif, A.A. A Multidimensional Hyperjerk Oscillator: Dynamics
Analysis, Analogue and Embedded Systems Implementation, and Its Application as a Cryptosystem. Sensors 2019, 20, 83. [CrossRef]

21. Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Guillén-Fernández, O.; Benkouider, K.;
Mohamed, M.A.; Mamat, M.; Ibrahim, M.A.H. A New 4-D Multi-Stable Hyperchaotic System with No Balance Point: Bifurcation
Analysis, Circuit Simulation, FPGA Realization and Image Cryptosystem. IEEE Access 2021, 9, 144555–144573. [CrossRef]

22. Benkouider, K.; Vaidyanathan, S.; Sambas, A.; Tlelo-Cuautle, E.; El-Latif, A.A.A.; Abd-El-Atty, B.; Bermudez-Marquez, C.F.;
Sulaiman, I.M.; Awwal, A.M.; Kumam, P. A New 5-D Multistable Hyperchaotic System with Three Positive Lyapunov Exponents:
Bifurcation Analysis, Circuit Design, FPGA Realization and Image Encryption. IEEE Access 2022, 10, 90111–90132. [CrossRef]

23. Gao, X.; Mou, J.; Xiong, L.; Sha, Y.; Yan, H.; Cao, Y. A Fast and Efficient Multiple Images Encryption Based on Single-Channel
Encryption and Chaotic System. Nonlinear Dyn. 2022, 108, 613–636. [CrossRef]

24. Zhou, Y.; Bao, L.; Chen, C.L.P. A New 1D Chaotic System for Image Encryption. Signal Process. 2014, 97, 172–182. [CrossRef]
25. Dhall, S.; Pal, S.K.; Sharma, K. Cryptanalysis of Image Encryption Scheme Based on a New 1D Chaotic System. Signal Process.

2018, 146, 22–32. [CrossRef]
26. Pak, C.; An, K.; Jang, P.; Kim, J.; Kim, S. A Novel Bit-Level Color Image Encryption Using Improved 1D Chaotic Map. Multimed.

Tools Appl. 2019, 78, 12027–12042. [CrossRef]
27. Midoun, M.A.; Wang, X.; Talhaoui, M.Z. A Sensitive Dynamic Mutual Encryption System Based on a New 1D Chaotic Map. Opt.

Lasers Eng. 2021, 139, 106485. [CrossRef]
28. Liu, L.; Wang, J. A Cluster of 1D Quadratic Chaotic Map and Its Applications in Image Encryption. Math. Comput. Simul. 2023,

204, 89–114. [CrossRef]
29. Wang, X.; Feng, L.; Zhao, H. Fast Image Encryption Algorithm Based on Parallel Computing System. Inf. Sci. 2019, 486, 340–358.

[CrossRef]
30. Wang, H.; Xiao, D.; Li, M.; Xiang, Y.; Li, X. A Visually Secure Image Encryption Scheme Based on Parallel Compressive Sensing.

Signal Process. 2019, 155, 218–232. [CrossRef]
31. Yavuz, E. A New Parallel Processing Architecture for Accelerating Image Encryption Based on Chaos. J. Inf. Secur. Appl. 2021,

63, 103056. [CrossRef]
32. Song, W.; Fu, C.; Zheng, Y.; Tie, M.; Liu, J.; Chen, J. A Parallel Image Encryption Algorithm Using Intra Bitplane Scrambling.

Math. Comput. Simul. 2023, 204, 71–88. [CrossRef]
33. Li, S.; Mishra, S. Optimizing Power Consumption in Multicore Smartphones. J. Parallel Distrib. Comput. 2016, 95, 124–137.

[CrossRef]
34. Salami, B.; Noori, H.; Naghibzadeh, M. Fairness-Aware Energy Efficient Scheduling on Heterogeneous Multi-Core Processors.

IEEE Trans. Comput. 2021, 70, 72–82. [CrossRef]
35. Daoui, A.; Yamni, M.; Karmouni, H.; Sayyouri, M.; Qjidaa, H.; Motahhir, S.; Jamil, O.; El-Shafai, W.; Algarni, A.D.; Soliman, N.F.;

et al. Efficient Biomedical Signal Security Algorithm for Smart Internet of Medical Things (IoMTs) Applications. Electronics 2022,
11, 3867. [CrossRef]

36. Liansheng, S.; Cong, D.; Xiao, Z.; Ailing, T.; Anand, A. Double-Image Encryption Based on Interference and Logistic Map under
the Framework of Double Random Phase Encoding. Opt. Lasers Eng. 2019, 122, 113–122. [CrossRef]

http://doi.org/10.1016/j.asr.2021.01.018
http://doi.org/10.1016/j.physa.2019.122660
http://doi.org/10.3390/sym11020293
http://doi.org/10.1016/j.optlaseng.2020.106139
http://doi.org/10.1016/j.ins.2021.06.032
http://doi.org/10.1016/j.jksuci.2022.08.021
http://doi.org/10.1109/JPHOT.2022.3233129
http://doi.org/10.1109/JLT.2018.2789435
http://doi.org/10.1016/j.sigpro.2018.10.011
http://doi.org/10.1016/j.image.2021.116363
http://doi.org/10.1016/j.optlaseng.2020.106403
http://doi.org/10.3390/s20010083
http://doi.org/10.1109/ACCESS.2021.3121428
http://doi.org/10.1109/ACCESS.2022.3197790
http://doi.org/10.1007/s11071-021-07192-7
http://doi.org/10.1016/j.sigpro.2013.10.034
http://doi.org/10.1016/j.sigpro.2017.12.021
http://doi.org/10.1007/s11042-018-6739-1
http://doi.org/10.1016/j.optlaseng.2020.106485
http://doi.org/10.1016/j.matcom.2022.07.030
http://doi.org/10.1016/j.ins.2019.02.049
http://doi.org/10.1016/j.sigpro.2018.10.001
http://doi.org/10.1016/j.jisa.2021.103056
http://doi.org/10.1016/j.matcom.2022.07.029
http://doi.org/10.1016/j.jpdc.2016.02.004
http://doi.org/10.1109/TC.2020.2984607
http://doi.org/10.3390/electronics11233867
http://doi.org/10.1016/j.optlaseng.2019.06.005


Mathematics 2023, 11, 1589 28 of 29

37. Zhang, G.; Ding, W.; Li, L. Image Encryption Algorithm Based on Tent Delay-Sine Cascade with Logistic Map. Symmetry 2020,
12, 355. [CrossRef]

38. Liu, X.; Xiao, D.; Liu, C. Three-Level Quantum Image Encryption Based on Arnold Transform and Logistic Map. Quantum Inf.
Process. 2021, 20, 23. [CrossRef]

39. Zareai, D.; Balafar, M.; Feizi Derakhshi, M.R. A New Grayscale Image Encryption Algorithm Composed of Logistic Mapping,
Arnold Cat, and Image Blocking. Multimed. Tools Appl. 2021, 80, 18317–18344. [CrossRef]

40. Kumar, M.; Gupta, P. A New Medical Image Encryption Algorithm Based on the 1D Logistic Map Associated with Pseudo-Random
Numbers. Multimed. Tools Appl. 2021, 80, 1–27. [CrossRef]

41. Arif, J.; Khan, M.A.; Ghaleb, B.; Ahmad, J.; Munir, A.; Rashid, U.; Al-Dubai, A.Y. A Novel Chaotic Permutation-Substitution
Image Encryption Scheme Based on Logistic Map and Random Substitution. IEEE Access 2022, 10, 12966–12982. [CrossRef]

42. Sangavi, V.; Thangavel, P. An Exotic Multi-Dimensional Conceptualization for Medical Image Encryption Exerting Rossler System
and Sine Map. J. Inf. Secur. Appl. 2020, 55, 102626. [CrossRef]

43. Liu, J.; Wang, Y.; Liu, Z.; Zhu, H. A Chaotic Image Encryption Algorithm Based on Coupled Piecewise Sine Map and Sensitive
Diffusion Structure. Nonlinear Dyn. 2021, 104, 4615–4633. [CrossRef]

44. Liu, Y.; Qin, Z.; Liao, X.; Wu, J. Cryptanalysis and Enhancement of an Image Encryption Scheme Based on a 1-D Coupled Sine
Map. Nonlinear Dyn. 2020, 100, 2917–2931. [CrossRef]

45. Wang, M.; Wang, X.; Wang, C.; Zhou, S.; Xia, Z.; Li, Q. Color Image Encryption Based on 2D Enhanced Hyperchaotic Logistic-Sine
Map and Two-Way Josephus Traversing. Digit. Signal Process. 2022, 132, 103818. [CrossRef]

46. Shao, S.; Li, J.; Shao, P.; Xu, G. Chaotic Image Encryption Using Piecewise-Logistic-Sine Map. IEEE Access 2023, 1. [CrossRef]
47. Shakiba, A. A Novel Randomized One-Dimensional Chaotic Chebyshev Mapping for Chosen Plaintext Attack Secure Image

Encryption with a Novel Chaotic Breadth First Traversal. Multimed. Tools Appl. 2019, 78, 34773–34799. [CrossRef]
48. Abd-El-Atty, B.; Iliyasu, A.M.; Abd El-Latif, A.A. A Multi-Image Cryptosystem Using Quantum Walks and Chebyshev Map.

Complexity 2021, 2021, e9424469. [CrossRef]
49. Khan, M.; Alanazi, A.S.; Khan, L.S.; Hussain, I. An Efficient Image Encryption Scheme Based on Fractal Tromino and Chebyshev

Polynomial. Complex Intell. Syst. 2021, 7, 2751–2764. [CrossRef]
50. Huang, S.; Jiang, D.; Wang, Q.; Guo, M.; Huang, L.; Li, W.; Cai, S. High-Quality Visually Secure Image Cryptosystem Using

Improved Chebyshev Map and 2D Compressive Sensing Model. Chaos Solitons Fractals 2022, 163, 112584. [CrossRef]
51. Gupta, M.; Gupta, K.K.; Shukla, P.K. Session Key Based Novel Lightweight Image Encryption Algorithm Using a Hybrid of

Chebyshev Chaotic Map and Crossover. Multimed. Tools Appl. 2021, 80, 33843–33863. [CrossRef]
52. Zhang, W.; Zhu, Z.; Yu, H. A Symmetric Image Encryption Algorithm Based on a Coupled Logistic–Bernoulli Map and Cellular

Automata Diffusion Strategy. Entropy 2019, 21, 504. [CrossRef] [PubMed]
53. Gu, Z.; Li, H.; Khan, S.; Deng, L.; Du, X.; Guizani, M.; Tian, Z. IEPSBP: A Cost-Efficient Image Encryption Algorithm Based on

Parallel Chaotic System for Green IoT. IEEE Trans. Green Commun. Netw. 2022, 6, 89–106. [CrossRef]
54. Yang, C.; Pan, P.; Ding, Q. Image Encryption Scheme Based on Mixed Chaotic Bernoulli Measurement Matrix Block Compressive

Sensing. Entropy 2022, 24, 273. [CrossRef] [PubMed]
55. Alexan, W.; Elkandoz, M.; Mashaly, M.; Azab, E.; Aboshousha, A. Color Image Encryption Through Chaos and KAA Map. IEEE

Access 2023, 11, 11541–11554. [CrossRef]
56. Yoosefian Dezfuli Nezhad, S.; Safdarian, N.; Hoseini Zadeh, S.A. New Method for Fingerprint Images Encryption Using DNA

Sequence and Chaotic Tent Map. Optik 2020, 224, 165661. [CrossRef]
57. Li, C.; Luo, G.; Qin, K.; Li, C. An Image Encryption Scheme Based on Chaotic Tent Map. Nonlinear Dyn. 2017, 87, 127–133.

[CrossRef]
58. Naskar, P.K.; Bhattacharyya, S.; Nandy, D.; Chaudhuri, A. A Robust Image Encryption Scheme Using Chaotic Tent Map and

Cellular Automata. Nonlinear Dyn. 2020, 100, 2877–2898. [CrossRef]
59. Muñoz-Guillermo, M. Image Encryption Using Q-Deformed Logistic Map. Inf. Sci. 2021, 552, 352–364. [CrossRef]
60. Daoui, A.; Karmouni, H.; El ogri, O.; Sayyouri, M.; Qjidaa, H. Robust Image Encryption and Zero-Watermarking Scheme Using

SCA and Modified Logistic Map. Expert Syst. Appl. 2022, 190, 116193. [CrossRef]
61. Han, C. An Image Encryption Algorithm Based on Modified Logistic Chaotic Map. Optik 2019, 181, 779–785. [CrossRef]
62. Belazi, A.; Kharbech, S.; Aslam, M.N.; Talha, M.; Xiang, W.; Iliyasu, A.M.; El-Latif, A.A.A. Improved Sine-Tangent Chaotic Map

with Application in Medical Images Encryption. J. Inf. Secur. Appl. 2022, 66, 103131. [CrossRef]
63. Nagaraj, N. The Unreasonable Effectiveness of the Chaotic Tent Map in Engineering Applications. Chaos Theory Appl. 2022,

4, 197–204. [CrossRef]
64. Mondal, B.; Singh, S.; Kumar, P. A Secure Image Encryption Scheme Based on Cellular Automata and Chaotic Skew Tent Map. J.

Inf. Secur. Appl. 2019, 45, 117–130. [CrossRef]
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