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Abstract: The review is devoted to nonassociative algebras, rings and modules over them. The main
actual and recent trends in this area are described. Works are reviewed on radicals in nonassociative
rings, nonassociative algebras related with skew polynomials, commutative nonassociative algebras
and their modules, nonassociative cyclic algebras, rings obtained as nonassociative cyclic exten-
sions, nonassociative Ore extensions of hom-associative algebras and modules over them, and von
Neumann finiteness for nonassociative algebras. Furthermore, there are outlined nonassociative
algebras and rings and modules over them related to harmonic analysis on nonlocally compact
groups, nonassociative algebras with conjugation, representations and closures of nonassociative
algebras, and nonassociative algebras and modules over them with metagroup relations. Moreover,
classes of Akivis, Sabinin, Malcev, Bol, generalized Cayley–Dickson, and Zinbiel-type algebras are
provided. Sources also are reviewed on near to associative nonassociative algebras and modules over
them. Then, there are the considered applications of nonassociative algebras and modules over them
in cryptography and coding, and applications of modules over nonassociative algebras in geometry
and physics. Their interactions are discussed with more classical nonassociative algebras, such as of
the Lie, Jordan, Hurwitz and alternative types.
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1. Introduction

Nonassociative rings and algebras appear naturally in mathematics and attract great
attention. This area is of great importance. We recall that it was W.R. Hamilton who
first introduced a noncommutative ring in 1843 with his invention of the quaternion
skew field [1]. A little later, J.T. Graves, in a letter to Hamilton dated 26 December 1843,
and A. Cayley first studied a nonassociative ring, which is known today as the octonion
algebra [2–4]. Nonassociative rings, algebras and modules over them have been intensively
studied in recent years. This review is intended to describe main trends in this area.

This review is devoted to nonassociative rings, algebras and modules over them.
Algebras over rings or fields are considered. Mostly rather new results on nonassociative
algebras and their modules are reviewed below, though the main preceding results are
recalled. The main actual and recent trends in this area are described.

Works are reviewed on radicals in nonassociative rings, nonassociative algebras related
with skew polynomials, commutative nonassociative algebras and their modules, nonasso-
ciative cyclic algebras, rings obtained as nonassociative cyclic extensions, nonassociative
Ore extensions of hom-associative algebras and modules over them, and von Neumann
finiteness for nonassociative algebras. Classes of Akivis, Sabinin, Malcev, Bol, generalized
Cayley–Dickson, and Zinbiel-type algebras are provided. Furthermore, there are outlined
nonassociative algebras and rings and modules over them related to harmonic analysis
on nonlocally compact groups, nonassociative algebras with conjugation, representations
and closures of nonassociative algebras, nonassociative algebras and modules over them
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with metagroup relations, and near to associative nonassociative algebras and modules
over them.

Then there are considered applications of nonassociative algebras and modules over
them in cryptography and coding, and applications of modules over nonassociative al-
gebras in geometry and physics. Their interactions are discussed with more classical
nonassociative algebras, such as of the Lie, Jordan, Hurwitz and alternative types.

2. Principles of General Nonassociative Algebras and Rings

Remark 1. The basic principles of general nonassociative algebras over fields or commutative
associative rings are contained in [5] and references therein. They are nonassociative relative to
multiplication. To avoid a misunderstanding, we recall, that if an element e (or b) in an algebra A
over a commutative associative unital ring F is such that ea = a (or ab = a) for each a in A, then
e (or b correspondingly) is called a left (or right correspondingly) unit element (or identity). If A
contains both a left unit e and a right unit b, then e = b = eb is a two-sided unit element (identity).

Proposition 1 (Section 2.3 in [5]). Assume that B and J are solvable ideals of an algebra A. Then
B + J is a solvable ideal of A. Particularly, if A is finite-dimensional over a field F, then A has a
unique maximal solvable ideal S. Moreover, the only solvable ideal of A/S is 0.

Theorem 1 (Jacobson, Section 2.5 in [5]). Assume that A is a finite-dimensional algebra over a
field F of zero characteristic such that A is a direct sum A = J1 ⊕ ...⊕ Jn of simple ideals Jl , and A
contains a left (or right) identity. Then, every derivation D of A is inner.

Theorem 2 (Albert, Section 5.1 in [5]). If B is a finite power-associative division ring of charac-
teristic char(B) /∈ {2, 3, 5}, then B is a field.

Theorem 3 (Albert, Section 5.4 in [5]). Suppose that A is a finite-dimensional power-associative
algebra over a field F of characteristic char(F) 6= 2 such that the following hold:

(i) There exists an (associative) trace form (x, y) defined on A;
(ii) (e, e) 6= 0 for each idempotent e in A;
(iii) (x, y) = 0 if x · y := (xy + yx)/2 is nilpotent, where x ∈ A, y ∈ A.

Then, the nilradical P of A coincides with the nilradical of A+, and is the radical A⊥ of the
trace form (x, y). Moreover, the semisimple power-associative quotient algebra G = A/P satisfies
(i)–(iii) with (x, y) nondegenerate, and the following:

(iv) G = G1 ⊕ ...⊕ Gn, where Gl is a simple algebra for each l = 1, ..., n;
(v) G is flexible;
(vi) G+ is a semisimple Jordan algebra;
(vii) G+

l is a simple (Jordan) algebra for each l = 1, ..., n.

Remark 2. Varieties of algebras which may be nonassociative were studied in [6,7] and references
therein. Identities and hyperidentities in varieties of algebras were investigated, for example,
in [8–11] and references in them. It also is related with universal algebra [12–14]. Nonassociative
lattice ringoids and their skew morphisms were studied in [15].

Other relevant principles of general nonassociative algebras and rings are recalled in other
sections devoted to specific classes of nonassociative algebras and rings.

3. Akivis Algebras

Definition 1. Let A be a vector space over a field F endowed with an anticommutative bilinear
operation < x, y > and a trilinear operation < x, y, z > satisfying the following identity:

<< x, y >, z > + << y, z >, x > + << z, x >, y >=< x, y, z > + < y, z, x >
+ < z, x, y > − < y, x, z > − < x, z, y > − < z, y, x > for each x, y and z in A. Then
(A,< ·, · >,< ·, ·, · >) is called an Akivis algebra.
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Remark 3. These algebras were first studied by M. A. Akivis as tangent algebras of local analytic
loops [16]. If you take a nonassociative algebra B over the field F and put < x, y >= [x, y] =
xy− yx to be a commutator, and < x, y, z >= (x, y, z) = (xy)z− x(yz) to be an associator, then
the vector space B over F becomes an Akivis algebra under these operations. It also is denoted by
Ak(B). It was proved that for each Akivis algebra A over F, there exists a nonassociative algebra
B over F such that there exists an isomorphic embedding of A into Ak(B) [17,18]. Moreover, for
the universal enveloping algebra U(A) of the Akivis algebra over the field F, a unique algebra
homomorphism exists ∆ : U(A) → U(A)

⊗
FU(A) such that ∆(b) = b⊗ 1 + 1⊗ b for each b

in A. An element v ∈ U(A) is called primitive if ∆(v) = v⊗ 1 + 1⊗ v [19].
Let e1, e2, ... be a linear basis of the Akivis algebra over the field F. It is useful to take the set

of words V = {ei, eiej, (eiej)ek : i ≤ j ≤ k} in the universal enveloping algebra U(A) and put
|ei| = 1, |eiej| = 2, |(eiej)ek| = 3. By V∗, it is denoted the set of all nonassociative words in
the alphabet V, including the unit 1 considered the empty word. Then by V0, it is denoted the
set of all words from V∗ not containing subwords, such as v1v2, where v1 ∈ V and v2 ∈ V with
|v1|+ |v2| ≤ 3. The elements of V0 are called v0-words. It was proved in [17,18] that a basis of the
algebra U(A) is formed by the v0-words. For an algebra D and a subset M in D, algD < M >
and idlD < M > denote the subalgebra and the ideal in D generated by M, correspondingly.

Remark 4. Assume that A = Ak < X > is a free Akivis algebra over a field F with the set of
free generators X = {x1, x2, ...}. Then a degree function d on A is defined such that d(xi) = 1 for
each i ≥ 1, and d for any homogeneous elements u, v, w of A with [u, v] 6= 0 and (u, v, w) 6= 0
is such that d[u, v] = d(u) + d(v), d(u, v, w) = d(u) + d(v) + d(w). Therefore, it induces the
decomposition A = A1 ⊕ A2 ⊕ ..., where Aj is the space of homogeneous elements of degree j ≥ 1.
This implies that the universal enveloping algebra U(A) = F{X} is a free nonassociative algebra
with the set of free generators X [18]. Recall that a variety of algebras is called Schreier if every
subalgebra of a free algebra in this variety is also free [20].

Theorem 4 ([21]). The variety of Akivis algebras is Schreier.

Theorem 5 ([21]). The word problem is decidable for the variety of Akivis algebras.

Theorem 6. There exists a set Xr of all right-ordered (i.e., right-normed) words of the type
um = um(xi1 , ..., xim), where um = um−1xm for each m ≥ 2 with u1 = xi1 , where i1 ≤ i2 ≤ ... ≤
im, 1 ≤ m, u0 = 1, xik ∈ X for each k (see also Remark 2).

Definition 2 ([21,22]). Suppose that D is a free unital nonassociative algebra over X ∪Y ∪ {z},
where X = {x1, x2, ...} and Y = {y1, y2, ...}. Take a unique homomorphism of unital algebras
∆ : D → D ⊗ D such that v 7→ ∑ v(1) ⊗ v(2), X ∪ Y ∪ {z} ⊆ Prim(D), where Prim(D)
denotes the set of all primitive elements of D. For some x1, ..., xm in X and y1, ..., yn in Y it is
put um(x1, ..., xm) = um with u1 = x1, u2 = x1x2,..., um = um−1xm, vn(y1, ..., yn) = vn
with v1 = y1, v2 = y1y2, ..., vn = vn−1yn. Then, let q0,0(1, 1, z) = 0, q0,n(1, vn, z) = 0,
qm,0(um, 1, z) = 0 and recursively qm,n(um, vn, z) are defined for each m ≥ 1 and n ≥ 1 such
that q1,1(x1, y1, z) = (x1, y1, z) and (um, vn, z) = ∑k,l(uk,(1)q(um−k,(2), vn−l,(2), z))vl,(1), where
(um, vn, z) denotes the associator of um, vn and z.

Theorem 7 ([21]). Assume that D is a unital algebra over a field F of zero characteristic, and
∆ : D → D

⊗
F D is a nontrivial homomorphism of algebras. Suppose that the algebra D is

generated by a set M of ∆-primitive elements, and P(M) is the minimal subspace of D containing
M and closed with respect to primitive operations qm,n. If {e1, e2, ...} is a basis of P(M). Then, the
set of right-ordered words of the type um(ei1 , ..., eim) with 0 ≤ m and i1 ≤ i2 ≤ ... ≤ im, 0 ≤ m,
forms a basis of the algebra D.
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4. Nonassocative Algebras of Sabinin, Malcev, and Bol Types

Definition 3. A vector space V over a field F is called a Sabinin algebra if there are multilinear
operations on it < x1, ..., xm; y, z > with m ≥ 0 satisfying the following identities:

< x1, ..., xm; y, z >= − < x1, ..., xm; z, y >;
< x1, ..., xr, a, b, xr+1, ..., xm, y, z > − < x1, ..., xr, b, a, xr+1, ..., xm, y, z > +∑r

k=0 ∑α <
xα1 , ..., xαk ,< xαk+1 , ..., xαr ; a, b >, ..., xm; y, z >= 0;

σx,y,z(< x1, ..., xr, x; y, z > +∑r
k=0 ∑α < xα1 , ..., xαk ,< xαk+1 , ..., xαr ; y, z >, x >) = 0

for each x1, .., xm, y1, ..., yn, y, z in V, where α denotes a bijection α : {1, .., r} → {1, ..., r} with
α1 < ... < αk, αk+1 < ... < αr for 0 ≤ k ≤ r; σx,y,z denotes the cyclic sum by x, y and z.

Remark 5. Frequently, algebras satisfying the definition above and with a multioperator Φ
such that

Φ(x1, ..., xm; y1, ..., yn) = Φ(xs(1), ..., xs(m); yq(1), ..., yq(n)) for each x1, .., xm, y1, ..., yn in V,
s ∈ Sm, q ∈ Sn, are also called Sabinin algebras, where Sn denotes the symmetric group of the set
{1, ..., n}, where m ≥ 1 and n ≥ 2.

In particular, a Malcev algebra (Y, [·, ·]) over a field F of the characteristic char(F) 6= 2 is
a vector space Y with a skew-symmetric product [, ] such that [J(x, y, z), x] = J(x, y, [x, z]) for
each x, y and z in Y, where J(x, y, z) = [[x, y], z]− [[x, z], y]− [x, [y, z]] denotes the Jacobian of
x, y and z. The Malcev algebras can also be generated with the help of tangent spaces of smooth
Moufang loops.

Recall that a Lie triple system (V, [·, ·, ·]) is a vector space V over a field V supplied with a trilin-
ear operation [·, ·, ·] such that [x, x, y] = 0, [x, y, z] + [y, z, x] + [z, x, y] = 0 and [x, y, [u, v, z]] =
[[x, y, u], v, z] + [u, [x, y, v], z] + [u, v, [x, y, z]] for every u, v, x, y and z in V.

Then a (left) Bol algebra (V, [·, ·, ·], [·, ·]) consists of a Lie triple system (V, [·, ·, ·]) supplied
with a bilinear skew-symmetric operation [x, y] satisfying the identities [x, y, [z, u]] = [[x, y, z], u] +
[z, [x, y, u]] + [z, u, [x, y]] + [[x, y], [z, u]] for every u, x, y and z in V. The left Bol algebra can also
be generated with the help of the tangent space of a smooth left Bol loop B. The left Bol loop satisfies
the left Bol identity x(y(xz) = (x(yx))z for every x, y and z in B.

If there is the Malcev algebra (Y, [·, ·]) over the field F of the characteristic char(F) /∈ {2, 3}
and if we put [x, y, z] = [[x, y], z]− 1

3 J(a, b, c), then it provides the Bol algebra (Y, [·, ·, ·], [·, ·]).
For a nonassociative algebra X over the field F of the characteristic char(F) 6= 2, the general-

ized alternative nucleus defined by the following is useful:
Nalt(X) = {x ∈ X : ∀y ∈ X, ∀z ∈ X, (x, y, z) = −(y, x, z) = (y, z, x)}, where (x, y, z) =

(xy)z− x(yz) denotes the associator.
Recall that for a Lie algebra L over the field F, a universal enveloping algebra arises as

the quotient algebra U(L) = T(L)/J, where T(L) is a tensor algebra of L considered as the
vector space over F, where J is a two-sided ideal in T(L) generated by all elements of the form
{x⊗ y− y⊗ x− [x, y] : x ∈ L, y ∈ L}. There, T(L) = F⊕⊕∞

n=1 L⊗n is the standard tensor
algebra of L with the usual associative tensor product X⊗Y = X⊗F Y of vector spaces X and Y over
F, where X⊗n+1 = X⊗ X⊗n for each n ≥ 1, X⊗1 = X, X⊗0 = F. The operations in L and U(L)
are related by [x, y] = xy− yx for each x and y in L, where U(L)×U(L) 3 (x, y) 7→ xy ∈ U(L)
denotes multiplication on U(L) (see, for example, Section 1.9 in [23]). For the Akivis algebra A, its
universal enveloping algebra U(A) was considered in the preceding section.

For the left Bol algebra (V, [·, ·, ·], [·, ·]) over the field F of the characteristic char(F) 6= 2,
there exists a universal enveloping algebra U(V) such that V ⊆ U(V). The operations in V
and U(V) are related by [x, y] = xy− yx, [x, y, z] = x(yz)− y(xz)− z(xy− yx) for each x,
y and z in V according to [24]. Moreover, there is the embedding V ⊆ Nl,alt(U(V)), where
Nl,alt(U(V)) = {x ∈ U(V) : ∀y ∈ U(V), ∀z ∈ U(V), (x, y, z) = −(y, x, z)}.

For the Malcev algebra (Y, [·, ·]) over the field F of the characteristic char(F) /∈ {2, 3}, there
exists a universal enveloping algebra U(Y) such that Y ⊆ U(Y). The operations in Y and U(Y)
are related by [x, y] = xy− yx for each x and y in Y, and Y ⊆ Nalt(U(Y)) [25,26]. Particularly,
if the Malcev algebra (Y, [·, ·]) is considered the left Bol algebra, then the universal envelopes of Y
as Malcev and Bol algebras are isomorphic. Studies of these algebras also were accomplished with
the help of co-algebras and nonassociative bi-algebras.
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Definition 4. Let X be a vector space over a field F, and let there be two maps ∆ : X → X ⊗ X
and ε : X → F such that (Id⊗ ε)∆ = Id and (ε⊗ Id)∆ = Id, where X ⊗ F and F ⊗ X are
as usually isomorphic with X, where X ⊗ X = X ⊗ FX, ∆(x) = ∑(x) x(1) ⊗ x(2) or briefly
∆(x) = ∑ x(1) ⊗ x(2). Then (X, ∆, ε) is called a co-algebra. The co-algebra (X, ∆, ε) is called
coassociative if (∆⊗ Id)∆ = (Id⊗ ∆)∆. If τ∆ = ∆, where τ(x⊗ y) = y⊗ x for each x and y in
X, then the co-algebra is called cocommutative.

If a co-algebra (Y, ∆, ε) possesses also a F-bilinear product pY, Y×Y 3 (x, y) 7→ pY(x, y) ∈ Y,
briefly denoted by pY(x, y) = xy such that ∆(xy) = ∑ x(1)y(1) ⊗ x(2)y(2) and ε(xy) = ε(x)ε(y)
for each x, y in Y, then (Y, ∆, ε, pY) is called a (nonunital) bialgebra over F. If, additionally, there
exists a F-linear mapping u : F → Y such that u(1F) = 1 ∈ Y, 1x = x = x1, ∆(1) = 1⊗ 1 and
ε(1) = 1, then (Y, ∆, ε, pY, u) is called a unital bialgebra.

Let (Y, ∆, ε, pY) be the bialgebra over F with bilinear operations Y × Y 3 (x, y) 7→ x \
y ∈ Y and Y × Y 3 (x, y) 7→ x/y ∈ Y called the left and right division such that ∑ x(1) \
(x(2)y) = ∑ x(1)(x(2) \ y) and ∑(yx(1))/x(2) = ∑(y/x(1))x(2) for each x and y in Y. Then
(Y, ∆, ε, pY, \, /) is called an H-bi-algebra over F. Similarly (Y, ∆, ε, pY, u, \, /) is called a unital
H-bi-algebra over F. A co-algebra is called connected, if the dimension of its coradical is one.

Such algebras exist as the following proposition demonstrates.

Proposition 2 ([22]). Let (Y, ∆, ε, pY, u) be a co-associative unital bi-algebra over F. If the co-
algebra (Y, ∆, ε) is connected, then there exists a (unique) structure of the H-bi-algebra
(Y, ∆, ε, pY, u, \, /) on (Y, ∆, ε, pY, u).

The operations ∆, \ and / possess identities on the H-bi-algebra according to the follow-
ing proposition.

Proposition 3 ([22]). Assume that (Y, ∆, ε, pY, \, /) is a co-associative H-bi-algebra over F. Then
∆(x \ y) = ∑ x(2) \ y(1) ⊗ x(1) \ y(2) and ∆(x/y) = ∑ x(1)/y(2) ⊗ x(2)/y(1).

Remark 6. For a co-associative and cocommutative co-algebra (X, ∆, ε) over a field F of a type
G and any operation { f , k} ∈ G there exists a homomorphism of co-algebras f : X⊗k → X,
where G denotes a set of operations on X, where X⊗0 = F, k ≥ 0. Then for any co-associative
co-algebra V over F, the vector space HomF(V, X) is a G-algebra by putting f (a1, ..., an)(v) =
∑ f (a1(v(1)), ..., an(v(n))) if n ≥ 1, f (1)(v) = ε(v) f (1) if n = 0, for every a1, ..., an in X,
v ∈ V. On the co-algebra X⊗m with m ≥ 1, there are the distinguished maps εi(a1 ⊗ ...⊗ am) =
εi(a1, ..., am) = ε(a1)⊗ ...⊗ ε̂(ai)⊗ ...⊗ εm(am), where ε̂(ai) means that this factor is omitted,
where 1 ≤ i ≤ m. This means that for each n ≤ m, a homomorphism ln,m exists (which is called the
linearizing map) from the term algebra T(Y) on Y = {x1, x2, ..., xn} of type G into HomF(X⊗m, X)
sending xi to εi for each i. If ln,m(p) = ln,m(q) for some n ≤ m and p, q in T(Y), then it is said
that X satisfies the linearization of the identity p ≈ q.

Theorem 8 ([22]). Assume that Υ is a set of identities and p ≈ q is a consequence of Υ. If the
co-associative and cocommutative co-algebra (X, ∆, ε) over the field F of the type G satisfies the
linearization of all identities in Υ, then X satisfies the linearization of the identity p ≈ q.

Theorem 9 ([22]). If (B, [·, ·, ·], [·, ·]) is a left Bol algebra over a field F of characteristic char(F) 6=
2 and U(B) is its universal enveloping algebra, then U(B) satisfies the following ∑ x(1)(y(x(2)z)) =
∑(x(1)(yx(2)))z for each x, y, z in U(B).

Theorem 10. If (M, [·, ·]) is the Malcev algebra over the field F of characteristic char(F) /∈ {2, 3}
and U(M) is its universal enveloping algebra, then ∑ x(1)(y(x(2)z)) = ∑(x(1)y)x(2))z for each x,
y, z in U(M).
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Remark 7. It was proved in [21] that the set of primitive elements of any bialgebra is closed
under the usual commutator [·, ·] and qm,n(um, vn, z) for each m ≥ 1 and n ≥ 1. Then, for a
nonassociative algebra D over a field F of characteristic zero, it is possible to consider the operations

< y, z >= −[y, z],
< x1, ..., xm; y, z >= −qm,1(um, y, z) + qm,1(um, z, y) with um = um(x1, ..., xm) and

m ≥ 1,
Φ(x1, ..., xm; y1, ..., yn) = 1

m!n! ∑ξ∈Sm ,η∈Sn qm,n−1(um(xξ(1), ..., xξ(m)),
vn−1(yη(1), ..., yη(n−1)), yη(n)) for all m ≥ 1 and n ≥ 2. Let Y(D) denote the vector space
D over F endowed with the operations <,> and Φ. According to the work [21], Y(D) is a Sabinin
algebra. Moreover, if D is a bi-algebra, then Prim(D) is a Sabinin subalgebra of Y(D). Sabinin
and Miheev [27,28] demonstrated that if there are a Lie algebra L, a subalgebra H and a vector space
V with L = H ⊕V, then V can be supplied with the Sabinin algebra structure induced from the
product on L.

Take a Sabinin algebra (V,< ·, ..., · >) over F and the quotient algebra
S̃(V) = T(V)/spanF(x[a, b]y + ∑ x(1) < x(2); a, b]y : x ∈ T(V), y ∈ T(V), a ∈ V, b ∈ V),
where π : T(V)→ S̃(V) is the quotient map. For x ∈ T(V), it also is written shortly as x̄ instead
of π(x).

Theorem 11. (Poincare–Birkhoff–Witt). Let {bj : j ∈ J} be a totally ordered basis of V. Then
{bj1 ...bjn : j1 ≤ j2 ≤ ... ≤ jn, j1 ∈ J, ..., jn ∈ J, 0 ≤ n} is a basis of S̃(V).

Proposition 4. (S̃(V), ∆, ε, ·, u) is a co-associative, cocommutative connected unital bi-algebra
and V ⊆ Prim(S̃(V)).

Corollary 1. There exist unique operations and / such that (S̃(V), ∆, ε, ·, u, , /) is an
H-bi-algebra.

Theorem 12 ([22]). Assume that (V,< ·, ..., · >, Φ) is a Sabinin algebra over a field F of zero
characteristic. Then there exists a unital algebra U(V,< ·, ..., · >, Φ) and a monomorphism of
Sabinin algebras µ : V → Y(U(V,< ·, ..., · >, Φ)). Moreover, for any unital algebra D and any
homomorphism of Sabinin algebras ψ : V → Y(D), there exists a unique homomorphism of unital
algebras ψ̄ : U(V,< ·, ..., · >, Φ)→ D with ψ = ψ̄ ◦ µ.

Corollary 2. (Milnor–Moore). A cocommutative connected unital H-bi-algebra X over a field F of
zero characteristic is isomorphic with the universal enveloping algebra U(Prim(H)) of the Sabinin
subalgebra Prim(H) in Y(X).

5. Radicals in Nonassociative Rings

Remark 8. Suppose that there is a universal class W of rings which may be nonassociative and
A ⊆ W. Then, there exists the lower radical class LA determined by A in W [29]. Moreover,
if A is a hereditary class (that is, if K ∈ A and J is an ideal of K, then J ∈ A), then LA is also
hereditary [30–33]. For A ⊆W, R1(A) denotes the homomorphic closure of A. Then by induction,
assume that β is an ordinal, β > 1, and the classes Rα(A) are defined for each α < β. If β is not a
limit ordinal, then Rβ(A) = {K ∈ W : J ∈ Rβ−1(A), K/J ∈ Rβ−1(A), J < K}. If β is a limit
ordinal, then it is put Rβ(A) = {K ∈ W : K contains a chain {Jγ} of ideals such that ∀γ, Jγ ∈⋃

α<β Rα(A), &K =
⋃

γ Jγ}. For the given W and A it is then put R(A) =
⋃

δ Rδ(A).

Theorem 13 ([34]). Let W be a universal class and let A ⊆ W. Then, A is a radical class in W
if, and only if, the following conditions are satisfied: (i) A is homomorphically closed, (ii) J ∈ A,
K/J ∈ A, then K ∈ A, (iii) the union of a chain of A-ideals of a W-ring K is again an A-ideal of K.

Theorem 14 ([35]). R(A) = L(A).
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Theorem 15 ([30]). Assume that A ⊆ W, where W is some universal class. Then, if A is
hereditary, so is L(A).

Theorem 16 ([35]). If A1 and A2 are homomorphically closed, hereditary classes of W-rings, then
L(A1 ∩ A2) = L(A1) ∩ L(A2).

6. Nonassociative Algebras Related to Skew Polynomials

Remark 9. Skew polynomial rings arise with the help of a unital associative ring S and a ring endomor-
phism σ of S. There is considered an additive map δ : S→ S such that δ(xy) = σ(x)δ(y) + δ(x)y
for each x and y in S. That is, δ is a left σ-derivation of S. The skew polynomial ring R = S[t; σ, δ]
consists of the set of all skew polynomials f (t) = a0 + a1t + ... + antn, where aj ∈ S for each j,
with term-wise addition and multiplication ta = σ(a)t + δ(a) for each a ∈ S [36]. By induction
this provides atnbtm = ∑n

j=0 a(∆n,jb)tm+j for every a and b in S, where the map ∆n,j is defined
recursively ∆n,j = δ(∆n−1,j) + σ(∆n−1,j−1), with ∆0,0 = idS, ∆1,0 = δ and ∆1,1 = σ. Partic-
ularly, if δ = 0, then ∆n,n = σn. The usual ring of left polynomials is S[t] = S[t; id, 0]. It is
useful to put Fix(σ) = {a ∈ S : σ(a) = a} and Const(δ) = {a ∈ S : δ(a) = 0}. A degree
of a skew polynomial f (t) = a0 + a1t + ... + antn in R with an 6= 0 is defined as deg( f ) = n,
where deg(0) = −∞. Therefore, deg(gh) ≤ deg(g) + deg(h) for each g and h in R. The equality
is achieved if h has an invertible leading coefficient, or g has an invertible leading coefficient and
σ is injective, or if S is a division ring. The skew polynomial f in R is called irreducible in R
if it is not a unit and it has no proper factors, that is, if there do not exist g and h in R with
1 ≤ deg(g) < deg( f ), 1 ≤ deg(h) < deg( f ) such that f = gh.

Remark 10. In this section, nonassociative algebras are unital over a unital commutative associative
ring F. For the F-algebra A, associativity in A is estimated by the associator (x, y, z) = (xy)z−
x(yz). The left nucleus of A is defined as Nl(A) = {x ∈ A : (x, A, A) = 0}, the middle nucleus
as Nm(A) = {x ∈ A : (A, x, A) = 0} and the right nucleus as Nr(A) = {x ∈ A : (A, A, x) =
0}. Therefore, Nl(A), Nm(A) and Nr(A) are associative subalgebras of A. Their intersection
N(A) = Nl(A) ∩ Nm(A) ∩ Nr(A) is the nucleus of A. This implies that N(A) is an associative
subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements x, y, z is in N(A).
The commuter of A is Comm(A) = {x ∈ A : xy = yx∀x ∈ A, ∀y ∈ A} and the center of A
is C(A) = N(A) ∩ Comm(A) [5]. A nonassociative ring A 6= 0 (or an algebra A 6= 0 over
a field F) is called a left (or right) division ring (or algebra correspondingly) if the left (or right
correspondingly) multiplication operator La (or Ra correspondingly) is a bijective map for each
a 6= 0 in A, where La(x) = ax, Ra(x) = xa for each a and x in A. The nonzero ring (or the
algebra) A is called a division ring (or algebra correspondingly) if it is the left and right division
ring (or algebra correspondingly). This means that the division ring does not have zero divisors. If
A is a finite-dimensional algebra over the field F, then A is a division algebra over F if and only if A
has no zero divisors [5]. A nonassociative nonzero ring A has no zero divisors if and only if Ra and
La are injective for each nonzero a in A. Notice that every algebra A is a right Nr(A)-module such
that the left multiplication La is right Nr(A)-linear for each a in A.

Assume that f (t) ∈ R = S[t; σ, δ] has an invertible leading coefficient am ∈ S× = S− {0}
with m ≥ 1. Then for all g(t) ∈ R of degree l ≥ m, there exist uniquely determined r(t) and
q(t) in R with deg(r) < deg( f ) such that g(t) = q(t) f (t) + r(t). Moreover, if σ ∈ Aut(D),
then there exist uniquely determined r1(t) and q1(t) in R with deg(r1) < deg( f ) such that
g(t) = f (t)q1(t) + r1(t) by Proposition 1 in [37]. So, there exist the remainder modr f of right
division by f and the remainder modl f of left division by f . This means that the skew polynomials
of degree less than m canonically represent the elements of the (left or right) S[t; σ, δ]-modules
S[t; σ, δ]/(S[t; σ, δ] f ) and S[t; σ, δ]/( f S[t; σ, δ]). Thus, Rm = {g ∈ S[t; σ, δ] : deg(g) <
m} together with multiplication g · h = gh if deg(g) + deg(h) < m, g · h = gh (modr f ) if
deg(g) + deg(h) ≥ m is a unital nonassociative ring S f = (Rm, ·) also denoted by R/(R f ). If
σ ∈ Aut(S), then Rm together with g× h = gh if deg(g) + deg(h) < m, g× h = gh modl f if
deg(g) + deg(h) ≥ m, is a unital nonassociative ring f S = (Rm,×) also denoted by R/( f R).
As usual, if the context is specified, the notation · or × is frequently dropped, and juxtaposition
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is utilized for multiplication in S f or f S. Certainly, S f and f S are unital nonassociative algebras
over the commutative subring S0 = {a ∈ S : ∀h ∈ S f , ah = ha} = Comm(S f )

′ ∩ S of S, and
C(S) ∩ Fix(σ) ∩ Const(δ) ⊆ S0. Then, S f = Sb f for each invertible element b in S. Therefore, it
suffices to consider monic polynomials in this construction. If f has degree 1, then S f is isomorphic
with S. If the skew polynomial f is reducible, then the ring S f contains zero divisors. For m ≥ 2,
the algebra S f is called a Petit algebra, though Petit considered only the case of division rings
S [38,39]. Notice that the algebra f S is anti-isomorphic to S f by Proposition 3 in [37]. Take a
division algebra D with center F, R = D[t; σ, δ] with σ being any endomorphism of D and δ
being any left σ-derivation. Let f be a skew polynomial in R = D[t; σ, δ] be monic of degree
m ≥ 2 [40]. The largest subalgebra of R = D[t; σ, δ] in which R f is a two-sided ideal is the
idealiser J( f ) = {g ∈ R : f g ∈ R f } of R f . The eigenring of f is then defined as the quotient
E( f ) = J( f )/(R f ) = {g ∈ R : deg(g) < m, & f g ∈ R f }.

Theorem 17 ([37]). If D, σ, δ, f , S f are as in Remark 2, then E( f ) is the right nucleus of the
algebra S f .

Theorem 18 ([38]). Assume that a skew polynomial f (t) = ∑m
j=0 ajtj in R = D[t; σ, δ] is monic

of degree m ≥ 2 (see Remark 2). Then,
(i) D ⊆ Nr(S f ) if and only if f (t)b = σm(b) f (t) for each b ∈ D, if and only if σm(b)ak =

∑m
j=k aj∆j,k(b) for all b ∈ D and k ∈ {0, ..., m− 1}.

(ii) Let σ be an automorphism of D of an infinite inner order. Then D ⊆ Nr(S f ) implies that
S f is associative.

(iii) Let δ = 0. Then D ⊆ N(S f ) if and only if σm(b) = ajσ
j(b)a−1

j for all b in D and all
j ∈ {0, ..., m− 1} with aj 6= 0. Moreover, the algebra S f is associative if and only if the skew
polynomial f (t) satisfies the identity above and f (t) ∈ Fix(σ)[t] ⊆ Fix(σ)[t; σ].

(iv) Let σ = id. Then, D ⊆ Nr(S f ) is equivalent to (
bak=∑m

j=k=

jkajδ
j−k(b)

) for all b in D, k ∈

{0, ..., m− 1}. Furthermore, S f is associative if and only if f (t) satisfies the identity above and
f (t) ∈ Const(δ)[t] ⊆ Const(δ)[t; δ].

(v) Let δ = 0 and σ be an automorphism of D of finite inner order k, that is σk = Iu for some
u ∈ D×. Then, the polynomials g ∈ D[t; σ] such thatD ⊆ Nr(Sg) are precisely those of the form
g(t) = s ∑n

j=0 bjun−jtjk, where n ∈ N, bn = 1, bj ∈ F and s ∈ D×. Furthermore, the algebra Sg

is associative if and only if g(t) has the form provided above and g(t) ∈ Fix(σ)[t] ⊆ Fix(σ)[t; σ].

Remark 11. A skew polynomial f in R = D[t; σ, δ] is called right semi-invariant if for each a ∈ D,
there exists b ∈ D such that f (t)a = b f (t). The latter is equivalent to f D ⊆ D f . Symmetrically,
f is left semi-invariant if D f ⊆ f D [41,42]. Then, f is right semi-invariant if and only if b f is right
semi-invariant for each b ∈ D×. Moreover, if σ is an automorphism, then f is right semi-invariant
if and only if it is left semi-invariant if and only if f D = D f according to Proposition 2.7 in [41].
It is worth mentioning that right semi-invariant polynomials arise in a treatment of semi-linear
transformations [43].

If f is semi-invariant and also satisfies the following condition f (t)t = (bt + a) f (t) for some
elements a and b in D, then f is called right invariant. The latter is equivalent to f R ⊆ R f . If
f is right invariant, then R f is a two-sided ideal in R. Vice versa, each two-sided ideal in R is
generated by a right-invariant polynomial. This implies that R is not simple if and only if there
exists a non-constant right-invariant skew polynomial f in R. In the particular case of σ being an
automorphism, R is not simple if and only if there is a non-constant monic semi-invariant skew
polynomial f in R if and only if δ is a quasi-algebraic derivation [42].

Choose a subring B of D. It is said that a skew polynomial f in D[t; σ, δ] is (right) B-weak semi-
invariant if f B ⊆ D f . This means that any right semi-invariant polynomial is also B-weak semi-
invariant for each subring B of D. If f is right B-weak semi-invariant and f (t)t = (bt + a) f (t)
for some a and b in B, then f is called a (right) B-weak invariant polynomial.
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Theorem 19 ([38]). Suppose that σ is an automorphism of D, B is a subring of D such that D is a
free right B-module of finite rank and f ∈ D[t; σ, δ] is B-weak semi-invariant. Then S f is a division
algebra if and only if f is irreducible. In particular, if σ is an automorphism of D and f is right
semi-invariant, then S f is a division algebra if and only if f is irreducible.

Theorem 20 ([38]). Assume that a skew polynomial f in R = D[t; σ, δ] is irreducible. Then
f is bounded if and only if S f is free of finite rank as a Nr(S f )-module. In this case, S f is a
division algebra.

7. Commutative Nonassociative Algebras and Their Modules

Remark 12. In this section, commutative nonassociative finite dimensional algebras are considered
over a field K of the characteristic char(K) /∈ {2, 3}. Recall that an element c of an algebra A is
called an idempotent if c2 = c. Then the idempotent c induces the multiplication endomorphism
Lc ∈ EndK(A) such that Lcx = cx for each x in A. A set consisting of all eigenvalues belonging to
K of the operator Lc is called the Peirce spectrum of the idempotent c. It is frequently denoted by σ(c).
This implies that any eigenvalue λ in σ(c) is a zero of the characteristic polynomial of Lc. For the
idempotent c, the Peirce spectrum is nonvoid since 1 ∈ σ(c). Then, the idempotent c is called semi-
simple if there exists a direct sum decomposition of A such that A =

⊕
λ∈σ(c) Ac(λ), where Ac(λ)

denotes a λ-eigenspace of the operator Lc on A. In this decomposition, some Ac(λ) are allowed to be
trivial. This decomposition is sometimes called the Peirce decomposition of the algebra A relative to
the idempotent c. For studying the multiplication structure of the λ-eigenspaces, a fusion law is
used. The fusion law is a map ? : σ(c)× σ(c)→ 2σ(c) such that Ac(λ)Ac(µ) ⊆

⊕
ν∈λ?µ Ac(ν).

It is assumed in suitable cases that this decomposition is minimal in an obvious sense.
Take, for example, a Jordan algebra B. That is, zy− yz = 0 and z((zz)y)− (zz)(zy) = 0

for each y and z in B. There is the identity 2L3
c − 3L2

c + Lc = 0 (see it, for example, on page
97 in [5]) for any idempotent c in B. That is, f (Lc) = 0, where f (t) = (2t− 1)(t− 1)t. Thus,
the Peirce spectrum is σ(c) = {1, 0, 1/2} and B = Bc(0) ⊕ Bc(1/2) ⊕ Bc(1), 1 ? 1 = {1},
1/2 ? 1/2 = {0, 1}, etc. The Peirce spectrum σ(P, c) and the fusion law of the identity P
can be calculated with the help of the first-order linearization D1(P; c, y) and the second-order
derivation D2(P; c, x, y) [44,45]. In the latter work were considered polynomial identities with
coefficients which may depend on indeterminates. It allowed to include in the consideration, for
example, all train baric algebras A, where a commutative algebra is called baric if it carries a
nontrivial K-homomorphism ω : A→ K [46,47]. Particularly, the Bernstein algebras satisfying
z2z2 −ω(z)2z2 = 0 are baric [48]. Then pseudo-composition algebras satisfying z3 − b(z, z)z = 0
are baric, where b denotes a symmetric bilinear form. Additionally, general rank three algebras
satisfying the identity z3 − a(z)z2 − b(z)z = 0 are also baric [49]. There are known baric train
algebras of general rank and rank four identities [46,50]. For example, Hsiang algebras satisfy the
identity 4zz3 + z2z2 − 3b(z, z)z2 − 2b(z2, z)z = 0, where b denotes an associating symmetric
bilinear form, where a bilinear form b(x, y) on an algebra A is called associating if b(xy, z) =
b(x, yz) for every x, y and z in A.

Recall that an algebra supplied with an associating non-degenerate symmetric bilinear form
is called metrized [51]. Examples of the symmetric bilinear forms on algebras are the Killing form
tr(ad(x)ad(y)) on a Lie algebra [23], and also the invariant trace form trLxy of a formal real
(Euclidean) Jordan algebra [52]. They also arise in a Norton–Griess algebra related to a monster
sporadic simple group [53], or in some axial algebras [54]. Modules over axial algebras were
studied in [55] and references therein. Frequently associating symmetric bilinear forms without the
non-degeneracy condition are also considered, which may be related to the studying of radicals.

Sometimes, graphs, in particular, trees, for studying polynomials on a commutative nonasso-
ciative algebra A can be useful.

Then σ(P, c) := {t ∈ K : ρc(P, t) = 0} is called the Peirce spectrum of P at c, where ρc(P, t)
denotes the Peirce polynomial [44]. Notice that σ(c) ⊆ σ(P, c).

Proposition 5 ([44]). An algebra is baric if and only if there exists a rank one nontrivial associating
symmetric bilinear form.
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Theorem 21 ([44]). Assume that A is a finite-dimensional commutative nonassociative algebra
over a field K of characteristic char(K) /∈ {2, 3} and A satisfies a nontrivial weighted polynomial
identity P(z) = 0 in one nonassociative indeterminate z. Then,

(i) 1/2 ∈ σ(P, c) for any nonzero idempotent c in A;
(ii) moreover, if c is semi-simple and λ is a simple root of the Peirce polynomial ρc(P, t), then

Ac(λ)Ac(1/2) ⊆ Ac(λ)⊥ :=
⊕

ν∈σ(c),ν 6=λ = Ac(ν).

8. Nonassociative Cyclic Algebras

Remark 13. Cyclic algebras considered in this section arise with the help of cyclic Galois extension
K/F of degree n with Galois group Gal(K/F) =< σ >, where F is a field and K is its extension.
Note that an associative cyclic algebra (K/F, σ, c) of degree n over F with c ∈ F×, is constructed
as an n-dimensional K-vector space (K/F, σ, c) = K⊕ eK⊕ ...⊕ en−1K and with multiplication
such that en = c, be = eσ(b) for each b ∈ K. Therefore, (K/F, σ, c) is the division algebra, if
cs /∈ NK/F(K×) for each s being a prime divisor of n, 1 ≤ s ≤ n− 1.

If c ∈ K− F, there exists a unital nonassociative algebra D = (K/F, σ, c) as the n-dimensional
K-vector space D = K⊕ eK⊕ ...⊕ en−1K and multiplication for every a and b in K, 0 ≤ i < n,
1 ≤ j < n, extended K-linearly to all elements in D such that (eia)(ejb) = ei+jσj(a)b if i + j < n,
(eia)(ejb) = ei+j−ncσj(a)b if i + j ≥ n [56]. Then, D is called a nonassociative cyclic algebra
of degree n. Notice that D has nucleus K and center F. The cyclic algebra D is not (n + 1)-th
power associative, for example, (en−1e)e = σ(c) and e(en−1e) = ec. Furthermore, D is a division
algebra, if [K : F] is prime, or if 1, c, ..., cn−1 are linearly independent over F. Particularly, for
n = 2, (K/F, σ, c) is either an associative (if c ∈ F) or nonassociative (if c ∈ K− F) quaternion
algebra over F [57]. Then {1, e, e2, ..., en−1} is called the standard basis of (K/F, σ, c). Notice
that the algebra (Matn×n(K),m) of all square n × n matrices with entries in K is associative
relative to the matrix multiplication m, so D as the nonassociative algebra cannot be embedded into
(Matn×n(K),m).

Consider fields F and M and their cyclic field extension K such that Gal(K/F) =< σ >
and [K : F] = n, Gal(K/M) =< τ > and [K : M] = m. Assume that σ and τ commute. Let
the intersection of fields be denoted by F0 = F ∩M, and D = (K/F, σ, c) be with reduced norm
ND/F. There exists a M-linear map extension τ : D → D such that τ(x) = τ(x0) + eτ(x1) +
...+ en−1τ(xn−1) for each x = x0 + ex1 + ...+ en−1xn in D, where xj ∈ K for each j. Particularly,
if c ∈ F0, then τ(xy) = τ(x)τ(y) for each x and y in D. For a matrix X = (Xi,j) with entries Xi,j
in D, τ(X) denotes the matrix with entries (τ(X))i,j = τ(Xi,j) for each i and j.

In particular, nonassociative algebras of degree 4 were also studied in [57,58].

Definition 5 ([59]). For any fixed b ∈ F× and c ∈ F0, let a right D-module N = D ⊕ f D ⊕
⊕ f m−1D be supplied with multiplication ( f ix)( f jy) = f i+jτ j(x)y if i + j < m, ( f ix)( f jy) =
f i+j−mτ j(x)yb if i + j ≥ m for every x and y in D. This provides a so-called iterated algebra
Itm

R (D, τ, b). Then {1, e, ..., en−1, f , f e, f e2, ..., f m−1en−1} is called the standard basis of the K-
vector space Itm

R (D, τ, b).

Remark 14. Definition 1 implies that Itm
R (D, τ, b) is a nonassociative algebra over F0 of dimension

m2n2 with unit element (1D, 0, ..., 0), where 1 = 1D denotes the unit element in D. Therefore, the
iterated algebra Itm

R (D, τ, b) contains a subalgebra D.

Theorem 22 ([60]). Assume that F and M are fields, F0 = F ∩M and K is a cyclic field extension
of both F and M such that (i) Gal(K/F) =< σ > and [K : F] = n, (ii) Gal(K/M) =< τ >
and [K : M] = m, (iii) σ and τ commute. Assume that D = (K/F, σ, c) is an associative
cyclic division algebra over F of degree n, c ∈ F0 and b ∈ D×. Then, Itm

R (D, τ, b) = S f , where
R = D[t; τ−1] is the skew-polynomial ring (see the preceding section) and f (t) = tm − b.

Corollary 3 ([60]). Let the conditions of Theorem 1 be satisfied.
(i) If b /∈ F0, then Nl(Itm

R (D, τ, b)) = Nm(Itm
R (D, τ, b)) = D and Nr(Itm

R (D, τ, b)) =
{g ∈ S f : f g ∈ R f }.
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(ii) Itm
R (D, τ, b) is a division algebra if and only if f (t) is irreducible in D[t; τ−1].

(iii) It4
R(D, τ, b) is a division algebra if and only if b 6= zτ(z)τ2(z)τ3(z) and

τ2(z1)τ
3(z1)z1 + τ2(z0)z1 + τ2(z1)τ

3(z0) 6= 0 or τ2(z0)z0 + τ2(z1)τ
3(z0)z0 6= b for every

z, z0 and z1 in D.
(iv) Let m be prime and in the case of m /∈ {2, 3}, additionally let F0 contain a primitive m-th

root of unity. Then Itm
R (D, τ, b) is a division algebra if and only if b 6= zτ(z)...τm−1(z) for each z

in D.

Corollary 4 ([60]). Let the conditions of Theorem 1 be satisfied. Let m be prime and in the case of
m /∈ {2, 3}, additionally let F0 contain a primitive m-th root of unity.

(i) If τ(bn) 6= bn, then Itm
R (D, τ, b) is a division algebra.

(ii) If b ∈ F is such that bn /∈ ND/F0(D×), then Itm
R (D, τ, b) is a division algebra. Particu-

larly, for each b ∈ F− F0 with bn /∈ F0, Itm
R (D, τ, b) is a division algebra.

Remark 15. Suppose that F and M are two fields. Suppose also that F and M are linearly disjoint
over F0, where F0 = F ∩ M, M/F0 and F/F0 are cyclic Galois extensions of degrees n and m
correspondingly with cyclic Galois groups Gal(M/F0) =< σ > and Gal(F/F0) =< τ >
correspondingly. Assume that K is a field such that K = M

⊗
F0

F, that is, K = MF is a composite
of M and F, with Galois group Gal(K/F0) =< σ >< τ >, where σ and τ are canonically
extended on K. Put D0 = (M/F0, σ, c) and D1 = (F/F0, τ, b) to be two cyclic algebras over F0
with c ∈ F×0 and b ∈ F× such that D0 is associative and D1 is nonassociative.

There exists the tensor product A = D0
⊗

F0
D1, which is a nonassociative algebra over F0.

Therefore, K is a subfield of A of degree mn over F0 and K ⊂ N(A). There exists the standard
basis {1, e, ..., en−1} of D0 as the M-vector space and the standard basis {1, f , ..., f m−1} of D1 as
the F-vector space. This implies that A as a K-vector space has the basis {1⊗ 1, e⊗ 1, ..., en−1 ⊗
1, 1⊗ f , e⊗ f , ..., en−1 ⊗ f m−1}. It was studied when the tensor product A = D0

⊗
F0

D1 is a
division algebra.

Theorem 23 ([60]). If the conditions of Remark 3 are satisfied, then
(i) A = Itm

R (D0
⊗

F0
F, τ, b); (ii) if D = D0

⊗
F0

F is a division algebra, then S f is isomor-
phic with A, where R = D[t; τ−1] and f (t) = tm − b.

Theorem 24 ([60]). Let the conditions of Remark 3 be satisfied. Let m be prime and in case
m /∈ {2, 3}, let, in addition, F0 contain a primitive m-th root of unity. Then, A is a division algebra
if and only if b 6= zτ(z)...τm−1(z) for each z in D.

The following theorem is more general.

Theorem 25 ([60]). If the conditions of Theorem 3 are satisfied, then A is the division algebra if
and only if the polynomial f (t) = tm − b is irreducible in D[t; τ−1].

A particular case of Theorem 3 is provided by the following.

Theorem 26 ([60]). Let the conditions of Theorem 3 be satisfied. Let F0 be of characteristic
char(F0) 6= 2. Let (a, c)F0 be a quaternion algebra over the field F0, which is a division algebra
over F = F0(

√
s), and (F0(

√
s)/F0, τ, b) be a nonassociative algebra of degree 4. Then their tensor

product (a, c)F0

⊗
F0
(F0(
√

s)/F0, τ, b) is a division algebra over F0.

Theorem 27 ([61]). Let the field F possess no non-trivial m-th root of unity. Let A = (K/F, σ, b)
be a nonassociative cyclic algebra of degree m, where b ∈ K× and b is not contained in any
proper subfield of K. Then, every F-automorphism of the algebra A leaves K fixed and AutF(A) is
isomorphic with ker(NK/F). In particular, all automorphisms of A are inner.

Theorem 28 ([61]). (i) Assume that τ ∈ AutF0(D) commutes with σ, where D is a unital
division ring and σ is a ring automorphism of D. Then τ can be extended to an automorphism
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H ∈ AutF0(A), if and only if there exists k ∈ F× such that τ(b) = NF/F0(k)b. In that case, the
extension H of τ has the form H = Hτ,k with

Hτ,k(
m−1

∑
j=0

ajtj) = τ(a0) +
m−1

∑
j=1

τ(aj)(
j−1

∏
l=0

σl(k))tj.

Moreover, Hτ,k is an automorphism of A if τ ∈ AutF0(D) commutes with σ and if k ∈ F× is
such that τ(b) = NF/F0(k)b. In particular, for τ 6= id and b /∈ Fix(τ), NF/F0(k) 6= 1.

(ii) id ∈ Aut(D) can be extended to an automorphism H ∈ AutF0(A) if and only if there
is some k ∈ F× such that NF/F0(k) = 1. In that case, the extension H of id has the form
H = Hid,k with

Hid,k(
m−1

∑
j=0

ajtj) = a0 +
m−1

∑
j=1

aj(
j−1

∏
l=0

σl(k))tj.

Moreover, Hid,k is an automorphism of A if k ∈ F× is such that NF/F0(k) = 1.

Proposition 6 ([61]). Let the conditions of Theorem 7 be satisfied. Then, each automorphism Hid,k
of A is an inner automorphism of the form

Gc(
m−1

∑
j=0

ajtj) = (c−1
m−1

∑
j=0

ajtj)c

for some c ∈ F× satisfying k = σ(c)c−1.

9. Rings Obtained as Nonassociative Cyclic Extensions

Remark 16. We recall that a nonassociative nontrivial ring A is called a right division ring if Rs
is bijective for each nonzero s in A, where Rs(x) = xs for each s and x in A. It was demonstrated
in [62] that if D is a division ring and a polynomial f is irreducible, then S f = D[t; σ]/(D[t; σ] f
is a right division algebra and has no zero divisors.

Theorem 29 ([62]). (i) Assume that B is a nonassociative ring with multiplication ◦. Suppose
that conditions (α)–(γ) are satisfied:

(α) B has an associative subring D which is a division algebra and B is a free left D-module of
rank m, and there exists t ∈ B such that {tj : 0 ≤ j < m} is a basis of B over D, where tj+1 = t ◦ tj,
t0 = 1;

(β) For each nonzero b in D, there exist b1 and b2 in D with b1 6= 0 such that t ◦ b =
b1 ◦ t + b2;

(γ) [a ◦ ti, b ◦ tj, c ◦ tk] = 0 for every a, b and c in D, i + j < m, k < m.
Then B is isomorphic with S f , where f (t) ∈ D[t; σ, δ], f (t) = tm −∑m−1

j=0 bjtj, where σ and
δ are such that t ◦ b = σ(b) ◦ t + δ(b).

(ii) If B is a right division ring in (i), then f is irreducible.

Theorem 30 ([61]). (i) Suppose that B is a nonassociative ring with multiplication denoted by ◦, a
field K is a subring in B, and B is a free left K-vector space of dimension m. Suppose that conditions
(α)–(ε) are satisfied:

(α) there exists t in B such that {tj : 0 ≤ j < m} is a basis of B over K, where t0 = 1,
tj+1 = t ◦ tj for each 0 ≤ j < m;

(β) for each nonzero b in K, there exists s ∈ K× such that t ◦ b = s ◦ t;
(γ) [a ◦ ti, b ◦ tj, c ◦ tk] = 0 for every a, b and c in K, i + j < m and k < m;
(δ) there exists d in K× such that tm = d;
(ε) the map σ : K → K such that σ(b) = s has order m, and Fix(σ) is a field F =

{a ∈ K : t ◦ a = a ◦ t}, F contains a primitive m-th root of unity ω, and K/F is a finite cyclic
Galois extension.

Then B is isomorphic with S f = (K/F, σ, d) with f (t) = tm − d ∈ K[t; σ].
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(ii) If B is a right division ring in (i), then f is irreducible and B is isomorphic with a
nonassociative cyclic extension (K/F, σ, d) of K of degree m.

From Theorem 1 applied to nonassociative cyclic extensions of a central simple algebra D, it
was deduced the following.

Theorem 31 ([61]). (i) Assume that B is a nonassociative ring with multiplication denoted by
◦, and D is an associative subring in B, and B is a free left B-module of rank m. Assume that
conditions (α)–(ε) are satisfied:

(α) there exists t in B such that {tj : 0 ≤ j < m} is a basis of B over D, where t0 = 1,
tj+1 = t ◦ tj for each 0 ≤ j < m;

(β) for each nonzero b in K, there exists s ∈ K× such that t ◦ b = s ◦ t;
(γ) [a ◦ ti, b ◦ tj, c ◦ tk] = 0 for every a, b and c in K, i + j < m and k < m;
(δ) there exists d in K× such that tm = d;
(ε) the map σ : K → K such that σ(b) = s has order m, and Fix(σ) is a field F = {a ∈ D :

t ◦ a = a ◦ t}, F contains a primitive m-th root of unity ω, and D has a structure of a central simple
algebra over F.

Then, B is isomorphic with S f = (D, σ, d) with f (t) = tm − d ∈ D[t; σ].
(ii) If B is a right division ring and D is a central simple algebra in (i), then f is irreducible

and B is isomorphic with a nonassociative cyclic extension (D, σ, d) of D of degree m.

10. Nonassociative Ore Extensions of Hom-Associative Algebras and Modules
over Them

Remark 17. A generalization of Lie algebras was studied in [63]. In them, the Jacobi identity was
twisted by a vector space homomorphism. This was an origin of hom-associative algebras. It is
necessary to note that hom-associative algebras may be nonassociative. In a hom-associative algebra
A, the associativity condition is substituted with α(a) · (b · c) = (a · b) · α(c) for every a, b and c
in A, where α is a linear map called a twisting map, particularly in the associative algebra σ = idA.

Later on, hom-co-algebras, hom-bi-algebras, and hom-Hopf algebras were studied in [64,65].
On the other side, Ore extensions arose as noncommutative polynomial rings [36]. Their nonassocia-
tive analogs for unital algebras were introduced in [66]. That construction was later generalized to
non-unital, hom-associative Ore extensions in [67]. In the latter work, examples were provided of hom-
associative versions of the first Weyl algebra, the quantum plane, and a universal enveloping algebra
of a Lie algebra such that these algebras are formal deformations of their associative counterparts.

Definition 6. Let R be an associative, commutative, and unital ring, let M be an R-module, let
a binary operation · : M × M → M be bilinear, let α : M → M be an R-linear map such
that α(a) · (b · c) = (a · b) · α(c) for every a, b and c in M. Then, a triple (M, ·, α) is called a
hom-associative algebra over R, where the map α is called a twisting map.

If A = (M, ·, α) and A1 = (M1, ·1, α1) are two hom-associative R-algebras and if f : M→
M1 is an R-linear map such that f ◦ α = α1 ◦ f and f (a · b) = f (a) ·1 b for each a and b in M,
then f is called a morphism from A into A1. If f is bijective, then A and A1 are isomorphic.

If N is a submodule of M such that N is closed under multiplication · and invariant under α,
then it is said that the hom-associative algebra (N, ·, α|N) is a hom-subalgebra of A.

By a right (or left) hom-ideal of a hom-associative R-algebra, A is implied an R-submodule J of
A such that α(J) ⊆ J and J · A ⊆ J (or A · J ⊆ J correspondingly). If J is both a left and a right
hom-ideal, it is called a hom-ideal.

A hom-associative ring is called a hom-associative algebra over the ring of integers.
If S := (R, ·, α) is a hom-associative ring, then the opposite hom-associative ring Sop of S is

the hom-associative ring (R, ·, σ) satisfying r ·op s := s · r for every r and s in R.
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Remark 18. Assume that R is a unital nonassociative ring, σ : R→ R and δ : R→ R are additive
maps such that σ(1) = 1 and δ(1) = 0. By N0, denote the set of all non-negative integers, and
by N denote the set of all positive integers. Then as a set, a unital, nonassociative Ore extension
R[X; σ, δ] of R consists of all formal sums ∑j∈N0

ajX j which are called polynomials, where aj ∈ R
for each j and card{j : aj 6= 0} < ℵ0. Then R[X; σ, δ] is supplied with addition and multiplication
∑j∈N0

ajX j + ∑j∈N0
bjX j = ∑j∈N0

(aj + bj)X j and amXm · bnXn = ∑j∈N0
am · πm

j (bn))X j+m

for every m, n in N0 and aj, bj in R, where πm
j denotes the sum of all (mj) possible compositions

of j copies of σ and m− j copies of δ in arbitrary order, π0
0 = idR, πm

j = 0 for j < 0 or j > m.
Then, for 1R = 1 there corresponds an identity element 1X0 in R[X; σ, δ]; also, X is interpreted as
an element 1X of R[X; σ, δ]. There, two polynomials are supposed to be equal if and only if their
corresponding coefficients are equal. Together with the distributivity of multiplication over addition,
this makes R[X; σ, δ] a unital nonassociative noncommutative ring. Naturally, R is embedded into
R[X; σ, δ] such that bX0 corresponds to b in R.

Recall that if R is a unital nonassociative ring, σ is a unital endomorphism and δ is an additive
map on R satisfying δ(a · b) = σ(a) · δ(b) + δ(a) · σ(b) for each a and b in R, then δ is called
a σ-derivation. In particular, if σ = idR, then δ is a derivation. Notice that if R is a unital
nonassociative ring and δ is a σ-derivation on R, then δ(1) = 0.

For the unital hom-associative ring R with twisting map α, the latter is extended α homo-
geneously to an additive map on R[X; σ, δ] by putting α(∑j∈N0

ajX j) = ∑j∈N0
α(aj)X j, where

aj ∈ R for each j. This is justified by the following.

Proposition 7 ([67]). Suppose that R is a unital hom-associative ring with twisting map α, σ is
a unital endomorphism and δ is a σ-derivation such that both σ and δ commute with α. If α is
extended homogeneously to R[X; σ, δ], then R[X; σ, δ] is a unital hom-associative Ore extension
with twisting map α.

Definition 7. Suppose that M is an additive group supplied with a group homomorphism αM :
M→ M, which is called a twisting map. Take a non-unital, hom-associative ring R with twisting
map αR, multiplication written with juxtaposition. Suppose that there exists an operation · :
M× R→ M, which is called scalar multiplication such that for every r1 and r2 in R, m1 and m2
in M

(m1 + m2) · r1 = m1 · r1 + m2 · r1 (right-distributivity);
m1 · (r1 + r2) = m1 · r1 + m1 · r2 (left-distributivity);
αM(m1) · (r1r2) = (m1 · r1) · αR(r2) (hom-associativity).

Then, M is called a right R-hom-module and denoted by MR. A left R-hom-module R M is defined
similarly. Frequently, it is written briefly as M; if it does not matter whether it is a right or a left
R-hom-module, it is called a R-hom-module. For several right (left) R-hom-modules, it is assumed
that αR is the same twisting map on R.

By a morphism from a right (or left) R-hom-module M to a right (or left correspondingly)
R-hom-module M1 is implied an additive map f : M → M1 such that f ◦ αM = αM1 ◦ f and
f (m · r) = f (m) · r (or f (r ·m) = r · f (m) correspondingly) for each m in M and r in R. If the
morphism f is also bijective, then M and M1 are isomorphic.

Assume that M is a right (or left) R-hom-module, N is an additive subgroup of M and closed
under scalar multiplication and invariant under αM. Then, N is called a R-hom-submodule, where
αN = αM|N . It is denoted by N ≤ M or M ≥ N, and in case N is a proper subgroup of M, by
N < M or M > N.

For a non-void subset S of a right (or left) R-hom-module M, the intersection N of all hom-
submodules of M containing S is called the hom-submodule generated by S. In this case, S is called
a generating set of N. If for the hom-submodule N in M, there exists a finite generating set S, then
N is called finitely generated.

A family G of subsets of a set S satisfies the ascending chain condition if there is no properly
ascending infinite chain S1 ⊂ S2 ⊂ ... of subsets Sj in S belonging to G.
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Proposition 8 ([68]). (Image and preimage under hom-module morphism.) Assume that f : M→
M1 is a morphism of right (or left) R-hom-modules, N ≤ M and N1 ≤ M1. Then f (N) and
f−1(N1) are hom-submodules of M1 and M correspondingly.

Proposition 9. (Intersection of hom-submodules). The intersection of a set of homsubmodules of a
right (or left) R-hom-module M is a hom-submodule.

Proposition 10 ([68]). If M is a right (or left) R-hom-module, then the following conditions
are equivalent:

(NM1) M satisfies the ascending chain condition on its hom-submodules;
(NM2) Each non-void family of hom-submodules of M has a maximal element;
(NM3) Each hom-submodule of M is finitely generated.

Corollary 5 ([68]). Suppose that R is a nonunital hom-associative ring. Then the following
conditions are equivalent:

(NR1) R satisfies the ascending chain condition on its right (or left) hom-ideals;
(NR2) Each non-void family of right (or left) hom-ideals of R has a maximal element;
(NR3) Each right (or left) hom-ideal of R is finitely generated.

Definition 8. A right (or left) R-hom-module is called hom-noetherian if it satisfies the three
equivalent conditions of Proposition 4 on its hom-submodules.

A non-unital hom-associative ring R is called right (or left) hom-noetherian if it satisfies the
three equivalent conditions of Corollary 1 on its right (or left) hom-ideals. If R satisfies the conditions
on both its right and its left hom-ideals, it is called hom-noetherian.

Proposition 11 ([68]). The hom-noetherian conditions are invariant under surjective morphisms
of right (or left) R-hom-modules.

Proposition 12 ([68]). If M is a right (or left) R-hom-module, and N ≤ M, then M is hom-
noetherian if and only if M/N and N are hom-noetherian.

Corollary 6. The finite direct sum of hom-noetherian modules is hom-noetherian.

Proposition 13 ([68]). Assume that R[X; σ, δ] is a unital nonassociative Ore extension of a unital
nonassociative ring R, where σ is a unital endomorphism and δ is a σ-derivation on R. Then, Xk

belongs to the nucleus N(R[X; σ, δ]) of R[X; σ, δ] for each k in N0.

Proposition 14 ([68]). Let R be a unital noetherian hom-associative ring with twisting map α,
a unital endomorphism σ and a σ-derivation δ such that both commute with α. If we extend α
homogeneously onto R[X; σ, δ], then ∑m

j=0 X jR (or ∑m
j=0 RX j) is a hom-noetherian right (or left

correspondingly) R-hom-module for each m in N0.

Theorem 32 ([68]). (Hilbert’s basis theorem for hom-associative Ore extensions.) Suppose that R
is a unital hom-associative ring with twisting map α, a unital endomorphism σ and a σ-derivation δ
such that both commute with α. If we extend α homogeneously onto R[X; σ, δ], and if R is right (or
left) noetherian, then R[X; σ, δ] also is right (or left correspondingly) noetherian.

Corollary 7 ([68]). (Hilbert’s basis theorem for non-associative Ore extensions.) If R is a unital
nonassociative ring, σ is an automorphism and δ is a σ-derivation on R, and if R is right (or left)
noetherian, then R[X; σ, δ] also is right (or left correspondingly) noetherian.

The latter corollary is the particular case of the preceding theorem with the trivial twisting map
α = 0. Examples of nonassociative Ore extensions of hom-associative algebras and modules over
them were provided in [68].
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11. Von Neumann Finiteness for Nonassociative Algebras

Remark 19. If in a unital ring R each one-sided inverse also is two-sided, then R is called von
Neumann finite (or Dedekind finite, or weakly 1-finite, or affine finite, or directly finite, or inverse
symmetric). That is, (ab = 1)↔ (ba = 1) for each a and b in R. The ring R is called reversible if
(ab = 0)↔ (ba = 0) for each a and b in R. Notice that the class of associative reversible rings is
properly contained in the class of associative von Neumann finite rings, since ab = 1 for some a and
b in an associative ring R implies (ba− 1)b = 0, b(ba− 1) = 0, b2a = b, ba = abba = ab = 1.
Particularly, if V is a finite dimensional vector space over a field F, then End(V) is von Neumann
finite, but it is not reversible. Below in this section, von Neumann finiteness and reversibility for
nonassociative unital rings are considered.

Recall that an F-algebra A is called alternative if a2b = a(ab) and ab2 = (ab)b for every a
and b in A. This condition is equivalent to each subalgebra B of A generated by one or two elements
being associative by Theorem 3.1 in [5]. Then, A is flexible if a(ba) = (ab)a for every a and b in A.
Algebra A is called quadratic if it is unital and the elements 1, b, b2 are linearly dependent for each
b in A. Algebra A is called involutive if it is unital and an anti-automorphism exists σ of A such
that σ2 = IA, b + σ(b) ∈ F1 and bσ(b) ∈ F1 for each b in A. Frequently, the notation σ(b) = b̄
is used for the involution σ in A, and the scalars Tr(b) = b + b̄ and N(b) = bb̄ are called the trace
and the norm of an element b in A, correspondingly.

In this section, algebras over fields are considered. Note that to each quadratic form q : V → F
on a vector space V over a field F is associated a symmetric bilinear form (x, y)q = q(x + y)−
q(x)− q(y). By the radical of q, it is implied the subspace V⊥ = {x ∈ V : (x, V)q = 0} of V.
The form q is called non-degenerate if either V⊥ = 0 or dimF(V⊥) = 1 and q(V⊥) = 0. Notice
that the latter case is for charF = 2 only. It is said that a non-zero element v in V is isotropic if
q(v) = 0; it is anisotropic if q(v) 6= 0. Then the form q is called isotropic (or anisotropic) if V
contains (or does not contain correspondingly) an isotropic element. If a subspace U of V is such
that q(U) = 0, then it is called totally isotropic.

Recall, that an algebra A possessing a non-degenerate quadratic form n : A → F such that
n(ab) = n(a)n(b) for each a and b in A is called Hurwitz. It is worth mentioning that the
quadratic form n is uniquely determined by the Hurwitz algebra A structure. Furthermore, each
non-zero algebra morphism between Hurwitz algebras is orthogonal. There exists a zero divisor in
the Hurwitz algebra if and only if its quadratic form n is isotropic. In the latter case, it is said that A
is split. It was found that there exist three isomorphism classes of split Hurwitz algebras, by one in
each dimension 2, 4 and 8. They are embedded into each other. For example, the 4-dimensional split
Hurwitz F-algebra is the 2× 2 matrix algebra over F. Then the Hurwitz algebra A is commutative
if and only if its dimF(A) ≤ 2. It is associative if and only if its dimension over F is not greater
than 4. Each Hurwitz algebra is alternative [69].

For an involutive algebra B over a field F and a non-zero µ in F, Dµ(B) denotes the Cayley–
Dickson algebra obtained from B by the doubling procedure (i.e., smashed product). Recall that
Dµ(B) = B⊕ B as a vector space over F. It is supplied with multiplication such that (a, b)(c, d) =
(ac + µd̄b, da + bc̄) for every a, b, c and d in B. The involution on Dµ(B) is given by (a, b) =
(ā,−b). Then Dµ(B) is flexible if and only if B is flexible [70,71]. Certainly, B has an embedding
into Dµ(B) as B× 0 such that there is an orthogonal decomposition of vector spaces Dµ(B) =
B ⊕ Bl, where l = (0, 1) is the doubling generator. If we begin from the field F with trivial
involution, then an application by induction of the doubling procedure provides flexible involutive
algebras of dimensions 2n as vector spaces over F, where n ≥ 1. The Cayley–Dickson algebras of the
latter type are considered below in this section. In this case, if char(F) 6= 2, then the Cayley–Dickson
algebras of dimension at most eight over F are the Hurwitz algebras over F [72].

Theorem 33 ([73]). If char(F) 6= 2 and A is the Cayley–Dickson algebra of dimension 2n with
isotropic norm, then A has a totally isotropic subspace of dimension n.

Theorem 34 ([74]). (a) Each finite-dimensional alternative algebra is von Neumann finite.
(b) Each reversible alternative algebra is von Neumann finite.
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(c) A Hurwitz algebra A is reversible if and only if either its quadratic form is anisotropic or
dimF A ≤ 2.

Theorem 35 ([74]). (a) Each algebra without zero divisors, that is either flexible or quadratic, is
von Neumann finite.

(b) Let char(F) 6= 2, let A be flexible and quadratic, and let the norm of A be nondegenerate
on every 3-dimensional subalgebra of A. Then A is von Neumann finite and reversible.

(c) Assume that F is algebraically closed, char(F) 6= 2, and the algebra A is flexible and
quadratic. Then A is reversible if and only if either of the following conditions holds: (i) A is
commutative; (ii) A = F1⊕V, where V is an anti-commutative ideal in A, and the linear map
Lu : V → V is nilpotent for each u in V, where Luv = uv for every u and v in A.

Theorem 36 ([74]). Assume that char(F) 6= 2. Then
(a) Each Cayley–Dickson algebra with anisotropic norm is von Neumann finite and reversible.
(b) A Cayley–Dickson algebra with isotropic norm is reversible if and only if its dimension is

at most two.

Theorem 37 ([74]). Let A be an involutive algebra, and let char(F) 6= 2. Then
(a) the algebra A is von Neumann finite if and only if every 3-dimensional subalgebra of A is

either commutative or associative;
(b) the algebra A is reversible if and only if every 3-dimensional subalgebra of A is commutative.

12. Nonassociative Algebras, Rings and Modules over Them Related with Harmonic
Analysis on Nonlocally Compact Groups

Remark 20. Algebras related with harmonic analysis on locally compact groups are rather well
investigated [75–80]. They arise from convolutions of functions and unitary representations of
locally compact groups relative to Haar measures, which are either left or right invariant on groups.
For locally compact groups, such algebras are associative. Recall that by the A. Weil theorem, if a
topological group has a non-trivial Borelian measure quasi-invariant relative to left or right shifts
of the entire group, then it is either locally compact or contains a dense locally compact subgroup.
Furthermore, the compactification of a topological group may have no group structure. Therefore, the
theory of non locally compact groups cannot be reduced to that of compact or locally compact groups.
On the other hand, measures on nonlocally compact groups quasi-invariant relative to proper dense
subgroups were constructed in [81–89].

For nonlocally compact groups, algebras related to convolutions of functions or operators
relative to quasi-invariant measures are nonassociative. They appear to be substantially different
from that of locally compact groups. Families were considered of nonlocally compact completely
regular groups {Gα : α ∈ Λ} with embeddings θ

β
α : Gβ → Gα and with measures µα on Gα

quasi-invariant relative to Gβ for each α < β in a directed set Λ. Definitions and notation are
provided in detail in [90,91]. Ideals in these algebras were studied in [92]. Operator valued functions
for nonlocally compact groups and their normed spaces of different types were investigated in [93].
Norms of integral operators were estimated. They were used for studies of convolutions of functions
having operator values and values in Banach spaces. Meta-centralizers of nonlocally compact group
algebras were investigated in [91]. Representations of meta-centralizers with the help of families
of generalized measures were studied. Then, with the help of them isomorphisms of group algebras
were scrutinized.

Algebras of inverse homomorphism nonlocally compact group fine measured spectra were
considered. Nonassociative noncommutative Hilbert algebras on spectra of nonlocally compact
groups were investigated in [94]. Their weak semi-simplicity was studied. Regular maximal left
ideals were scrutinized. An existence of fine measured spectra for nonlocally compact groups was
scrutinized, and examples were provided. In [15], nonassociative ringoids related to cones in
nonassociative algebras of nonlocally compact groups were investigated.
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Definition 9 (Section 4 in [91]). Let the algebra E := L∞(L1
Gβ
(Gα, µα, F) : α < β ∈ Λ) be

supplied with the multiplication f ?̃u = w such that
(1) wα(g) = ( fβ?̃uα)(g) =

∫
Gβ

fβ(h)uα(θ
β
α (h)g)µβ(dh) for every f , u ∈ E and g ∈

G = ∏α∈Λ Gα, where F = R or F = C, β = φ(α), α ∈ Λ.
If a bounded linear transformation T : E → E satisfies Conditions (2, 3),
(2) T f = (Tα fα : α ∈ Λ), Tα : L1

Gβ
(Gα, µα, F)→ L1

Gβ
(Gα, µα, F) for each α ∈ Λ,

(3) T( f ?̃u) = f ?̃(Tu)
for each f , u ∈ E , then T is called a left meta-centralizer.

Theorem 38 (Section 15 in [90]). Topological group rings L∞(L1
Gβ
(Gα, µα) : α < β ∈ Λ) and

L∞(L1
Gβ
(Gα, να) : α < β ∈ Λ) are isomorphic if and only if measures µα and να are equivalent for

each α ∈ Λ.

Theorem 39 (Section 16 in [90]). Let G = ∏α∈Λ Gα and H = ∏α∈Λ Hα be two topological
groups supplied with box topologies τb

G and τb
H , respectively, where topological groups Gα and

Hα for each α ∈ Λ satisfy Conditions 1(1− 4) in [90], measures µα on Gα and να on Hα satisfy
Conditions 2(1− 4) in [90], and a directed set Λ has not a minimal element.

1. If topological groups Gα and Hα for each α ∈ Λ are topologically isomorphic, then
equivalent measures µα and να exist so that topological algebras L∞(L1

Gβ
(Gα, µα) : α < β ∈ Λ)

and L∞(L1
Hβ

(Hα, να) : α < β ∈ Λ) are isomorphic and their isomorphism T̂ satisfies properties
(1− 3) below.

2. If a bijective surjective continuous mapping T̂ of L∞(L1
Gβ
(Gα) : α < β ∈ Λ) onto

L∞(L1
Hβ

(Hα) : α < β ∈ Λ) exists and T̂−1 is continuous such that

(1) a mapping T̂ = (T̂α fα : α ∈ Λ) is linear so that T̂α : L1
Gβ
(Gα) → L1

Hβ
(Hα) for every

α ∈ Λ with β = φ(α);
(2) T̂ is positive, that is fα ≥ 0 in L1

Gβ
(Gα) if and only if T̂α fα ≥ 0 in L1

Hβ
(Hα);

(3) T̂ is a ring homomorphism, that is T̂( f ?̃u) = ( f ?̃T̂u) for each f , u ∈ L∞(L1
Gβ
(Gα) : α <

β ∈ Λ),
then topological groups Gα and Hα are topologically isomorphic, and measures µα and να are

equivalent for each α ∈ Λ.

Theorem 40 (Section 10 in [91]). Let S be a bounded F-linear mapping of E (see Subsections 1–3
in [91] and Definition 1 above) into itself such that S f = (Sα fα : α ∈ Λ) with Sα : L1

Gβ
(Gα) →

L1
Gβ
(Gα) for each α ∈ Λ with β = φ(α). Then, the following statements (i) and (ii) are equivalent:
(i) an operator S has the form
(1) S = pÛa for some marked elements a ∈ G := ∏α∈Λ Gα and p = {pα : |pα| = 1 ∀α ∈

Λ} ∈ FΛ, that is
(2) Sα fα(x) = pαÛaβ

fα(x) for any α ∈ Λ with β = φ(α) and each x ∈ Gα, where

(3) Ûgβ
fα(x) = fα(θ

β
α (gβ)x) for each gβ ∈ Gβ and x ∈ Gα;

(ii) (4) S is a left meta-centralizer and
(5) ‖Sα fα‖ = ‖ fα‖ for every fα ∈ L1

Gβ
(Gα) and α ∈ Λ with β = φ(α).

Definition 10 (Section 2.25 in [94]). Let A be a nonassociative topological algebra over a field
F and let A be a complete relative to its uniformity. We say that A is left approximate associator
resolvable if there exists a dense subalgebra E in A over the same field F so that for each element c in
E and each element a in A, there exists a dense A family Aa,c for which a solution q in A satisfying
the equality a(bc) = (qb)c exists for each b in Aa,c, where q may generally depend on a, b, and c
in A.
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Theorem 41 (Section 2.26 in [94]). Suppose that A is a nonassociative topological algebra over a
field F and that A is complete relative to its uniformity. If A is left approximate associator resolvable,
then the left adverse of an element g of A exists if and only if it exists modulo every closed regular
left ideal in A.

13. Nonassociative Algebras with Conjugation

Remark 21. Take a field k and its finite Galois field extension K with Galois group G = Gal(K/k).
There exists the induced norm map n : K → k such that n(b) = ∏σ∈G σ(b) for each b in K. The
well-known Hilbert’s theorem 90 in [95] asserts that if G is cyclic, then an element b in K satisfies
n(b) = 1 if and only if for each automorphism σ which generates G, there exists a nonzero element
c in K such that σ(c)b = c. It appears that Hilbert has proved this for a number field K and with
G of prime order. In general it was proved by Speiser (see [96] and references therein). In terms of
cohomology, it can be reformulated that H1(G, K×) is trivial for any finite Galois field extension K
of k (see, for example, Chapter VI in [97]).

It was observed later on that Hilbert 90 in degree two is valid for a large class of algebras, which
are not necessarily commutative, distributive, or they may be nonassociative. In this section a unital
k-algebra A is considered such that A is a left k-vector space with multiplication; k is contained
in the center of A, and naturally, the additive and multiplicative structure of k is considered the
restriction to k of the additive and multiplicative structure on A; a(bc) = (ab)c for a, b and c in A,
whenever at least one of a, b or c belongs to the field k.

It is said that the algebra A is (weak) right distributive if (a + b)c = ac + bc for each a, b and
c in A (with a in k correspondingly); (weak) left distributivity is defined symmetrically. Then it is
said that A is (weak) distributive if it is both (weak) left and (weak) right distributive. The algebra
A is called left (or right) alternative if a(ab) = a2b (or (ab)b = ab2 correspondingly) for each a
and b in A. Then, A is alternative if it is left and right alternative. Consider a self-inverse k-linear
mapping − : A→ A such that its restriction to k is the identity map. It is called a conjugation. If
the conjugation is a ring antiautomorphism of A, then it is called an involution. Thus, the latter
means that ab = b̄ā for each a and b in A. Then, mappings N : A → A and T : A → A such
that N(a) = āa and T(a) = a + ā for each a in A are called the norm and trace on A. It is said
that an element b in A is imaginary if T(b) = 0. The norm is anisotropic if N(b) 6= 0 for each
nonzero b in A. It is multiplicative if N(ab) = N(a)N(b) for each a and b in A. It is symmetric if
N(b̄) = N(b) for each b in A.

Examples of such algebras were provided in [98] with the help of doubling procedures of
Cayley–Dickson and Conway–Smith. The Cayley–Dickson procedure was considered in the section
above. The Conway–Smith procedure starts from a division algebra B over the field k: for each
nonzero b in B, there exists a unique c in B such that bc = 1 and cb = 1, which is also denoted by
c = b−1. The Conway–Smith double Sd(B) of B with a fixed d in k− {0} is the k-vector space
B× B with the same conjugation as in the Cayley–Dickson double. Multiplication on Sd(B) is

(a, b)(c, d) = (ac + dbd̄, b̄c̄ + b̄āb−1d̄) if b 6= 0;
(a, b)(c, d) = (ac, ād), if b = 0, for every a, b, c and d in A. Therefore, (1, 0) is the unit

element in Sd(B) by multiplication, and (0, 1) is a nonzero imaginary element.

Theorem 42 ([98]). Let A be a weak distributive left alternative k-algebra with a conjugation
such that the trace is k-valued and the norm is anisotropic and k-valued. Let A posses a nonzero
imaginary element. Then an element b in A satisfies N(b) = 1 if and only if there is a nonzero c in
A satisfying c̄b = c.

Proposition 15 ([98]). Let A be a weak distributive algebra over k and let A possess a nonzero
imaginary element. If an element b in A satisfies N(b) = 1, then there is a nonzero element c in A
such that c̄b = c.

Proposition 16 ([98]). If an algebra A over a field k is weak right distributive and the trace and
norm on A are k-valued, then A is left alternative if and only if ā(ab) = n(a)b for each a and b
in A.
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14. Representations and Closures of Nonassociative Algebras

Remark 22. Frequently, there is a situation such that an algebra A is a subalgebra of a finite
dimensional algebra B over a (possibly larger) base field. In this case, it is said that the algebra A is
(finite dimensional) representable. For associative algebras as B, it is usually considered a matrix
algebra. Note that matrix algebras are usually not suitable in the nonassociative theory. Indeed,
the matrix algebra over a field is associative, but the matrices over an alternative algebra are not
necessarily alternative. Nevertheless, representable algebras compose a broader class than finite
dimensional algebras. For example, any linear Lie or Jordan algebras are representable. If the algebra
A is represented in the finite dimensional algebra B, then its closure in B under the Zariski topology
is often studied such that it is an algebra in the same variety. The codimension sequence cn(A) for
the Zariski closure in the variety of Lie algebras was estimated in [99,100]. It was studied that for
Jordan PI-algebras, the codimensions can grow superexponentially [101]. It was illustrated by the
Grassmann envelope of the Kantor double.

Recall that by an algebraic structure, it is implied a collection of sets A1, A2, . . . ,Al supplied
with a signature. The latter means that a set W = {wm,j, m ∈ N, 0 ≤ j ≤ tm} exists of operators
wm,j : Aj1 × ...× Ajm → Ajm+1 , where a sequence 1 ≤ j1 ≤ l, . . . ,1 ≤ jm+1 ≤ l depends on
the operator wm,j, and a set Id of universal relations is provided. Each relation can be written as
a formula ξ(x) = η(x), where ξ and η are terms in the operations wm,j, where x denotes a set
of indeterminates. In particular, there may be l = 2, A1 = B, where B satisfies the operations
and universal relations of a commutative associative algebra. Then, A2 can be taken as having
multiplication distributing over addition and satisfying the axioms of a B-algebra. There may be
more operations. In this section there are taken A1 = F, A2 = A, where F is a commutative
associative unital ring, and where A is a F-module. There are 0-ary products 0F := w0,0 and
1F := w0,1 of F, one 0-ary product 0A := w0,0 of A, a 1-ary product w1,0 : A→ A being negation
b 7→ −b for each b ∈ A, and four binary operators corresponding to the module structure:

( f1, f2) 7→ f1 + f2 for addition in F;
( f1, f2) 7→ f1 f2 for multiplication in F;
(b1, b2) 7→ b1 + b2 for addition in A;
( f , b) 7→ f b for scalar multiplication from F× A into A

for every f1 and f2 in F, b1 and b2 in A. The latter operators occur together with the universal
relations from algebra. It is convenient to denote by W̄ the set of operators obtained from W by
deleting the specified above operators.

Then, a degree degi(wm,j) is provided to each operator wm,j(x1, ..., xm) ∈ W̄ such that
wm.j(b1, ..., f bi, ..., bm) = f degi(wm,j)(b1, ..., bi, ..., bm) for each 1 ≤ i ≤ m, b1,...,bm in A and
f ∈ F. Then, by a W-homomorphism, it is implied a mapping φ = (φ1, φ2) with φ1 : F → F′

and φ2 : A→ A′ such that φ(wm,j(b1, ..., bm)) = wm,j(φ(b1), ..., φ(bm)). This provides a variety
VW of W-algebras considered with their W-homomorphisms. Henceforth, it is assumed that φ=1F.
Each homomorphism φ : A → A′ induces a congruence Φ such that (b1, b2) ∈ Φ if and only
if φ(b1) = φ(b2). In the considered case, A as an additive group is Abelian. Therefore, each
congruence Φ on A induces an ideal JΦ such that b ∈ JΦ if and only if (b, 0) ∈ Φ. On the other
side, an ideal J defines a congruence ΦJ such that (a, b) ∈ ΦJ if and only if a − b ∈ J. This
implies that a quotient algebras modulo an ideal exists. For the given signature W, the variety VW
is considered. Then, A is called an (W; Id; F)-algebra. It is said that A is generated by a subset S if
A does not posses the proper (W; Id; F)-subalgebra containing S. Then A is called affine, if W is
finite and A is generated by a finite subset.

Then, each formal letter xi is defined to be a W-formula. If φ1, . . . ,φm are W-formulas
and wm,j ∈ W, then φ(x1, ..., xk) = wm,j(φ1, ..., φm) also is a W-formula. Thus, W-formulas are
defined inductively. Particularly, a formula with each operator wm,j taken from W̄ provides a so-
called word formula. Notice that a free (W; F)-algebra denoted by F{x; W} exists. Its elements are
the (W; Id; F)-formulas. There, each xi is considered a formal element, which is called indeterminate.
Thus, the free W-algebra F{x1, ..., xn; W} in the indeterminates x1, . . . ,xn exists by putting
x = {x1, ..., xn}. That is, F{x; W} is spanned by the word formulas.

Furthermore, to each extra universal relation, a (W; Id; F)-formula can be posed. The lat-
ter is called a (W; Id; F)-polynomial identity, or briefly W-PI. This means that the W-PI of the
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(W; Id; F)-algebra A is the (W; F)-polynomial f ∈ F{x; W} with coefficients in F such that f
vanishes identically for any substitution in A. Generally, congruences and polynomial identi-
ties are considered in the universal algebra theory such that ( f , g) ∈ F{x; W} × F{x; W} with
f (b) = g(b) for each substitutions into A. In the considered case, the algebra A with regard to
addition (A,+) is the Abelian group; hence, ( f , g) can be replaced by f − g. By id(A), it is denoted
the set of PIs of the algebra A.

The TW-congruence of a family of pairs of polynomials {( f j, gj) : j ∈ P}, P ⊂ N, in a
(W; Id; F)-algebra A is the (W; Id; F)-ideal arising from a congruence supplied by all substitutions
of the pairs {( f j, gj) : j ∈ P} in A. The TW-ideal of a family of polynomials { f j : j ∈ P} means the
(W; Id; F)-ideal corresponding to the TW-congruence of the pairs {( f j, 0) : j ∈ P}. Vice versa, each
element of the TW-ideal J is a PI of the quotient (W; Id; F)-algebra F{x; W; Id}/J. Note that the
(W; Id; F)-algebra F{x; W; Id}/J is relatively free: for each (W; Id; F)-algebra A with id(A) ⊇ J
and each b1, b2,...,bm in A, there exists a natural homomorphism F{x; W; Id}/J → A mapping
xi 7→ ai for each i = 1, 2, ....

If for a (W; Id; F)-algebra A an embedding exists into a finite dimensional (W; Id; K)-algebra
AK over a (commutative associative) field K such that AK is a faithful F-algebra, then A is called rep-
resentable.

Assume that K is an algebraically closed field such that K ⊇ F and there exists a representation
ρ : A → B of a (W; Id; F)-algebra A into a finite dimensional (W; Id; K)-algebra B. Then, the
Zariski closure clZ(ρ(A)) is the closure of ρ(A) relative to the Zariski topology of B over K. Recall
that a W-formula φ(x1, ..., xn) is (W; Id; F)-multilinear if φ is F-linear by xj for each 1 ≤ j ≤ n.
If each operator in W̄ is (W; Id; F)-multilinear, then the variety of (W; Id; F)-algebras is called
(W; Id; F)-multilinear. Below in this section, AK denotes the (W; K)-subalgebra of B generated by
A, and the variety VW is assumed to be multilinear. For more details and examples, see [102,103].

Assume that S = {s1, ..., sm} ⊆ A, and assume that for each (W, F)-polynomial f (x1, ..., xn) ∈
F{x}, f is a PI of A if and only if f (sj1 , ..., sjn) = 0 for every 1 ≤ ji ≤ m and 1 ≤ i ≤ n. Then
S is called is a test set of A. Then the minimal number m in a family of test sets of A is called the
PI-generic rank of A.

If each operator is (W; Id; F)-multilinear and each universal relation (φ, ψ) is homogeneous
(that is, degφ = degψ), then a variety of (W; Id; F)-algebras is said to be (W; Id; F)-multilinear.
By F{x1, ..., xn; W; Id}, the relatively free (W, Id)-algebra F{x1, ..., xn; W}/Id is denoted. If the
(W; Id; F)-multilinear variety of (W; Id; F)-algebras is N-graded, then it induces a N-grading of
F{x1, ..., xn; W; Id} as a direct sum of vector spaces.

Let µ(n) denote the dimension of Qn over F, where Qn is the subspace of degree n elements of
F{x1, ..., xn; W; Id}. The considered variety is locally finite if each µ(n) is finite. It is assumed that
the variety VW is multilinear and locally finite. Then, the codimensions of the (W; Id; F)-algebra A
is defined as cn(A) := dimF(Qn/(id(A) ∩Qn)).

For a finite dimensional affine (W; K)-algebra B presented in the form B = ∑r
j=1 Kbj, the

decomposition of operators exists:
wm,j(bl1 , ..., blm) = ∑r

l=1 γl1,...,lm ,lbl ,
where γl1,...,lm ,l ∈ K is a so-called structure constant of the algebra B for every l1,...,lm, l.

Proposition 17 ([102]). If the variety VW is multilinear, then a test set S for a Zariski closed
algebra A can be chosen as the union of the finite component with finitely many elements from each
infinite component.

Theorem 43 ([102]). Each Zariski closed (W; Id; F)-algebra A over an arbitrary field F has finite
PI-generic rank, which is bounded by the size of the finite component of A plus the number of infinite
components of A.

Theorem 44 ([102]). Assume that A is a representable (W; Id; F)-algebra over a field F, where
B ⊇ A is a finite dimensional algebra over an extension field K of F. Assume also that the PI-generic
rank of A is m ∈ N, r = dimKB, and the number of structure constants of B is q ∈ N. Then the
codimension of A is estimated by cn(A) ≤ r(2n)mr+q−1mn for each n > 1.



Mathematics 2023, 11, 1714 22 of 33

Other results on codimension theory for nonassociative algebras are contained in [104] and
references therein. Braided categories in relation with nonassociative algebras are considered in [105]
and references therein. A Gröbner–Shirshov basis for the universal enveloping right-symmetric
algebra of a Lie algebra was investigated in [106]. There are specific features in comparison with
associative rings and tri-algebras [107,108].

15. Nonassociative Algebras and Modules over Them with Metagroup Relations

Remark 23. Generalized Cayley–Dickson algebras play very important roles in mathematics and
quantum field theory [5,70,109–111]. These algebras are nonassociative such that a multiplicative
law of their canonical generators provides nonassociative metagroups instead of a group [112].
Nonassociative algebras and modules over them with metagroup relations were studied. Their
structure and cohomologies were investigated. Definitions and notations are given of nonassociative
metagroup algebras, modules over nonassociative algebras with metagroup relations, graded over
metagroups algebras and modules, and their homological complexes in [113–117]. Smashed and
twisted wreath products of metagroups, constructions of metagroups and their examples are provided
in [113–118]. Nonassociative smashed tensor products and splitting extensions of modules and
algebras with metagroup relations were scrutinized in [116]. Homotopisms and homologisms of
homological complexes were studied over nonassociative algebras with metagroup relations in [114].
Torsions of homological complexes and modules were investigated over nonassociative algebras with
metagroup relations in [115]. Functors for categories with metagroup relations and satellites of
functors were investigated in [117]. Moreover, an exactness of satellite sequences and diagrams was
studied.

Definition 11. Let G be a set with a single-valued binary operation (multiplication) G2 3 (a, b) 7→
ab ∈ G defined on G satisfying the conditions:

(1) For each a and b in G, there is a unique x ∈ G with ax = b.
(2) A unique y ∈ G exists, satisfying ya = b, which are denoted by
x = a \ b = Divl(a, b) and y = b/a = Divr(a, b) correspondingly.
(3) There exists a neutral (i.e., unit) element eG = e ∈ G:
eg = ge = g for each g ∈ G.

The set of all elements h ∈ G commuting and associating with G.
(4) Com(G) := {a ∈ G : ∀b ∈ G, ab = ba}.
(5) Nl(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ab)c = a(bc)}.
(6) Nm(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (ba)c = b(ac)}.
(7) Nr(G) := {a ∈ G : ∀b ∈ G, ∀c ∈ G, (bc)a = b(ca)}.
(8) N(G) := Nl(G) ∩ Nm(G) ∩ Nr(G);
C(G) := Com(G) ∩ N(G) is called the center C(G) of G.
We call G a metagroup if a set G possesses a single-valued binary operation and satisfies

conditions (1)–(3) and
(9) (ab)c = t3(a, b, c)a(bc)

for each a, b and c in G, where t3(a, b, c) ∈ Ψ, Ψ ⊂ C(G),
where t3 shortens a notation t3,G, where Ψ denotes a (proper or improper) subgroup of C(G).

Then, G will be called a central metagroup if in addition to (9), it satisfies the condition
(10) ab = t2(a, b)ba

for each a and b in G, where t2(a, b) ∈ Ψ.
Particularly, Invl(a) = Divl(a, e) is a left inversion, and Invr(a) = Divr(a, e) is a right

inversion.
In view of the nonassociativity of G in general, a product of several elements of G is specified as

usual by opening "(" and closing ")" parentheses. For elements a1,...,an in G, we shall denote shortly
by {a1, ..., an}q(n) the product, where a vector q(n) indicates an order of pairwise multiplications of
elements in the row a1, ..., an in braces in the following manner. Enumerate positions: before a1 by 1,
between a1 and a2 by 2,..., by n between an−1 and an, by n + 1 after an. Then, put qj(n) = (k, m)
if there are k opening "(" and m closing ")" parentheses in the ordered product at the j-th position
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of the type )...)(...(, where k and m are nonnegative integers, q(n) = (q1(n), ...., qn+1(n)) with
q1(n) = (k, 0) and qn+1(n) = (0, m).

Traditionally, Sn denotes the symmetric group of the set {1, 2, ..., n}. Henceforth, maps and
functions on metagroups are supposed to be single valued if something else is not specified.

Let ψ : G → G be a bijective surjective map satisfying the following condition: ψ(ab) =
ψ(a)ψ(b) for each a and b in G. Then ψ is called an automorphism of the metagroup G.

Theorem 45 (Section 6 in [113]). Let A be a nonassociative metagroup algebra over a commutative
associative unital ring T . Then, an algebra B over T exists such that B contains A and each T -
homogeneous derivation d : A→ A is the restriction of an inner derivation of B.

Theorem 46 (Section 7 in [113]). Suppose that A is a nonassociative metagroup algebra of finite
order over a commutative associative unital ring T , and M is a finitely generated two-sided A-
module. Then, M is semisimple if and only if its cohomology group is null Hn(A, M) = 0 for each
natural number n ≥ 1.

Theorem 47 (Section 1 in [119]). Suppose that A = T [G] is a nontrivial nonassociative meta-
group algebra over a commutative associative unital ring T such that Ψ1 ⊆ (G1) ∩ T e, where
(G1) ∪ T e ⊂ A. Then H1

T (A, M) = 0 for each two-sided A-module M if and only if A is a
separable T -algebra.

Theorem 48 (Section 10 in [116]). Assume that B and D are A-algebras, where A = T [G] is a
metagroup algebra, T is an associative commutative unital ring. Assume also that D is a subalgebra
of B. Then the following conditions are equivalent:

(i) B = D⊕Y, where Y is a (D, D)-bisubmodule in B.
(ii) For each A-algebra C and each (C, D)-bimodule X, a homomorphism νX : X → (XB)D

is a splitting injective A-exact homomorphism of (C, D)-bimodules.

Theorem 49 (Section 6 in [115]). Assume that C and 1C are G-graded B-complexes of G-graded
B-bimodules and G-graded left B-modules, respectively, and that B(C) and B(1C) are projec-
tive. Then the canonical homomorphism ĥ(C, 1C) : H(C)⊗B H(1C) → H(C⊗B

1C) has a
G-epigeneric retraction.

Theorem 50 (Section 3 in [117]). Assume that there exists an exact sequence
i1 M0 → i1 M−−−−−−−→i

i1
f

i M−−−−−−−→i2
i f

i2 M→ i2 M0

in the category s,τ
µ M̌ with s ∈ {eg, e}. If T is an additive covariant (or contravariant) half-exact

functor, then there exists an exact sequence
...→ Sn−1T(i2 M)−−−−−−−−→i1

i2
pn

SnT(i1 M)−−−−−−−−−−−→
SnT(i

i1
f)

SnT(i M)

→ SnT(i2 M)→ Sn+1T(i1 M)→ ..., (or
...→ Sn−1T(i1 M)−−−−−−−−→i1

i2
pn

SnT(i2 M)−−−−−−−−−−−→
SnT(i2

i f)
SnT(i M)

→ SnT(i1 M)→ Sn+1T(i2 M)→ ... correspondingly).

16. Near to Associative Nonassociative Algebras and Modules over Them

Remark 24. For a nondegenerate alternative algebra A, regular in the Neumann sense and with
a semigroup identity, necessary and sufficient conditions were studied for A to be a ring with a
single-valued addition [120]. There were studied generalizations of alternative algebras, such as
hom-alternative algebras and hom-prealternative bialgebras (see [121,122] and references therein).
Radicals of algebras close to associative were studied in [123]. For Zinbiel and q-Zinbiel algebras,
identities and varieties were studied in [124] and references therein.

One of the important classes of near to associative nonassociative algebras compose Cayley–
Dickson algebras, which were first investigated by Dickson [70]. As a particular case, they include
Cayley algebras. Generalized Cayley–Dickson algebras were studied in [125]. In particular, relations
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of Cayley–Dickson algebras with loops and appearing in them identities were studied in [126].
Relations with analytic geometry over them were also outlined there. Then colour algebras were
studied with the help of Cayley-Dickson algebras in [127]. Algebras over the Steenrod algebra were
investigated in [128].

For alternative algebras the Peirce decomposition plays an important role [5]. For alternative
and Jordan algebras, their derivations also were investigated. Particularly, octonion orthocomple-
mantable modules were investigated in [129].

Theorem 51 (Artin, Section 3.1 in [5]). If an algebra A is alternative, then the subalgebra
generated by any two elements of A is associative.

Theorem 52 (Zorn, Section 3.7 in [5]). If A is an alternative finite-dimensional algebra, then its
radical is the set S of all properly nilpotent elements of A.

Theorem 53 (Section 3.10 in [5]). If A is a nontrivial finite-dimensional semisimple alternative
algebra, then A has a unit element.

Theorem 54 ([5,130]). If an algebra A is semi-simple alternative finite dimensional over a field of
characteristic zero, then each derivation of A is inner.

Theorem 55 ([131]). If an algebra B is semi-simple Jordan finite dimensional over a field of
characteristic zero, then each derivation of B is inner.

Moreover, explicit forms of derivations were provided there for these algebras.

Remark 25. It is worthwhile to compare this with derivations of associative algebras. For a unital
separable C∗-algebra A over the complex field C each derivation is inner if and only if A is a
direct sum of C∗-algebras which are either homogeneous of finite degree or simple [132]. For
non-separable C∗-algebras, conditions were studied for which non-inner derivations exist [132].
Automorphisms and derivations of nonassociative analogs of infinite dimensional C∗-algebras were
investigated in [112]. There were found specific features of the nonassociative case in comparison
with the associative case of the C∗-algebras. They were studied with the help of infinite dimensional
Cayley–Dickson algebras over R and metagroups. For infinite dimensional Cayley–Dickson algebras,
their completions and homomorphisms were investigated in [133]. They were studied over Banach
associative commutative unital rings, particularly, also over fields.

The Cayley–Dickson algebras were useful for the development of noncommutative and nonas-
sociative mathematical analysis over them [134]. The (super)differentiability of functions defined
on domains of the real Cayley–Dickson algebra was investigated. A noncommutative version
of the Cauchy–Riemann conditions was studied. The noncommutative analogue of the Cauchy
integral was scrutinized. Criteria for functions of Cayley–Dickson variables to be analytic were
investigated. The Cayley–Dickson algebra analogues of the Cauchy, Hurewicz, Mittag–Löffler,
Rouche, and Weierstrass theorems and the argument principle were proven. This was applied to the
study of zeros of polynomials of Cayley–Dickson variables. Certainly, there, specific features appear.
There exist polynomials Pn(z) of degree n ≥ 2 of the Cayley–Dickson variable z ∈ Ar such that
V = {z : Pn(z) = 0} may contain connected components Vj, which are manifolds of dimension
greater than zero if r ≥ 3, where Ar denotes the standard Cayley–Dickson algebra over the real field
R of dimension 2r as the vector space over R. Examples of analytic and special functions including
the beta and gamma functions of Cayley–Dickson variables were studied. Noncommutative nonasso-
ciative algebraic analysis over Cayley–Dickson algebras is based on noncommutative nonassociative
word algebras over Cayley–Dickson algebras [135].

Moreover, functions of several Cayley–Dickson variables were investigated. Integral representa-
tion theorems for them were proven. With the help of these theorems, solutions of ¯partial-equations
were investigated. Integral formulas of the Martinelli–Bochner, Leray, and Koppelman type used
in complex analysis were scrutinized in a new generalized form for functions of Cayley–Dickson
variables [136]. Then, the specific class of pseudoconformal functions of octonion variables was
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studied. Their normal families were investigated. For their family to be normal, four criteria were
proven [137].

A new method of studies of Diophantine equations with the help of Cayley–Dickson algebras
was presented in [138]. It was based on investigations of special meromorphic functions of Cayley–
Dickson variables. Then new classes of quasi-conformal and quasi-meromorphic mappings were
studied in [139]. Residues and the argument principle for quasi-meromorphic mappings were
investigated. It was proven that the family of all quasi-conformal diffeomorphisms of a domain is a
topological group G relative to composition of mappings. Particular conditions on them were studied,
for which G is a finite-dimensional Lie group over R. Relations between integral transformations of
functions of octonion variables and quasi-conformal functions were scrutinized. It also included
studies of noncommutative analogs of the Mellin transformations. Applications were outlined to
solutions of problems of complex analysis and number theory in [139].

Recall that loop algebras and Kac–Moody algebras over the complex field C became already
classical (see, for example, [140] and references therein). They are related to meromorphic functions
in an open domain U with one singular marked point z0 ∈ U in C. Their generalizations, such as
affine and wrap quasi-algebras over Cayley–Dickson algebras, were investigated in [141]. For this
purpose, residue operators of functions of Cayley–Dickson variables were studied. They were utilized
for a construction of such quasi-algebras. Their structure was scrutinized. It is worth mentioning
that meromorphic functions of the Cayley–Dickson variable may have singularities in a closed subset
W of codimension not less than 2 such that W may be of dimension greater than zero. This implies
that winding around W may exist in any plane containing R. This means that in such a case,
winding surfaces around W appear such that the loop interpretation is already lost [142]. Therefore,
analogs of loop algebras over the Cayley–Dickson algebras were called wrap quasi-algebras.

Operator theory of bounded and unbounded operators in Hilbert spaces over the octonion
algebra (i.e., Hilbert octonion bimodules) was investigated (see [143–147] and references therein).
In them, theorems were proven on spectral representations of projection-valued graded measures
of normal quasilinear operators, which can be unbounded. Appearing there, graded projection-
valued measures in the general case may be noncommutative and nonassociative. Furthermore,
nonassociative analogs of C∗-algebras were scrutinized in [148].

Theorem 56. (Wedderburn principal theorem for alternative algebras 3.18 in [5]). If A is a finite-
dimensional alternative algebra over a field F with radical J such that the quotient algebra A/J is
separable, then A is the direct sum A = H ⊕ S, where S is a subalgebra of A isomorphic with A/J.

Remark 26. Alternative bimodules. Assume that A is an alternative algebra over a field F, and
M = F M is a vector space over F such that there exist two F-bilinear compositions w2,3 : A×M→
M and w2,4 : A×M → M with a shortened notation w2,3(a, x) = ax and w2,4(a, x) = xa for
each a ∈ A, x ∈ M, satisfying

(a, a, x) = (x, a, a) = 0 for each a ∈ A, x ∈ M, and
(a, x, b) = −(x, a, b), (b, a, x) = −(b, x, a) for every a and b in A, x ∈ M, where (a, b, c) =

(ab)c − a(bc) denotes the associator with one argument in M and two arguments in A. Then
M = A MA is called an alternative A-bimodule (or bimodule over A).

Then, the vector space direct sum B = A⊕M can be supplied with an F-algebra structure.
For example, there exists multiplication on B such that (a + x)(b + y) = ab + (xb + ay) for every
a and b in A, x and y in M. In this case, B is called the split null extension or semidirect sum of A
and M. This implies that the A-bimodule M is alternative if and only if B is the alternative algebra.
Notice that M is an ideal of B and M2 = 0, if M is the alternative A-bimodule [5].

For the alternative algebra A over F and its alternative A-bimodule M, there exist the F-linear
operators Sb and Db on M such that Sbx = bx and Dbx = xb for each x ∈ M and b ∈ A.
Therefore, S2

b = Sb2 , D2
b = Db2 , [Da, Sb] = −Sa ◦ Sb + Sab and Dba − Da ◦ Db = −[Db, Sa] for

every a and b in A since A and M are alternative, where [Da, Sb] = Da ◦ Sb − Sb ◦ Da, Da ◦ Sb
denotes the composition of F-linear operators such that (Da ◦ Sb)x = Da(Sbx) for each x ∈ M.
Thus, there exists the pair of F-linear mappings S : A 3 b 7→ Sb and D : A 3 b 7→ Db from A
into L(M, M), where L(M, M) denotes the associative F-algebra of all F-linear mappings from M
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into M. Since S and D are not homomorphisms of algebras for the nonassociative A, then (S, D) is
not, strictly speaking, a (bi)representation. Though, by analogy with the associative case in [5,71],
such a terminology is used implying the complicated equations provided above, it would be better to
say a pseudo-representation instead of a representation in such cases. For comparison, if G is an
associative F-algebra and a vector space N over F is a G-bimodule N = G NG, then Sab = Sa ◦ Sb
and Dba = Da ◦ Db for each a and b in G since N satisfies (ab)x = a(bx) and x(ba) = (xb)a
for each x ∈ N, b and a in G. Therefore, S : G → L(N, N) and D : Gop → L(N, N) are
homomorphisms, where Gop denotes the opposite algebra of G. That is, for (G, N), the pair (S, D)
is the birepresentation [149,150].

Particularly, in other notation, D = R and S = L for the alternative algebra A over F,
where Lba = ba and Rb = ab for each a and b in A. Certainly, A also has the structure of
the alternative A-bimodule A AA. If A is a subalgebra of an alternative algebra B over F, and
if J is an ideal of B, then the pair (L, R) of F-linear mappings on B induces (L, R) from A into
L(J, J). Then the Lie multiplication algebra L(A) of the alternative F-algebra A is isomorphic with
L(A) = R(A) + L(A) + [L(A), R(A)] if char(F) 6= 2.

Proposition 18 (The second Whitehead lemma for alternative algebras, 3.22 in [5]). Sup-
pose that A is a finite-dimensional separable alternative algebra over a field F, and M is a
finite-dimensional over F alternative A-bimodule. If f is a F-bilinear mapping from A into
M such that F(a, a, b) = F(b, a, a) = 0 for each a and b in A, where F(a, b, c) = f (a, b)c +
f (ab, c)− a f (b, c)− f (a, bc), then a F-linear mapping g : A → M exists such that f (a, b) =
ag(b) + g(a)b− g(ab) for each a and b in A.

Proposition 19. (The first Whitehead lemma for alternative algebras, pages 89-90 in [5]) If A is a
finite-dimensional separable alternative algebra over a field F of characteristic char(F) /∈ {2, 3}, M
is a finite-dimensional over F alternative A-bimodule, and B = A⊕M is the split null extension,
f is a one-cocycle of A into M (that is, f is a F-linear mapping of A into M such that f (ab) =
f (a)b + a f (b) for each a and b in A). Then there exist b in the nucleus N(B) of B, xj in A, zj in
M such that f (a) = [a, b] + a ∑j Dxj ,zj for each a in A, where Dx,z = R[x,z] − L[x,z] − 3Lx, Rz].

Theorem 57 (page 90 in [5]). Assume that A is a finite-dimensional alternative algebra over a
field F of zero characteristic with Wedderburn decomposition A = H ⊕ S and B is a semisimple
subalgebra of A. Then a (nilpotent) derivation D of A exists into the radical of the multiplication
algebraM(A) such that the automorphism g = exp(D) of A maps B onto a subalgebra of H.

Many other results on the structure of alternative and Jordan algebras, their radicals, modules
over them, and representations are described in [71] and references therein.

Theorem 58 (Section 4 in Chapter 11, Section 3 in [71]). Let A be an alternative algebra, J(A)
be its Zevlakov radical, P1 be a set of all irreducible right alternative representations of A, P2 be a
set of all regular representations of P1. Then J(A) =

⋂
ρ∈P1

Kerρ(A) =
⋂

ρ∈P2
Kerρ(A).

17. Applications of Nonassociative Algebras and Modules over Them in Cryptography
and Coding

Definition 12. If for a linear [n, k, d]q-code k is the maximum possible dimension of a linear code
over the finite field Fq with length n and distance d, then this code is called linearly optimal. n(k, q)
(or m(k, q)) denotes the maximum length of an MDS code with combinatorial dimension k over
an alphabet consisting of q elements (or linear MDS code over the field Fq correspondingly, where
q = pn, p is a prime number, and n is a natural number).

This definition implies that m(k, q) ≤ n(k, q). By φ is denoted the Euler totient function.

Proposition 20 ([151]). If n and k are positive integers, q is a primary number such that n >
m(k + 1, q), then any linear [n, n− k, k]q-code is linearly optimal.
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Remark 27. For constructing linear over the field Fq codes with extremal properties, it is possible to
use the following. One can take a finite loop L = {l1, ..., ln} and a loop algebra A = FqL. Then, for
each left ideal J ≤ A A the code C = C(J) is defined as the set of all words (a1, ..., an) in Fn

q such that
∑j ajlj ∈ J. Such codes are called loop codes. Each loop algebra (or a quasigroup algebra) contains
two trivial MDS codes: [n, 1, n]-code C(J0) which corresponds to the left ideal J0 = Fq(∑l∈L l)
and [n, n− 1, 2]-code C(S) corresponding to the fundamental ideal S(A) = {∑l∈L bl l : ∑l∈L bl =
0; ∀l ∈ L, bl ∈ Fq}, which is the left and right annihilators of the ideal J0. For example, the chains
of linear [k, k − 3, 3]q-codes over the finite field Fq were constructed in [152], where k = 2q or
k = 2q− 2. It appears that such codes are linearly optimal.

Theorem 59 ([152]). Let P = Fq with q = pn. Let L be a loop of order 2q− 2 containing a cyclic
group H of order q− 1. Let an element b in L− H exist, satisfying the following three conditions:

∀l ∈ L− H, ∃hl ∈ H, ∀h ∈ H, lh = b(hlh);
∀l ∈ L− H, ∃sl ∈ H, ∀h ∈ H, l(bh) = slh;
∀a ∈ H, ∃ha ∈ H, ∀h ∈ H, a(bh) = hah. If char(P) 6= 2, then the lattice of left ideals

of loop algebra PL of L over P contains φ(q − 1) structures of the following form: Li ⊆ M−
i ,

M+
i ⊆ Ni, where i ∈ {1, ..., q− 1}, and C(Mi) are linearly optimal [2q− 5, 2q− 3, 3]q-codes.

Moreover, all ideals occurring in these structures are pairwise different.
If char(P) = 2, then the lattice of left ideals of PL contains φ(q− 1) chains of the following

form: Li ⊆ Mi ⊆ Ni, where i ∈ {1, ..., q− 1}, and C(Mi) are linearly optimal [2q− 5, 2q−
3, 3]q-codes. Moreover, all ideals occurring in these chains are pairwise different.

Other applications of nonassociative algebras to cryptography and coding are provided, for
example, in [59,60,153–157] and references therein. There also are useful partially pseudo-ordered
(K-ordered) rings, which can be nonassociative [158].

18. Applications of Modules over Nonassociative Algebras in Geometry and Physics

Recall that the Witt algebra Wn is the Cartan-type Lie algebra. It arises from vector
fields on the n-dimensional torus with Laurent polynomial coefficients. This algebra is
related with the Lie algebra of derivations of Laurent polynomial algebra with n variables.
Modules over simple generalized Witt algebras were investigated in [159]. Another direc-
tion of investigations was nonassociative geometry in quasi-Hopf representation categories.
In [160] were studied noncommutative and nonassociative algebras A and bimodules over
them using the representation category of a quasitriangular quasi-Hopf algebra. Their ap-
plications to noncommutative and nonassociative gravity and string theory were discussed
there. Nonassociative algebras were used for investigations of slave-Boson decomposition
in supercondactivity [161], also for studies of nonassociative quantum mechanics [162,163].

Principles of noncommutative geometry of Stein manifolds analogues over Cayley–
Dickson graded algebras were investigated in [136]. Then groups of pseudoconformal
diffeomorphisms of octonion manifolds were scrutinized. Their structure was elucidated:
for compact octonion manifolds, they have a structure of finite-dimensional Lie groups.
Examples were provided. There appeared many characteristic features of noncommutative
nonassociative geometry over the octonion algebra O in comparison with commutative
geometry over R or C [137].

Applications of the Cayley–Dickson algebras to problems of hydrodynamics and
semiconductors were provided in [164–168]. There were studied multidimensional non-
commutative Laplace direct and inverse transforms over octonions and Cayley–Dickson
algebras in [169]. Their applications were investigated to solutions of partial differential
equations including that of elliptic, parabolic and hyperbolic type. There also were studied
partial differential equations of higher order with variable coefficients with or without
boundary conditions with the help of multidimensional noncommutative Laplace direct
and inverse transforms in [169]. Furthermore, nonassociative algebras are widely used in
particle physics (see [170] and references therein). Unification theories in physics and Yang–
Baxter PDEs analysis are based on nonassociative algebras, including quasi-Hopf algebras
(see [105,171,172] and references therein). For gauge theory, nonassociative algebras were
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utilized in [173]. Classical aspects of nonassociative binary systems and nonassociative
geometry are provided in [174–177] and references therein. The Green–Schwarz superstring
was investigated in [178] with the help of nonassociative algebras. Quasi-Hopf twist defor-
mations and nonassociative quantum mechanics were investigated in [179]. De Sitter space
representation of a curved space-time was studied with the help of the Cayley–Dickson
algebra in [180]. Grand unification theory was investigated in [181] with the help of the
octonion algebra. It also was applied to Yang–Mills fields. Applications of Lie algebras to
partial differential equations and networks were investigated in [182,183].

19. Conclusions

The material reviewed above on nonassociative algebras, rings and modules over them
can be used for further research in this area. More concrete directions for further activity
can be found in the cited above literature. Other useful ideas are provided in [184–192].
This will be important not only for the development of algebra but also interactions of
different branches of mathematics and applications in other sciences. As it was demon-
strated above, nonassociative algebras, rings and modules over them play a very important
role in cryptography, physics, hydrodynamics, partial differential equations, quantum
mechanics, etc.
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