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Abstract: With the development of artificial intelligence, techniques such as machine learning, object
detection, and trajectory tracking have been applied to various traffic fields to detect accidents and
analyze their causes. However, detecting traffic accidents using closed-circuit television (CCTV) as an
emerging subject in machine learning remains challenging because of complex traffic environments
and limited vision. Traditional research has limitations in deducing the trajectories of accident-related
objects and extracting the spatiotemporal relationships among objects. This paper proposes a traffic
accident detection method that helps to determine whether each frame shows accidents by generating
and considering object trajectories using influence maps and a convolutional neural network (CNN).
The influence maps with spatiotemporal relationships were enhanced to improve the detection of
traffic accidents. A CNN is utilized to extract latent representations from the influence maps produced
by object trajectories. Car Accident Detection and Prediction (CADP) was utilized in the experiments
to train our model, which achieved a traffic accident detection accuracy of approximately 95%. Thus,
the proposed method attained remarkable results in terms of performance improvement compared to
methods that only rely on CNN-based detection.

Keywords: trajectory tracking; traffic accident detection; machine learning; deep learning; convolu-
tional neural network; influence map

MSC: 68T99

1. Introduction

Traffic safety has received more attention because of the increase in traffic flow and the
complexity of the road traffic infrastructure [1]. With the rapid development of intelligent
surveillance traffic systems, collecting and storing traffic accident videos from advanced
surveillance systems (e.g., closed-circuit television (CCTV), first-person cameras, and
fisheye cameras) has become efficient and convenient [2,3]. CCTV cameras, which can
obtain traffic information such as traffic flow, traffic accidents, and the number of vehicles
on the road, have a wider viewing angle than other cameras. This multiscale spatiotemporal
CCTV-based observation supports the understanding of traffic accidents before, during,
and after their occurrence [4]. Nevertheless, to prevent traffic accidents, new methods for
the detection of traffic accidents using CCTV frames must be established to detect traffic
situations and provide real-time observations, analyses, and warnings.

Object detection algorithms have made substantial progress owing to the rapid devel-
opment of deep-learning algorithms over the past decade [5]. Deep Simple Online Realtime
Tracking (Deep SORT) [6] is a multi-object tracking (MOT) algorithm based on Intersection
over Union (IoU) matching and is commonly used in numerous applications, such as
autonomous driving [7] and vehicle trajectory analysis [8]. Deep SORT has emerged as a
leading algorithm in object trajectory tracking owing to its speed, accuracy, and robustness.

In most research, object trajectories, typically defined as simple position coordinates
or visual representations of generated object trajectories, are utilized as intermediate data
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and are not directly employed in detection tasks. However, the position of vehicles or
pedestrians may shift during traffic accidents, resulting in significant occlusion and affecting
subsequent detection performance. Thus, significant gaps are present in the extracted
object trajectory, which can be separated into two trajectories, thus affecting the detection
performance of the following stage. Object trajectory tracking primarily focuses on object
representation, updates of object representation, and the use of environmental change
information. The analysis of the latent representation present in object trajectories is crucial
for traffic accident detection.

Convolutional neural network (CNN)-based algorithms [9] are a popular approach for
extracting latent representation tasks, with the goal of predicting the class of the given input
sample data. A CNN is applied to the traffic accident data to improve the performance of
the detection model. In particular, the object trajectories of the input data are obtained using
the object trajectory-tracking method, and the latent representation of the object trajectories
is extracted by the CNN. Traffic accident detection is then performed using the learned
latent representation. However, the CNN cannot extract the temporal relationship between
the object trajectories in complex traffic scenes when Deep SORT is combined with a CNN.
Another potential issue is that the performance of Deep SORT can affect the quality of the
appearance features extracted by CNNs. Inaccurate traffic accident detection may occur
when Deep SORT cannot accurately extract the object trajectory. Consequently, identifying a
method for improving object trajectory data and extracting the spatiotemporal relationship
from the different object trajectories is a significant challenge in traffic accident detection.
Thus, addressing this issue is crucial for enhancing the accuracy and performance of traffic
accident detection models.

Therefore, this paper proposes a novel approach for traffic accident detection using
trajectory tracking, influence maps, and a CNN. The proposed method uses YOLOv5 [10]
and Deep SORT [6] to extract the trajectories of objects such as vehicles and pedestrians
in CCTV frames. Subsequently, influence maps were used to analyze the spatiotemporal
relationships among objects on the road. Finally, a CNN was utilized to detect traffic
accidents based on the influence maps. This paper makes the following contributions:

• Unlike most previous works, this paper proposes a new method for the detection
of traffic accidents, which employs YOLOv5 and Deep SORT to generate 2D object
trajectories, influence maps to consider the spatiotemporal relationships between the
objects, and a CNN to detect traffic accidents.

• The present paper is the first to apply influence maps to object trajectories for traffic
accident detection. The influence maps deduce meaningful notations related to traffic
accidents to object trajectories and can complement the deduced object trajectories,
which improves the generalization and robustness of the proposed method.

• To evaluate the performance of the proposed method, experiments were conducted on
a Car Accident Detection and Prediction (CADP) [11] dataset. The results demonstrate
that the proposed method achieved a high detection performance for traffic accidents.

The remainder of this paper is organized as follows: In Section 2, we introduce recent
research on Deep SORT, influence maps, CNNs, and traffic accident detection. Section 3
provides a brief introduction to the proposed method and the detailed implementation
process. Section 4 shows the experimental results and compares the performance of the
proposed method with that of the CNN-based traffic accident method. Finally, Section 5
presents the conclusions.

2. Related Works

This section introduces recent research in diverse industrial fields that mainly use
Deep SORT, influence maps, and CNNs and compares these with the proposed method.
Additionally, related research on traffic accident detection is reviewed.
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2.1. Recent Research Based on Deep SORT, Influence Maps, and CNNs

The wide application of MOT in traffic and CCTV surveillance has rendered it a
pertinent and popular topic in the field of computer vision. In the context of surveillance
systems, MOT can track multiple people or vehicles from a video feed from a surveillance
camera. This can assist security in monitoring a scene for potential threats or suspicious
behavior. In addition, MOT can be utilized to track vehicles and pedestrians in a traffic
scene, allowing the vehicles and pedestrians to navigate safely and avoid collisions in the
field of autonomous vehicles. Bewley et al. [12] proposed a SORT algorithm for tracking
objects. However, SORT has difficulty tracking objects, and the detection is prone to
drifting when objects occlude each other or appear identical. Another disadvantage is that
SORT relies on handcrafted features, which are ineffective in complex and dynamic traffic
scenarios. Deep learning has powerful feature extraction capabilities and can complete
object detection by extracting object features. Wojke et al. [6] extracted object appearance
information using deep learning combined with SORT to improve detection performance.
However, the trajectory obtained using the Deep SORT algorithm has certain limitations.
The Deep SORT algorithm cannot capture the complex or nonlinear motion of an object and
can only calculate its average or approximate position. Moreover, the trajectory drawn by
the bounding box does not determine the direction of travel for the vehicles and pedestrians.
The accuracy and validity of the detection are reduced if the bounding box detection is
inaccurate or the problem of ID switching occurs. Existing trajectory-tracking research
based on the Deep SORT algorithm only utilizes the extracted object trajectories as output
in the intermediate stage, and almost no additional processing is performed.

An influence map is a form of representation that can provide a clear and intuitive
visual representation of the influence of objects or events in the input, also highlighting
key objects and events. Influence maps are utilized to rapidly understand the relationships
and patterns among objects in the input data without performing complex calculations or
analyses. Influence maps evolved from analytical work in Go games and are primarily used
in strategy games [13]. Each influence map provides a more detailed strategy by correlating
the notations and concepts in the game. However, information in the strategy game is
more complicated, making it difficult for the neural network model to comprehend the
generated influence maps [14]. Applying the influence map to describe the potential motion
patterns in the frame effectively considers the motion flow and interaction of moving objects.
However, influence maps produce error detection when significant distortion exists in the
input frames.

In recent years, several approaches have been proposed for classification and detection
using standard CNNs [15]. These approaches typically involve training a CNN on a labeled
dataset of input data, with each piece of input data belonging to one of several classes.
The CNN architecture consists of several convolutional layers that apply filters to the
input data to extract spatial and textural features. After the convolutional layers, one or
more pooling layers are typically added in CNNs, which reduce the dimensionality of the
features and improve the robustness of the model. CNNs also have fully connected layers
that combine the extracted features and output the final classification or detection results.
CNNs can be utilized for various tasks in natural language processing (NLP), including
sentiment analysis, music classification, and machine translation, regardless of whether
the input is text or music. For example, one can translate text from one language into
another, classify various types of music, and analyze the emotions expressed in music.
Qiu et al. [16] proposed a model based on unsupervised learning that could focus on
music structure and used a 3D CNN to investigate the spatial relationship of multitrack
MIDI files. The model performed well even with a small amount of labeled data and an
imbalanced dataset. Jang et al. [17] proposed a malware classification method for cyber
security and defense, in which a CNN is mainly trained to receive merged images and
classify malware into different classes. A CNN is a powerful feature extraction model that
has been adopted for a wide variety of detection methods. This research applied a CNN
to lidar-based object detection [18]. Here, a CNN is utilized as the backbone network for
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extracting point cloud features and generating high-quality 3D proposal boxes. CNNs have
been applied in medical imaging techniques, such as computed tomography scans, X-rays,
and magnetic resonance imaging scans, to detect and diagnose diseases or abnormalities.
The image analysis performed by the CNN can provide valuable information for diagnosis
and treatment. CNNs are also utilized to extract certain features from images and classify
them as those containing brain tumors [19].

This paper utilized Deep SORT [6] to obtain 2D object trajectories using CCTV frames
to reduce possible distortion and utilized influence maps to solve problems such as the
lack of spatiotemporal relationships among objects on roads before and after accidents.
Subsequently, a CNN is utilized to determine whether an accident is involved.

2.2. Traffic Accident Detection Research in Recent Times

With the development of deep-learning-based detectors, detection research has emerged
as a prominent subject in the academic community [20]. In the field of traffic accidents, the
authors of [21] compared six machine-learning algorithms to detect road traffic accident
data and performed data mining. Another study [22] proposed a detection and recognition
model for analyzing the severity of traffic accidents, which has strong detection recog-
nition and generalization abilities. This model has a better fitting ability and prediction
accuracy compared to other methods. However, different kernel functions and insensitive
loss parameter choices significantly affect the model results. In another study [23], Zheng
et al. proposed a traffic accident severity prediction CNN (TASP-CNN) model considering
the combined relationship between the different features of traffic accidents. The model
analyzes the weight of traffic accident features and applies the feature matrix to a grayscale
image (FM2GI) algorithm to improve traffic accident severity prediction. However, various
problems are associated with the TASP-CNN model. The model has poor generalization
ability, and applying it to other public transportation datasets is challenging. Jiang et al. [24]
proposed for the first time a Long Short-Term Memory (LSTM)-based framework for detect-
ing accidents on freeways considering raw traffic data with different temporal resolutions.
They conducted accident detection experiments to achieve better performance. However,
the dataset used in this paper was carefully selected, leading to poor generalization of
the detection model. These issues have prompted the development of improved models
for traffic accident detection. Table 1 lists the differences between recent traffic accident
detection research and the proposed method.

Table 1. Difference between recent traffic accident detection research and the proposed method.

Research Contents Input Data Detection Algorithm

Data mining [21] Description attribute Fuzzy-FARCHD
Rough set theory [22] Decision table SVM

Feature matrix to gray image [23] Grayscale image TASP-CNN
Different time resolutions [24] Raw traffic data LSTM

Proposed method Influence map CNN

The proposed method extracts 2D object trajectories and considers the spatiotemporal
relationships among objects in two stages. Compared with traditional detection research,
the proposed method utilizes a large amount of data for training, improves the accuracy of
the detection results, and requires less training time.

3. Traffic Accident Detection Method

In this section, our traffic accident detection method is used to extract object trajectories
in the tracking phase, and CCTV frames are analyzed in the executive phase to determine
whether accidents have occurred.
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3.1. Overview of Traffic Accident Detection

The proposed traffic accident detection method comprises two phases: tracking and
execution. The tracking phase consists of two parts: a Bounding Box Generator and a
Trajectory Extractor. In the tracking phase, the Bounding Box Generator obtains 2D object
bounding boxes using You Only Look Once (YOLOv5), the fifth version of the multi-object
detection algorithm [10] in CCTV frames. The 2D object bounding boxes are passed into
the trajectory executor as inputs to predict the corresponding trajectory of each 2D object
bounding box using the Deep SORT algorithm [6].

The execution phase consists of two parts: an Influence Map Generator and a Detection
Executor. The Influence Map Generator focuses on analyzing the spatiotemporal relation-
ships among the trajectories of 2D objects using influence maps. The Detection Executor
extracts the features of the corresponding influence map using a CNN and then classifies
whether an accident has occurred or not. Figure 1 shows a block diagram illustrating the
procedures involved in the tracking and execution phases for detecting traffic accidents.
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Figure 1. Processes of traffic accident detection.

3.2. Implementation of Traffic Accident Detection

In the tracking phase, the YOLOv5 network detects all dynamic objects on the road,
including vehicles and pedestrians, by extracting the features of CCTV frames. This paper
utilized the CADP dataset [11], a dataset for traffic accident analysis, as the input for the
YOLOv5 network. In this paper, 150 CCTV segments were selected as pretrained weight
models to detect objects using YOLOv5 to output 2D object bounding boxes. Subsequently,
beginning from the second CCTV frame, the Deep SORT algorithm was utilized to generate
one trajectory for each object, based on the 2D object bounding boxes.

In the execution phase, 2D object trajectories are given as inputs to the Influence Map
Generator to output one influence map for each corresponding frame. The Influence Map
Generator encodes 2D object trajectories to provide meaningful notations in the influence
maps, denoting spatial and temporal information. Figure 2 shows an illustration of the
influence map.
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In this paper, the influence map comprised three notations: the distances among
objects, accident discrimination, and object trajectories. First, the distances between objects
are represented by blue circles. The radii of the blue circles increase as the distance between
the objects decrease. Furthermore, the blue circles deepen over time. The possibility of an
accident is represented by green circles. When the probability of each accident increases,
the radius of the corresponding green circle increases, and the intersection range of the
object bounding boxes increases. Finally, the missing parts in the 2D object trajectory
are supplemented and corrected to generate a smoother 2D object trajectory, which is
represented as a red route in the influence map. The proposed method utilizes a CNN to
extract the features of influence maps and compresses the features of influence maps into a
fixed dimension, and then the results of accident detection are output. Figure 3 shows the
architecture of the proposed traffic accident detection method.
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A CNN was utilized to distinguish the given input influence maps and assign sig-
nificant learnable weights and CNN biases to the influence maps. The CNN, which is
comprised of five convolutional layers, five max-pooling layers, and three fully connected
layers, received RGB three-channel influence maps with a size of 224× 224 as inputs. In par-
ticular, each convolutional layer utilized a 3 × 3 kernel and was followed by a max-pooling
layer. The second and fifth convolutional layers had 64 and 512 channels in their output, re-
spectively. The max-pooling layer utilized a 2× 2 kernel with a stride of 2. The max-pooling
layer maximized the retention of the extracted spatiotemporal features from the influence
maps and minimized the dimensionality of the feature map of the convolutional layers.
Additionally, batch normalization and a rectified linear unit (ReLU) activation function
were added to the convolutional layers before the corresponding max-pooling layers. Batch
normalization was used to perform normalization processing on the influence maps, which
prevented the network from becoming unstable for the ReLU activated on the influence
maps because of its large size. The nonlinearity of the ReLU activation function helped
to avoid gradient disappearance and accelerated the CNN training. The last three layers
were fully connected with sizes of 4096, 1024, and 2. The last fully connected layers were
utilized to obtain the results of traffic accident detection, which were either an accident or
no accident. We used the SoftMax function for detection. The SoftMax function converted
the output of the last fully connected layer and produced a probability distribution over
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the two classes, indicating the likelihood of an accident or no accident. Figure 4 shows the
architecture of a CNN in the proposed method.
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3.3. Influence Map Generator

The 2D object trajectories obtained from CCTV frames of traffic accidents frequently
have the problem of missing trajectories because of the occurrence of traffic accidents.
In particular, at the moment of a traffic accident, the vehicles and pedestrians involved
in the accident will suddenly undergo a large displacement and destroy the integrity of
the generated trajectories. Therefore, this paper proposes an Influence Map Generator to
focus on the hidden spatiotemporal information in 2D object trajectories and complement
the trajectories while weakening irrelevant information in the 2D object trajectories. The
Influence Map Generator analyzes 2D object trajectories to enhance their interpretability
of 2D object trajectories by adding meaningful notations based on the RGB channel. For
distances among objects in the influence map notation, the equation for defining the radius
of the circle is as follows:

rc =
√(

w2
i + h2

i
)
, where rmin =

{
wi i f (wi ≥ hi)
hi i f (wi < hi)

(1)

where rc is the radius of the blue circle; rmin is the shorter width and height of the 2D object
trajectory; i is the input 2D object trajectory; wi is the width; and hi is the height of the
2D object trajectory. The distance ratio of the blue circle was adjusted based on the size
of the 2D object trajectory to calculate the overlapping area of the two object trajectories.
A higher distance ratio indicates that the overlapping area between two objects is larger,
and the blue color would be darker. In contrast, a lower distance ratio indicates that the
overlapping area between the two objects is smaller, and the blue color would be lighter.
Furthermore, the color of the blue circle deepened over time as follows:

x =
dmin

(rc + rmin)/2
× 100 (2)

c = 4 +
60

Tmax
× Tnow (3)

where x is the distance ratio, dmin is the distance to the nearest object around the object
being measured, c is the degree of color change, Tmax is the maximum frame in which the
trajectory coordinates exist, and Tnow is the frame in which the current trajectory coordinates
are located. Accident discrimination was calculated as follows:

y =

{
10 i f (wc

wi
+ hc

hi
)× 100 ≥ 5

30 i f (wc
wi

+ hc
hi
)× 100 < 5

(4)

where y is the area of the object bounding box, and wc and hc are the width and height
of the object bounding box, respectively. For the object trajectories in the influence map
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notation, the trajectory coordinates based on the movement of the objects in each frame
were drawn with red lines, and the sizes of the red lines were maintained. First, the distance
between any two objects was calculated for each 2D object trajectory in the Influence Map
Generator, and a blue circle was drawn on the corresponding trajectory coordinate point.
The value of accident discrimination was then determined based on each area of the object
bounding box, and a green circle was drawn at the corresponding trajectory coordinate
point according to the value. Finally, red lines were drawn based on the coordinates of
each 2D object trajectory to represent the corrected and smoothened 2D object trajectories.
Figure 5 illustrates the influence map generator processes.
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4. Experiment

The experimental objectives, detailed training parameters of the proposed method,
and traffic accident detection results are described in this section. Moreover, the detection
results of the proposed method are compared with a CNN-based traffic accident method.

4.1. Experimental Objectives

Experiments were performed to validate the accuracy of the proposed method in
accurately classifying traffic accidents. The performance of the proposed method was
evaluated by comparing it with a CNN-based traffic accident detector.

4.2. Experimental Environment

The proposed method utilized various training parameters (Table 2). The proposed
method used CCTV frames as inputs, which were then processed in the tracking phase to
generate 2D object trajectories. The data format of the generated 2D object trajectories was
an image, and the size of the 2D object trajectories was the same as that of the CCTV frames.
Subsequently, the 2D object trajectories were directly fed into the execution phase without
any preprocessing. After generating the influence maps, their results were uniformly
cropped to 224 × 224 pixels and fed to the CNN model. A batch size of 64 and a learning
rate of 1 × 10−5 were used. The total number of training epochs was 15, and each epoch
had 94 steps. A stochastic gradient descent (SGD) was the optimizer, and the SoftMax
function was selected as the objective function of the proposed method.

The experiments were conducted on Windows 10, a six-core Intel i7-6850K, and
an Nvidia Titan RTX (48 GB). The proposed method was implemented using Python
3.6. To improve computing efficiency, the YOLOv5, Deep SORT, and CNN models were
implemented with a deep-learning library and PyTorch, which utilized the computing
functions of a graphics-processing unit (GPU) in the Nvidia Titan RTX. Based on the
hardware configuration used, the average total inference time for YOLOv5 on each piece
of video data was found to be approximately 43.3 milliseconds (ms), and the average
total tracking time for Deep SORT was approximately 14.7 ms. The proposed method
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utilizing trajectory tracking, and influence maps demonstrated that the average training
time was 10.70 iterations per second (it/s), and the average validation time was 29.65 it/s.
Furthermore, the average training time of a CNN-based detector was 10.49 it/s, and the
average validation time was approximately 28.52 it/s.

Table 2. Parameters for training the proposed method.

Hyperparameter Value

CCTV frame dim (Weight, Height)
2D object trajectories dim (Weight, Height)

Influence map dim (224, 224, 3)
Batch size 64

Learning rate 1 × 10−5

Total training epochs 15
Steps per epoch 94

Optimizer SGD
Objective function softmax

In the proposed traffic accident detection method, the unmodified YOLOv5 algorithm
was used as the backbone network and incorporated into the Bounding Box Generator,
ensuring efficient and accurate object detection results. Concurrently, to track object
trajectories, the original Deep SORT algorithm without any modifications was employed as
the backbone network within the Trajectory Extractor. In addition, the YOLOv5 algorithm
was extensively trained on the comprehensive COCO dataset for image annotation and
displayed outstanding performance by achieving an average precision of 48.2% while
maintaining a processing speed of 13.7 ms. The YOLOv5 algorithm was well suited for
accurate object detection within the CADP dataset, making it highly compatible with the
proposed method.

4.3. Experimental Data

The CADP dataset [11] was used in the experiments, and Table 3 lists its contents.
The dataset utilized in this paper was obtained from YouTube and comprised 1416 CCTV
segments, each of which is fully annotated in terms of spatial and temporal information. In
particular, 150 CCTV segments were preprocessed, and each CCTV segment was segmented
into 50 CCTV frames to generate 7500 CCTV frames. The preprocessed 7500 CCTV frames
were used for YOLOv5 detection and Deep SORT tracking to generate 2D object trajectories.
Similarly, 7500 2D object trajectories were passed through an Influence Map Generator to
generate 7500 influence maps. The 90% influence maps were used as training data (6750 in
total). The 10% influence maps were utilized as validation data (750 in total).

Table 3. Contents of the CADP dataset.

CADP Dataset Value

CCTV segments 1416
Preprocessed CCTV segments 150
Frames per CCTV segments 50

Total input data 7500
Training data 6750 (90%)

Validation data 750 (10%)

The CADP dataset provides comprehensive training and testing traffic accident data
for various road scenarios by providing different viewpoints, varying illumination levels,
and diverse weather conditions, which cater to precise traffic accident detection challenges.
Table 4 shows the various traffic scenarios in the CADP dataset, including different times
of day and weather conditions, such as daytime/nighttime and snowy/rainy, to provide
a diverse set of challenging scenarios for tracking objects and detecting traffic accidents.
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The CADP dataset contains scenarios with different traffic densities from low to high
traffic volumes, reflecting varying traffic situations. The dataset also includes low- and
high-resolution scenarios, which allows for the impact of different levels of frame details
on the accuracy of traffic accident detection to be studied. Notably, each accident in the
CADP dataset was captured from different camera angles, which increased the variety of
data and provided a more comprehensive view of the traffic accidents.

Table 4. Various traffic scenarios in the CADP dataset.

Daytime Nighttime Snowy Rainy Low Traffic
Volumes

High Traffic
Volumes

Low
Resolution

High
Resolution
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4.4. Experimental Results

Figure 7 shows the training and validation results of the proposed method. Figure 7a
shows that the initial value was approximately 2.88 as the training loss of the proposed
method. The training loss started to converge after four epochs and finally converged to
approximately 0.06. The initial value of the validation loss for the proposed method was
approximately 3.41. After four epochs, the validation loss began to converge and finally
converged at approximately 0.12.
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proposed method; (b) accuracy of the proposed method.

Figure 7b shows that the initial value of the training accuracy of the proposed method
was approximately 55.63. After two epochs, the training accuracy converged and finally
increased to 97.13. The validation accuracy of the proposed method started with a value of
approximately 77.87 during the initial training and slowly increased to 95.87 during further
training. Figure 7 shows that the proposed method extracted the features of the influence
maps and completed the traffic accident detection.

Figure 8 shows the training and validation results for the CNN-based detector. As
shown in Figure 8a, during the CNN-based detector training, the training loss dropped
sharply from 6.43 to 0.86 before the fifteenth epoch and then dropped slowly to 0.37 until
convergence. The validation loss was similar to the training loss, with a value of 6.56 at the
beginning of training. After 50 epochs, the validation loss converged to 0.45.
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Figure 8b shows the accuracy rate of the CNN-based detector. The CNN-based detector
training accuracy sharply increased from 4.67 to 55.4 before the fourth epoch and then
slowly increased to 95.2 until convergence. Similarly, after 50 training epochs, validation
accuracy increased from 0.75 to 94.38.
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As shown in Figure 8, the proposed method exhibited lower loss and faster conver-
gence than the CNN-based detector. In addition, the accuracy of the proposed method
was 1.93 higher than that of the CNN-based detector trained for 50 epochs, the proposed
method only trained for 15 epochs, and the loss of the proposed method converged to
0.31 lower than that of the CNN-based detector. This suggests that the proposed method
performed better and was superior at detecting traffic accidents.

As shown in Figure 9, notable differences in traffic accident detection performance
across various approaches were observed in the histogram contrast experimental results.
When an influence map was employed, the highest training and validation accuracy of
97.3 and 95.9 were achieved, respectively. In contrast, using an object bounding box [8]
resulted in a training accuracy of 96.4 and a validation accuracy of 91.7. In the experiments
with an object trajectory approach, the training accuracy reached 93.8, and the validation
accuracy was at 93.0. The optical flow approach [25] exhibited substantially lower traffic
accident detection performance, with a training accuracy of 67.0 and a validation accuracy
of 65.9. Finally, the attention map approach [26] achieved a training accuracy of 86.6 and
validation accuracy of 84.3. Within the domain of traffic accident detection tasks, the influ-
ence map approach exhibited a strong superiority in performance with respect to the other
approaches. The influence map approach accounts for the spatiotemporal relationships
among objects and provides more meaningful information. The disparities in performance
display the significance of the influence map in enhancing the performance of the model
in traffic accident detection tasks. Consequently, the effectiveness of influence maps is
highlighted, as they exceeded the alternative input data types in both the training and
validation stages.
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5. Conclusions

This paper has proposed a traffic accident detection method that utilizes trajectory
tracking, influence maps, and a CNN. First, in the tracking phase, all dynamic objects on
roads in the CCTV frames were detected by the YOLOv5 network and expressed by 2D
object bounding boxes. The corresponding trajectories of the 2D object bounding boxes
were deduced using a Deep SORT algorithm [6]. In the execution phase, influence maps
were generated from the deducted trajectories by the Influence Map Generator. The CNN
then extracted the features of the influence maps and determined whether any accidents
occurred. The experimental results showed that the traffic accident detection method using
trajectory tracking and influence maps had a high detection performance compared to
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other detection methods. The issue of distortion that may arise in traffic accident detection
based on CCTV frames was resolved using trajectory tracking, influence maps, and a CNN.
Compared to standard CNN-based detection methods, the proposed method had a faster
detection speed and higher detection accuracy.

The following four aspects could be investigated in the future. First, the proposed
method can be combined with transfer learning or incremental learning to further improve
its performance. Next, fine-tuning with state-of-the-art pre-trained detection models such
as EfficientDet [27] or Faster R-CNN [28] can be achieved on the CADP traffic accident
dataset. This transfer learning approach aims to capitalize on the existing knowledge
acquired by these models during their training on large-scale datasets, thus enhancing
their performance in traffic accident detection. The proposed method could train with
incremental learning on multiple related tasks simultaneously, such as object detection,
scene segmentation, and accident severity estimation. By sharing the learned features across
multiple tasks, the proposed method would benefit from the additional supervision signals,
resulting in enhanced generalization and improved traffic accident detection performance.
Next, the severity of traffic accidents should be assessed while detecting accidents, given
that the proposed method only determines whether a traffic accident occurred or not from
the CCTV frames. Developing a framework to simultaneously detect the occurrence and
severity of traffic accidents or incorporating additional features and context information
such as the vehicle speed, collision angle, and road conditions to enhance the detection
accuracy are some future directions to carry this research forward. In the case of the first-
person camera, the proposed method can be adapted to address the challenges associated
with this viewpoint, including not only first-person cameras and fisheye lenses but also
ego-motion, dynamic backgrounds, and occlusions. Next, the recording capabilities of
cameras should be handled more as a core factor, considering the resolution, frame rate,
compression artifacts, and lens distortion and the impact of these elements on the quality of
CCTV frames. Additionally, addressing distortion can be accomplished by implementing
lens correction algorithms and developing deep-learning algorithms. These improvements
can lead to better object detection, tracking, and traffic accident detection.
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