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Abstract: In this article, we present a modified strategy that combines the residual power series
method with the Laplace transformation and a novel iterative technique for generating a series
solution to the fractional nonlinear Belousov–Zhabotinsky (BZ) system. The proposed techniques use
the Laurent series in their development. The new procedures’ advantages include the accuracy and
speed in obtaining exact/approximate solutions. The suggested approach examines the fractional
nonlinear BZ system that describes flow motion in a pipe.
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1. Introduction

Fractional calculus (FC) is considered a branch of mathematical analysis that general-
izes traditional calculus by allowing non integer order integral and derivative. The concept
of FC dates back to the 17th century when Leibniz and L’Hopital studied the possibility of
defining a derivative of non-integer order. However, the modern development of FC began
in the 19th century with the work of Liouville, Riemann, and Grunwald, who independently
introduced fractional derivatives and integrals [1–4]. FC has many application in various
field of engineering and science, including chemistry, physics, economics, biology, and
finance. For instance, it has been applied to models complex scheme such as viscoelastic
materials, electrical circuit, and signal processing. FC also plays a critical role in the analysis
of anomalous diffusion and stochastic processes, where the conventional tools of calculus
are not sufficient. FC has attract increases attentions in recent decades, and researchers
have explored new applications and properties of fractional derivatives and integrals. The
development of numerical methods for FC has also opened up new possibilities for solving
fractional differential equations (FDEs), making it a valuable tools in several scientific fields
and engineering problems [5–9].

Partial differential equations (PDEs) are mathematical equations that described physi-
cal processes involving multiple independent variables, such as time and space. They play
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a crucial role in modeling many phenomena in science and engineering, including fluid
dynamics, electromagnetism, quantum mechanics, and plasma physics [10–19]. The impor-
tant area of partial differential equations is the fractional system of PDEs, which extends
the traditional integer-order calculus to non-integer orders [20–22]. The fractional system
of PDEs has achieved important attentions in recent decades due to its effect to model
complex phenomena that cannot be described by the classical integer-order models. The
fractional system of PDEs has a broad ranges of implementation in many field, including
geophysics, biology, finance, physics, and engineering. It provides a powerful tool for mod-
eling and analyzing complex systems that exhibit long-range dependence, memory, and
fractal behavior [23–27]. In this essay, we provide an overview of the fractional system of
PDEs, including its definition, properties, and applications. We also discuss the numerical
methods used to solve these equations and some open problems in this field [28–30].

Many application of FDEs in applied sciences such as electro-dynamics, accounting,
chaos ideas, biological populations design and fluid mechanic digital signals, FDEs are
more many areas of sciences [31–35]. In this study, we aim to employ an efficient analytical
approach to address nonlinear differential equations of arbitrary order (ODEs). By doing
so, it is possible to improve the accuracy of analysis in related fields through the use of
FDEs. Numerous approaches have been devised to address this issue; One of the methods
employed is the Adomian decomposition method (DM) [36], the reduced differential
transform method [37], variational iteration method [38], the Elzaki DM [39,40], the iterative
transformation technique [41], the Natural DT [42], the homotopy perturbation technique
(HPT) [43], and so on [44–48].

The BZ reaction is a group of chemical responses that exhibits oscillatory behavior.
These reactions involve the catalytic oxidative stress of numerous reductants, typically
natural compounds, by bromic acetone in an acidic aqueous solvent, facilitated by transition-
metal ions. Most BZ reactions occur in a homogeneous phase. One significant advantage
of the BZ reaction is that it enables the observation of the formation of intricate patterns
over space and time, visible to the naked eye, on a convenient sentient timeframe of tens
of secs and a spatial extent of a few millimeters. The BZ reaction can produce several
thousand oscillatory cycles in a closed system, allowing the study of chemical waves
and patterns without requiring a constant supply of reactants [49]. The literature reports
various mathematical methods develop to obtain numeric result over a specifics ranges or to
approximate solutions using a limited number of terms in an iterative computational series.
These available methods include the Laplace iterative method [50], the variational iteration
technique [51], homotopy analysis perturbation methods [52], Adomian’s decomposition
method [53], and the residual power series method (RPSM) [54].

The RPSM is a commonly applied technique to solve integral and differential equations
of both integer and fractional orders. The RPSM is a method introduced by Omar et al.
mathematicians, in 2013. It is designed to be a fast and simple way to calculate the coefficient
of power series solution for differential fuzzy equations. The approach involves suppose
that the result to the equations can be expressed as a power series and then finding the
coefficients of this series [55]. Unlike other methods that require perturbation, linearization,
or discretization, the RPSM provides a straightforward solution for highly linear and
nonlinear equations without these requirements. It has been used to analysis a varieties
of non-linear ODEs and PDEs with different orders and classes. For instance, the RPSM
was used to solve the generalized Lane–Emden equation, to approximate solutions to
the nonlinear fractional Korteweg-De Vries Equation-Burger equation, and to predicts the
solitary pattern results of nonlinear fractional dispersive PDEs (Abu Arqub, 2013; Al-Khaled
& Abu Arqub, 2017; El-Kalla et al., 2021) [56–59]. The RPSM has several advantages over
other analytical and numerical approaches. Firstly, it does not require a recursive connection
or comparison of coefficients of related terms. Secondly, it provides a simplified technique
to ensures the convergences of the series result by reducing the associated residual errors.
Thirdly, the residual power series method does not suffers from mathematical rounds error
and does not consume significant time or memory. Fourthly, it can be immediately used
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to the proposed model by selecting an appropriates starting condition approximations,
without requiring any conversion when transitioning from lower to higher orders (Al-
Khaled & Abu Arqub, 2017; El-Kalla et al., 2021) [60–62]. In this paper, we utilize the
Laplace RPSM (LRPSM) to obtain a precise solutions for nonlinear fractional PDEs. By
integrating the RPSM with the LT, we present a renewabile algorithmic method that
generates insightful results through a convergent series. The fractional Caputo derivative
enables us to categorize the PDEs quantitatively [63–65]. The exact analytical results
obtained through this methodology provide a valuable tool for analyzing complex system
dynamics, especially for computational fractional PDEs (FPDEs) [66–68].

2. Preliminaries

Definition 1. The Caputo fractional derivative of a feature µ(ς, τ) of order α can be expressed as
follows [69]

CDα
τµ(ςς, τ) = Jn−α

τ µn(ς, τ), n− 1 < α ≤ n, t > 0, (1)

Where m is a natural number, and Jα
τ represents the Riemann–Liouville fractional integral of µ(ς, t)

of order α expressed as

Jσ
τ µ(ς, τ) =

1
Γ(α)

∫ τ

0
(τ − ρ)α−1µ(ς, ρ)dρ. (2)

Definition 2. The Laplace transform (LT) of µ(ς, τ) is defined by [69]

µ(ς, s) = Lτ [µ(ς, τ)] =
∫ ∞

0
e−sτµ(ς, τ)dτ, s > α, (3)

whereas the inverse of the LT reads

µ(ς, τ) = L−1
τ [µ(ς, s)] =

∫ l+i∞

l−i∞
esτµ(ς, s)ds, l = Re(s) > l0. (4)

Lemma 1. Assume that u(ς, τ) is a piecewises continuous terms, and U(ς, s) = L[u(ς, τ)],
we obtain

1. L[Jα
τ u(ς, τ)] = U(ς,s)

sα , α > 0.
2. L[Dα

τu(ς, τ)] = sσU(ς, s)−∑m−1
k=0 sα−k−1uk(ς, 0), n− 1 < α ≤ n.

3. L[Dnα
τ u(ς, τ)] = snαU(ς, s)−∑n−1

k=0 s(n−k)α−1Dkα
τ u(ς, 0), 0 < α ≤ 1.

Proof. For the proof, see Ref. [69].

Theorem 1. Consider a piecewise continuous function u(ς, τ) defined on the interval I × [0, ∞)
and possessing exponential order ζ. The Laplace transform of u(ς, τ), U(ς, s), has a fractional
representation as follows:

U(ς, s) =
∞

∑
n=0

fn(ς)

s1+nα
, 0 < α ≤ 1, ς ∈ I, s > ς. (5)

Then, fn(ζ) = Dnσ
t u(ζ, 0).

Proof. For the proof, see Ref. [69].

Remark 1. The inverse of the LT of Equation (5) reads [69]:

u(ς, τ) =
∞

∑
i=0

Dα
τu(ς, 0)

Γ(1 + iα)
τi(ζ), 0 < ς ≤ 1, t ≥ 0. (6)
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3. General implementation of the Suggested Methods
3.1. Laplace Residual Power Series Method (LRPSM)

Consider the following FPDE

Dρ
τµ(ς, τ) + N[µ(ς, τ)] + R[µ(ς, τ)] = 0, where 0 < ρ ≤ 1, (7)

which is subjected to the initial condition (IC):

µ(ς, τ) = f0(ς). (8)

Applying the Laplace transform to Equation (7) and use Equation (8), we get

µ(ς, s)− f0(ς, s)
s

+
1
sρLτ

[
N[L−1

τ [µ(ς, s)]] + A[µ(ς, τ)]
]
= 0. (9)

It is assumed that the solution to Equation (9) can be expressed using the following
expansion

µ(ς, s) =
∞

∑
n=0

fn(ς, s)
snρ+1 , (10)

and the kth-truncated term series reads

µ(ς, s) =
f0(ς, s)

s
+

k

∑
n=1

fn(ς, s)
snρ+1 , n = 1, 2, 3, 4 · · · (11)

Lτ Res(ς, s) = µ(ς, s)− f0(ς, s)
s

+
1
sρLτ

[
N[L−1

τ [µ(ς, s)]] + A[µ(ς, τ)]
]
. (12)

In addition, the kth LRF is:

Lτ Resk(ς, s) = µk(ς, s)− f0(ς, s)
s

+
1
sρLτ

[
N[L−1

τ [µk(ς, s)]] + A[µk(ς, τ)]
]
. (13)

The above coefficients can be calculated by recursively solving the following system using
fn(ς, s).

lim
s→∞

skα+1Lτ Resµ,k(α, s) = 0, k = 1, 2, · · · . (14)

Finally, the inverse of the LT to Equation (10) is considered to obtain the kth analytical
result of µk(ς, τ).

Theorem 2. Consider the following FPDE in D ⊂ Rn with n ≥ 1 and s ∈ (0, 1]:

Ds
τu(ς, τ) = f (ς, τ), ς ∈ D, τ > 0, (15)

where Dτs denotes the fractional Caputo operator of order s with regard to τ, and f is a given
component. Suppose that u(ς, τ) is sufficiently smooth and satisfies suitable initial and/or boundary
conditions.

Let un(ς, τ) be the Laplace Residual power series approximation to u(ς, τ), which can be
obtained by solving the following iterated problem

s
∫ ∞

0
e−sττs−1∆un+1(ς, τ)dτ = ∆un(ς, 0)− f (ς, 0), s

∫ ∞

0
e−sττs−1∆un+1(ς, τ)dτ = Ds

τ∆un(ς, τ)−Ds
τ f (ς, τ), τ > 0,

where ∆ denotes the Laplacian operator with respect to ς.
Then, under suitable conditions on the initial/boundary data and the function f , the sequence

un converges to the unique solution u of the FPDE (15) in a suitable norm, as n→ ∞.
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3.2. General Application of NIM

To discuss the fundamental concept of the new iterative approach, we examine the
functional equation in a broad sense:

µ(ς) = f (ς) + N(µ(ς)), (16)

Let N be a nonlinear operator that maps from a Banach space B to itself, and let f be an
unknown function.

µ(ς) =
∞

∑
i=0

µi(ς). (17)

The non-linear terms can be expressed as

N(
∞

∑
i=0

µi(ς)) = N(µ0) +
∞

∑
i=0

[
N
( i

∑
j=0

µj(ς)
)
− N

( i−1

∑
j=0

µj(ς)
)]

. (18)

Inserting Equations (17) and (18) into (16), we obtain

∞

∑
i=0

µi(ς) = f + N(µ0) +
∞

∑
i=0

[
N(

i

∑
j=0

µj(ς))− N(
i−1

∑
j=0

µj(ς))

]
. (19)

The following recurrence relations are introduced

µ0 = f ,

µ1 = N(µ0),

µ2 = N(µ0 + µ1)− N(µ0),

µn+1 = N(µ0 + µ1 + · · · µn)− N(µ0 + µ1 + · · · µn−1), n = 1, 2, 3 · · · .

(20)

Then,

(µ0 + µ1 + · · · µn) = N(µ0 + µ1 + · · · µn), n = 1, 2, 3 · · · ,

µ =
∞

∑
i=0

µi(ς) = f + N(
∞

∑
i=0

µi(ς)).
(21)

4. Appropriate Algorithmic Approach

In this section, we represent a viable technique for investigating nonlinear fractional
PDEs, utilizing a novel iterative approach.

Dα
τµ(ς, τ) = A(µ, ∂µ) + B(ς, τ), m− 1 < α ≤ m, mεN, (22)

with the IC

∂k

∂τk µ(ς, 0) = hk(ς), k = 0, 1, 2, 3 · · ·m− 1, (23)

The nonlinear function A is dependent on µ and the partial derivative of µ with respect to
both ς and t. B represents the source function. With the implementation of the new iterative
method, the initial value problem described in Equations (22) and (23) can be expressed as
an equivalent integral equation

µ(ς, τ) =
m−1

∑
k=0

hk(ς)
tk

k!
+ Iµ

τ (A) + Iµ
τ (B) = f + N(µ), (24)
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with

f =
m−1

∑
k=0

hk(ς)
tk

k!
+ Iα

t (B), (25)

N(ω) = Iα
τ (A). (26)

Theorem 3 (Convergence of New Iterative Method). Let u(k) be the sequence generated by the
new iterative method for solving the following FPDE

Dα
τu(ς, τ) = Lu(ς, τ) + f (ς, τ), 0 < τ ≤ T, ς ∈ Ω

u(ς, 0) = u0(ς), ς ∈ Ω,
(27)

where Dα
τ is the Caputo fractional derivative of order α ∈ (0, 1], L is a linear differential operator,

f (ς, τ) is a given function, u0(ς) is the initial condition, Ω is a bounded domain in Rn with smooth
boundary ∂Ω, and T > 0 is the final time.

The following conditions should be hold:

1. The operator L is uniformly elliptic and has smooth coefficients.
2. The initial condition u0(ς) is bounded and measurable.
3. The function f (ς, τ) is continuous and locally bounded in Ω× (0, T].
4. The solution u(ς, τ) of (27) satisfies the following estimate:

|u(ς, τ)|L∞(Ω) ≤ M(τ), 0 < τ ≤ T, (28)

where M(τ) is a nonnegative and increasing function.

Then, the sequence u(k) converges uniformly to the unique solution u(ς, τ) of (27) as k→ ∞.
Moreover, the convergence rate is at least of order O(λ2k), where λ ∈ (0, 1) is the relaxation
parameter used in the iterative method.

5. Applications
5.1. Implementation of the LRPSM

The following fractional BZ model is considered,

Dα
τµ(ς, τ) = µ(ς, τ)(1− µ(ς, τ)− rν(ς, τ)) + µςς(ς, τ),

Dα
τν(ς, τ) = −aµ(ς, τ)ν(ς, τ) + νςς(ς, τ), 0 < α ≤ 1.

(29)

Example 1. Consider the fractional BZ with r = 2 and a = 3:

Dα
τµ(ς, τ)− µ(ς, τ)− ∂2µ(ς, τ)

∂ς2 + µ2(ς, τ) + 2µ(ς, τ)ν(ς, τ) = 0,

Dα
τν(ς, τ)− ∂2ν(ς, τ)

∂ς2 + 3µ(ς, τ)ν(ς, τ) = 0, where 0 < α ≤ 1,
(30)

subject to the following ICs:

µ(ς, 0) = −1
2

(
1− tanh2(

ς

2
)
)

,

ν(ς, 0) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
).

(31)

Using the LT of Equation (30), we obtain
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µ(ς, s)−
1
2
(
1− tanh2( ς

2 )
)

s
− 1

sα

[
µ(ς, s) +

∂2µ(ς, s)
∂ς2 − 2L

(
L−1

τ [µ(ς, τ)]L−1
τ [ν(ς, τ)]

)
−L

(
L−1

τ [µ(ς, s)]
)2
]
= 0,

ν(ς, s) +
− 1

2 + tanh( ς
2 ) +

1
2 tanh2( ς

2 )

s
− 1

sα

[
∂2µ(ς, s)

∂ς2 − 3L
(
L−1

τ [µ(ς, s)]L−1
τ [ν(ς, τ)]

)]
= 0,

(32)

and so the kth-truncated term series are

µ(ς, s) = −
1
2
(
1− tanh2( ς

2 )
)

s
+

k

∑
n=1

fn(ς, s)
snα+1 ,

ν(ς, s) =
− 1

2 + tanh( ς
2 ) +

1
2 tanh2( ς

2 )

s
+

k

∑
n=1

gn(ς, s)
snα+1 ,

k = 1, 2, 3, 4 · · · .

(33)

The residual Laplace function is given by

LtResu(ζ, s) = µ(ς, s)−
1
2
(
1− tanh2( ς

2 )
)

s
− 1

sα

[
µ(ς, s) +

∂2µ(ς, s)
∂ς2 − 2L

(
L−1

τ [µ(ς, τ)]L−1
τ [ν(ς, τ)]

)
−L

(
L−1

τ [µ(ς, s)]
)2
]

,

LResu(ζ, s) = ν(ς, s) +
− 1

2 + tanh( ς
2 ) +

1
2 tanh2( ς

2 )

s
− 1

sα

[
∂2µ(ς, s)

∂ς2 − 3L
(
L−1

τ [µ(ς, s)]L−1
τ [ν(ς, τ)]

)]
,

(34)

and the kth-LRFs are:

LResu(ζ, s) = µk(ς, s)−
1
2
(
1− tanh2( ς

2 )
)

s
− 1

sα

[
µk(ς, s) +

∂2µk(ς, s)
∂ς2 − 2L

(
L−1

τ [µk(ς, τ)]L−1
τ [νk(ς, τ)]

)
−L

(
L−1

τ [µk(ς, s)]
)2
]

,

LResu(ζ, s) = νk(ς, s) +
− 1

2 + tanh( ς
2 ) +

1
2 tanh2( ς

2 )

s
− 1

sα

[
∂2µk(ς, s)

∂ς2 − 3L
(
L−1

τ [µk(ς, s)]L−1
τ [νk(ς, τ)]

)]
.

(35)

We calculate f k(ς, s), with k ranging from 1 to infinity, by putting the kth truncated series
from Equation (33) into the kth Laplace residual term in Equation (35), multiplying the solution
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equations by skα+1, and then solving respectively the limit lim s→ ∞(skα+1LResu, k(ζ, s)) = 0,
for each k = 1, 2, 3, · · · . The first few terms in this calculation are as follows:

f0(ς, s) = −1
2

(
1− tanh2(

ς

2
)
)

,

g0(ς, s) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
),

f1(ς, s) = csch3(ς)sinh4(
ς

2
),

g1(ς, s) =
−1 + tanh( ς

2 )

1 + cosh(ς)
,

f2(ς, s) =
8eς(2 + eς(−5 + eς))

(1 + eς)5 ,

g2(ς, s) =
2eς(3 + eς(13 + eς(−31 + 7eς))))

(1 + eς)5 .

(36)

Put the values of fk(ζ, s), k = 1, 2, 3, · · · into Equation (33), we obtain

µ(ς, s) = −
1
2
(
1− tanh2( ς

2 )
)

s
+

csch3(ς)sinh4( ς
2 )

sα+1 +
8eς(2 + eς(−5 + eς))

(1 + eς)5s2α+1 + · · · .

ν(ς, s) =
− 1

2 + tanh( ς
2 ) +

1
2 tanh2( ς

2 )

s
+
−1 + tanh( ς

2 )

1 + cosh(ς)
1

sα+1 +

2eς(3 + eς(13 + eς(−31 + 7eς))))

(1 + eς)5s2α+1 + · · · .

(37)

Using the inverse of the LT, we obtain

µ(ς, τ) = −1
2

(
1− tanh2(

ς

2
)
)
+

csch3(ς)sinh4( ς
2 )

Γ(α + 1)
τα +

8eς(2 + eς(−5 + eς))

(1 + eς)5Γ(2α + 1)
τ2α + · · · .

ν(ς, τ) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
) +

−1 + tanh( ς
2 )

(1 + cosh(ς))Γ(α + 1)
τα+

2eς(3 + eς(13 + eς(−31 + 7eς))))

(1 + eς)5Γ(2α + 1)
τ2α + · · · .

(38)

5.2. Implementation of NIM

By applying the RL integral Iα
τ to both sides of Equation (30) and using Equation (31),

we obtain the equivalent integral form:

µ(ς, τ) = −1
2

(
1− tanh2(

ς

2
)
)
+ Iα

τ

[
µ(ς, τ) +

∂2µ(ς, τ)

∂ς2 − µ2(ς, τ)− 2µ(ς, τ)ν(ς, τ)

]
,

ν(ς, τ) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
) + Iα

τ

[
∂2µ(ς, τ)

∂ς2 − 3µ(ς, τ)ν(ς, τ)

]
.

(39)
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Using the NIM formulation that is discussed in Section 3, we obtain

f0(ς, s) = −1
2

(
1− tanh2(

ς

2
)
)

, g0(ς, s) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
),

f1(ς, s) =
8eςτα

(1 + eς)3Γ(α + 1)
, g1(ς, s) =

2eς(−3 + eς)τα

(1 + eς)3Γ(α + 1)
,

f2(ς, s) = − 8eςτ2α

(1 + eς)6

(
(1 + eς)2(4 + 3eς)

Γ(2α + 1)
+

24(2)2αeςταΓ( 1
2 + α)√

πΓ(1 + α)Γ(1 + 3α)

)
,

g2(ς, s) =
2eςτ2α

(1 + eς)6

(
− 96eςτα

Γ3(1 + α)
+

(1 + eς(−3 + eς(25 + eς(−19 + eς))))

Γ(1 + 2α)

+
24eς(1 + eς)(−2 + sinh(ς))

Γ2(1 + α)

)
.

(40)

The expressions for the result of µ(ς, τ) and ν(ς, τ) read

µ(ξ) =
∞

∑
i=0

µi(ς, τ),

ν(ξ) =
∞

∑
i=0

νi(ς, τ),
(41)

which for some limited terms, we obtain

µ(ς, τ) = −1
2

(
1− tanh2(

ς

2
)
)
+

8eςτα

(1 + eς)3Γ(α + 1)

− 8eςτ2α

(1 + eς)6

(
(1 + eς)2(4 + 3eς)

Γ(2α + 1)
+

24(2)2αeςταΓ( 1
2 + α)√

πΓ(1 + α)Γ(1 + 3α)

)
+ · · · ,

ν(ς, τ) = −1
2
+ tanh(

ς

2
) +

1
2

tanh2(
ς

2
) +

2eς(−3 + eς)τα

(1 + eς)3Γ(α + 1)
+

2eςτ2α

(1 + eς)6

(
− 96eςτα

Γ3(1 + α)
+

(1 + eς(−3 + eς(25 + eς(−19 + eς))))

Γ(1 + 2α)

+
24eς(1 + eς)(−2 + sinh(ς))

Γ2(1 + α)

)
+ · · · .

(42)

In Figure 1, two-dimensional (2D) representations of the LRPSM and NIM solutions for
µ(ς, τ) and ν(ς, τ) are displayed at different fractional-orders, with τ = 0.1. Figure 2
displays 3D profile of the LRPSM and NIM solutions for µ(ς, τ) and ν(ς, τ) with varying
fractional-orders. In Figure 3, 3D representations of the LRPSM and NIM solutions for
µ(ς, τ) are shown at different fractional-orders. The comparison between the NIM and
LRPSM solutions, with the absolute error, for both µ(ς, τ) and ν(ς, τ) can be found in
Tables 1 and 2, respectively.
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Figure 1. Two-dimensional plots of the LRPSM and NIM solutions for µ(ς, τ) and ν(ς, τ) at various
value of fractional -order and τ = 0.1.

α=0.3

α=0.4

α=0.5

α=0.6

(a) LRPSM solution for µ(ς, τ)

α=0.3

α=0.4

α=0.5

α=0.6

(b) NIM solution for µ(ς, τ)

α=0.7

α=0.8

α=0.9

α=1

(c) LRPSM solution for ν(ς, τ)

α=0.7

α=0.8

α=0.9

α=1

(d) NIM solution for ν(ς, τ)

Figure 2. Graphical representations of the LRPSM and NIM solutions for µ(ς, τ) and ν(ς, τ) in three
dimensions are shown at various levels of fractional order.
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Figure 3. The 3D representations of the LRPSM and NIM solution for µ(ς, τ) at varying fractional
orders.

Table 1. The numerical results of µ(ς, τ).

Comparison of the NIM and LRPSM Solutions with Absolute Error for µ(ς, τ)

t = 0.095

eta NIM Solution LRPSM Solution Exact Solution NIM Error LRPSM Error Generalized Taylor series

1.00 −0.39842 −0.38887 −0.38884 0.009557 0.0000290375 0.0000280395

1.20 −0.35982 −0.35121 −0.3512 0.008622 0.0000109524 0.0000108523

1.40 −0.32044 −0.31277 −0.31277 0.00767 0.0000034773 0.0000034883

1.60 −0.28182 −0.27507 −0.27509 0.006738 0.0000139555 0.0000139654

1.80 −0.24515 −0.23927 −0.23929 0.005855 0.0000207583 0.0000207789

2.00 −0.21121 −0.20615 −0.20617 0.00504 0.0000244851 0.0000244978

t = 0.010

1.00 −0.39843 −0.38887 −0.38884 0.009557 0.0000290375 0.0000290375

1.20 −0.35982 −0.35121 −0.3512 0.008622 0.0000109524 0.0000109524

1.40 −0.32044 −0.31277 −0.31277 0.00767 0.0000034779 0.0000034779

1.60 −0.28182 −0.27507 −0.27509 0.006738 0.0000139555 0.0000139555

1.80 −0.24515 −0.23927 −0.23929 0.005855 0.0000207583 0.0000207583

2.00 −0.21121 −0.20615 −0.20617 0.00504 0.0000244851 0.0000244851

Table 2. The numerical results of ν(ς, τ).

Comparison of NIM and LRPSM Solutions with Absolute Error for ν(ς, τ)

t = 0.095

eta NIM Solution LRPSM Solution Exact Solution NIM Error LRPSM Error Generalized Taylor series

2.0 0.551882 0.551883 0.553454 0.001571810 0.001570570 0.001570570

2.2 0.621168 0.621170 0.622512 0.001343914 0.001342650 0.001342650

2.4 0.681399 0.681401 0.682546 0.001140890 0.001139630 0.001139630

2.6 0.733241 0.733241 0.734202 0.000962688 0.000961455 0.000961455

2.8 0.777484 0.777485 0.778292 0.000808172 0.000807004 0.000807004

3.0 0.814978 0.814979 0.815654 0.000675545 0.000674467 0.000674467

t = 0.010

1.00 −0.39843 −0.38887 −0.38884 0.009557 0.0000290375 0.0000290375

2.0 0.552432 0.552443 0.557129 0.00469676 0.004685690 0.004685690

2.2 0.621710 0.621722 0.625723 0.00401319 0.004001820 0.004001820

2.4 0.681911 0.681922 0.685316 0.00340511 0.003393710 0.003393710

2.6 0.733708 0.733719 0.736580 0.00287199 0.002860890 0.002860890

2.8 0.777903 0.777913 0.780313 0.00241016 0.002399650 0.002399650

3.0 0.815346 0.815356 0.817360 0.00201405 0.002004340 0.002004340

6. Conclusions

The fractional-order nonlinear Belousov–Zhabotinsky system has been analyzed via
two analytical approaches known as the hybrid residual power series method with the
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Laplace transformation and a novel iterative technique. The analytical solution of the
given problem was calculated and compared with obtained solutions using the proposed
techniques. It was observed from the numerical examples that the obtained results were
completely identical to the exact solutions. Actual examples demonstrated the accuracy
of the suggested methods. Moreover, the suggested methods are characterized by being
highly efficient with fewer calculations. Furthermore, the suggested approaches can easily
be widely used for resolving various fractional-order partial differential equation nonlinear
systems. Finally, the proposed methods can be used to interpret and analyze many non-
linear phenomena that arises in plasma physics, such as soliton waves, rogue waves, shock
waves, etc. [10–19].
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