
Citation: Reinfelds, A.; Christian, S.

Nonlinear Volterra Integrodifferential

Equations from above on Unbounded

Time Scales. Mathematics 2023, 11,

1760. https://doi.org/10.3390/

math11071760

Academic Editors: Dongfang Li and

Jüri Majak

Received: 21 January 2023

Revised: 9 March 2023

Accepted: 5 April 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Nonlinear Volterra Integrodifferential Equations from above on
Unbounded Time Scales
Andrejs Reinfelds 1,* and Shraddha Christian 2,*

1 Institute of Mathematics and Computer Science, LV 1459 Riga, Latvia
2 Institute of Applied Mathematics, Riga Technical University, LV 1048 Riga Latvia
* Correspondence: reinf@latnet.lv (A.R.); shraddha-ramanbhai.christian@rtu.lv (S.C.)

Abstract: The paper is devoted to studying the existence, uniqueness and certain growth rates of
solutions with certain implicit Volterra-type integrodifferential equations on unbounded from above
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1. Introduction

This paper introduces the more general findings on the existence and uniqueness of
the solutions to implicit Volterra-type integrodifferential equations on time scales.

The theory of time scales analysis has been growing fast and has received a lot of
interest. This theory was introduced by Stefan Hilger [1] in 1988, and unifies continuous and
discrete calculus. For a general introduction to time scale calculus and dynamic equations
on time scales, see the books [2,3] by Bohner et al. In addition, we refer to the books of
Georgiev [4] and Adivar et al. [5] and the paper of Karpuz [6] and the references therein
for complete and extensive studies on recent results on time scales.

Economics is an ideal discipline with enormous potential for rich and diverse ap-
plications of time scales; thus, recently, lots of attention has been devoted to this study.
Time scale calculus allows for a consideration of a variety of situations in economics.
Atici et al. [7] present a dynamic optimization problem from economics and construct a
time scale model. Furthermore, integral equations for time scales could be very useful
for modelling economic processes, for example, a Keynesian Cross model with “lagged”
income [8,9]. Applications of time scales can be found in mathematical biology and electri-
cal engineering, see ([2], pp. 15–16), Messina et al. [10] consider Kernack and McKendrick’s
age-of-infection epidemic model. In addition, Sikorska’s paper [11] on the integral equation
for compact time scales can be noted, where the corresponding integrand is considered in
the Henstock–Kurzweil delta integral sense, and the paper of Georgiev [12] considers an
Adomin decomposition method for Volterra integrodifferential equations for time scales.

Kulik et al. [13] studied the basic qualitative and quantitative results of nonlinear Volterra
integral equations for time scales. They consider the case when the integrand is estimated by
the Lipschitz type function with respect to the unknown variable and Lipschitz coefficient is
constant

x(t) = f (t) +
∫ t

t0

K(t, τ, x(τ))∆τ, t0, t ∈ IT = [t0,+∞) ∩T. (1)

Reinfelds et al. [14–16] generalized results [13] using the Lipschitz-type rd-continuous
function L(t) instead of the Lipschitz coefficient, which can be unbounded. This turns
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out to be necessary when considering the integral equations on an unbounded time scale.
B.G. Pachpatte [17,18] and D.B. Pachpatte [19–21] have studied more general Volterra-type
integral and integrodifferential equations on [t0,+∞) and on time scales in which the
integrand is Lipschitz with a fixed Lipschitz constant

x∆(t) = f (t, x(t), x∆(t),
∫ t

t0

K(t, τ, x(τ), x∆(τ))∆τ), t0, t ∈ IT, x(t0) = x0. (2)

Many integrodifferential equations can be reduced to Volterra-type integral equations.
Motivated by the above results, in this paper we consider nonlinear Volterra integrodiffer-
ential equations from above on unbounded arbitrary time scale of the form

x∆(t) = f (t) +
∫ t

t0

K(t, τ, x(τ), x∆(τ))∆τ, x(t0) = x0.

In Christian’s Ph.D. thesis ([22], p. 52), the author has written ideas about how it
is possible to reduce implicit Volterra integrodifferential equations to Volterra integral
equations. So, we introduce a new function:

y(t) = x∆(t).

We have a system of Volterra integral equations

x(t) = x0 +
∫ t

t0

y(τ)∆τ,

y(t) = f (t) +
∫ t

t0

K(t, τ, x(τ), y(τ))∆τ.

We define a new function z(t) = (x(t), y(t)), where

F(t) = (x0, f (t)), k1(t, τ, z(τ)) = (y(τ), K(t, τ, x(τ), y(τ))).

The system of the Volterra integral equation can be rewritten as follows:

z(t) = F(t) +
∫ t

t0

k1(t, τ, z(τ))∆τ, t0, t ∈ IT = [t0,+∞) ∩T, (3)

where z : IT → R2n is the unknown function to be found, F : IT → R2n and k1 : IT × IT ×
R2n → R2n are given nonlinear functions. Equation (3) is known as a nonlinear Volterra
integral equation on arbitrary time scales.

2. Notations and Preliminaries

The theory of time scales unifies continuous and discrete analysis. Let us define the
time scales T.

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We
assume that any time scale T has the topology that it inherits from the standard topology
on the real numbers R. The most well-known examples of time scales are real numbers R,
the integers Z, the natural numbers N, the union of closed intervals [0, 1] ∪ [2, 3], [0, 1] ∪N,
quantum numbers qZ and Cantor set.

Since a time scale may or may not be connected, we need the concept of the jump
operators to describe the structure of the time scale under consideration and also to define
the delta derivative. The forward and the backward jump operators σ, ρ : T→ T and the
graininess µ : T→ [0,+∞) are defined, respectively, by

σ(t) = inf{s ∈ T | s > t}, ρ(t) = sup{s ∈ T | s < t}, µ(t) = σ(t)− t.
The jump operators allow the classification of points in a time scale T. If σ(t) > t, then the

point t ∈ T is called right scattered, while if ρ(t) < t, then the point t ∈ T is called left scattered.
If σ(t) = t, then t ∈ T is called right dense, while if ρ(t) = t, then t ∈ T is called left dense.
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We say that f : T→ R is rd-continuous provided f is continuous at each right-dense
point of T and has a finite left-sided limit at each left-dense point of T and will be denoted
by Crd. The function f : T→ R is regressive if

1 + µ(t) f (t) 6= 0 for all t ∈ T.

Fix t ∈ Tκ and let x : T→ R. The delta derivative (also Hilger derivative) x∆(t) exists if
for every ε > 0 there exists a neighbourhood N = (t− δ, t + δ)

⋂
T for some δ > 0 such that,∣∣∣(x(σ(t))− x(s))− x∆(t)(σ(t)− s)

∣∣∣ ≤ ε|σ(t)− s| for all s ∈ N.

Take T = R and x as differentiable in the ordinary sense at t ∈ T, then x∆(t) = x′(t) is
the derivative used in standard calculus. Take T = Z, then x∆(t) = ∆x(t) is the forward
difference operator used in the difference equation.

A function F : T→ R is called an anti-derivative of f : T→ R provided F∆(t) = f (t)
holds for all t ∈ IT. In this case, we define the (Cauchy) delta integral of f by∫ s

r
f (τ)∆τ = F(s)− F(r) for all r, s ∈ T.

If T = R, then ∫ s

r
f (τ)∆τ =

∫ s

r
f (τ) dτ

while if T = Z, then

∫ s

r
f (τ)∆τ =

s−1

∑
τ=r

f (τ), if r, s ∈ Z and r < s.

3. Existence and Uniqueness

Let p : T→ R be a non-negative (and therefore regressive) and rd-continuous scalar
function. The Cauchy initial value problem for the scalar linear equation

x∆(t) = p(t)x(t), x(t0) = 1

has the unique solution ep(·, t0) : T→ R [2]. More explicitly, using the cylinder transforma-
tion, the exponential function ep(·, t0) is given by

ep(t, t0) = exp
(∫ t

t0

ξµ(τ)(p(τ))∆τ

)
,

here, ξh(ω) is considered as

ξh(ω) =

{
ω, h = 0
1
h log(1 + hω), h > 0

where log is a principle logarithm function.
Observe that we have Bernoulli’s type inequality [23]

1 +
∫ t

t0

p(τ)∆τ ≤ ep(t, t0) ≤ exp
(∫ t

t0

p(τ)∆τ

)
(4)

for all t ∈ IT = [t0,+∞) ∩T.
Let | · | denote the Euclidean norm on Rn. We will consider the linear space of rd-

continuous functions, such that

sup
t∈IT

max(|x(t), |x∆(t)|)
ep(t, t0)

< ∞
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and denote this special space by C1
p(IT;R2n). The space C1

p(IT;R2n) endowed with a
Bielecki-type norm

‖z‖1
p = sup

t∈IT

max(|x(t), |y(t)|)
ep(t, t0)

= sup
t∈IT

max(|x(t), |x∆(t)|)
ep(t, t0)

is Banach space.
We generalize and at the same time simplify the results [13,17,18,20,21] assuming L

can be an unbounded rd-continuous function.

Theorem 1. Consider the integral Equation (3) with IT = [t0, ∞)T. Let k1 : IT × IT × R2n

→ R2n be rd-continuous in its first and second variable, F : IT → R2n and L : IT → R be
rd-continuous, β > 1 and p = L(τ)β. If

|k1(t, τ, z)− k1(t, τ, z1)| ≤ L(τ)|z− z1|, z, z1 ∈ R2n, τ < t, (5)

n = sup
t∈IT

1
ep(t, t0)

∣∣∣∣F(t) + ∫ t

a
k1(t, τ, 0)∆τ

∣∣∣∣ < ∞ (6)

then the integral Equation (3) has a unique solution z ∈ C1
p(IT;R2n).

Proof. Consider the following equivalent formulation of (3), namely,

z(t) =
(

F(t) +
∫ t

t0

k1(t, τ, 0)∆τ

)
+
∫ t

t0

(k1(t, τ, z(τ))− k1(t, τ, 0))∆τ, t ∈ IT. (7)

We will show that (7) has a unique solution and thus (3) must also have a unique
solution. Consider the complete metric space C1

p(IT;R2n) and let H be defined by

[Hz](t) =
(

F(t) +
∫ t

t0

k1(t, τ, 0)∆τ

)
+
∫ t

t0

(k1(t, τ, z(τ))− k1(t, τ, 0))∆τ, t ∈ IT. (8)

The fixed point of H will be a solution to (7). Thus, we want to prove that there exists a
unique z, such that Fz = z. To do this, we show that the conditions of Banach’s theorem are
satisfied. Now, we show that H : C1

p(IT;R2n) → C1
p(IT;R2n). Let z ∈ C1

p(IT;R2n). Taking
the norms in (8), we obtain

‖Hz‖1
p = sup

t∈IT

1
ep(t, t0)

∣∣∣∣F(t) + ∫ t

t0

k1(t, τ, 0)∆τ +
∫ t

t0

(k1(t, τ, z(τ))− k1(t, τ, 0))∆τ

∣∣∣∣
≤ n + sup

t∈IT

1
ep(t, t0)

∫ t

t0

|k1(t, τ, z(τ))− k1(t, τ, 0)|∆τ

≤ n + sup
t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)|z(τ)|∆τ

= n + sup
t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)ep(τ, t0)
|z(τ)|

ep(τ, t0)
∆τ

≤ n + ‖z‖1
p sup

t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)ep(τ, t0)∆τ

= n + ‖z‖1
p sup

t∈IT

1
ep(t, t0)

1
β

∫ t

t0

βL(τ)ep(τ, t0)∆τ

= n + ‖z‖1
p sup

t∈IT

1
ep(t, t0)

1
β

∫ t

a
e∆

p (τ, t0)∆τ

= n +
‖z‖1

p

β
sup
t∈IT

1
ep(t, t0)

[ep(τ, t0)]
t
t0
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= n +
‖z‖1

p

β
sup
t∈IT

(
1− 1

ep(t, t0)

)

≤ n +
‖z‖1

p

β
< ∞

This proves that the operator H maps C1
p(IT;R2n) into itself.

Next, we verify that H is a contraction mapping with the contraction constant λ =
1/β < 1 and then Banach’s fixed-point theorem will apply. For any u, u ∈ C1

p(IT;R2n)

‖(Hu− Hu)‖1
p = sup

t∈IT

|[Hu](t)− [Hu](t)|
ep(t, t0)

≤ sup
t∈IT

1
ep(t, t0)

∫ t

t0

|k1(t, τ, u(τ))− k1(t, τ, u(τ)|∆τ

≤ sup
t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)|u(τ)− u(τ)|∆τ

= sup
t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)ep(τ, t0)
|u(τ)− u(τ)|

ep(τ, t0)
∆τ

≤ ‖u− u‖1
p sup

t∈IT

1
ep(t, t0)

∫ t

t0

L(τ)ep(τ, t0)∆τ

= ‖u− u‖1
p sup

t∈IT

1
ep(t, t0)

1
β

∫ t

t0

βL(τ)ep(τ, t0)∆τ

=
‖u− u‖1

p

β
sup
t∈IT

1
ep(t, t0)

∫ t

t0

e∆
p (τ, t0)∆τ

=
‖u− u‖1

p

β
sup
t∈IT

1
ep(t, t0)

[ep(τ, t0)]
t
t0

=
‖u− u‖1

p

β
sup
t∈IT

(
1− 1

ep(t, t0)

)

≤
‖u− u‖1

p

β
= λ‖u− u‖1

p.

Since β > 1, it follows from the Banach fixed-point theorem with Bielecki-type
norm [24] that H has a unique fixed point z in C1

p(IT;R2n). The fixed point of H is, however,
a solution of (3). The proof is complete.

Theorem 1 also provides information about the behaviour of solution z on the entire
interval IT. We have certain growth rates of the solution:

|z(t)| ≤ Mep(t, t0) ≤ M exp
(∫ t

t0

p(τ)∆τ

)
, M =

nβ

β− 1
.

Example 1. Consider the nonlinear Volterra integrodifferential equation on T

x∆(t) = t2 +
∫ t

t0

(τ + σ(τ))[x(τ)2 + x∆(τ)2 + 1]
1
2 ∆τ, x(t0) = x0, t0, t ∈ IT, t0 ≥ 1/2

√
2.

We will prove that this nonlinear Volterra integrodifferential equation has a unique solution
for arbitrary unbounded time scales T.
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Proof. We apply Theorem 1 and check the fact that K(t, τ, q, r) = (τ + σ(τ))(q2 + r2

+1)
1
2 has the bounded partial derivatives with respect to q and r everywhere and we have

|K(t, τ, q, r)− K(t, τ, q1, r1)| ≤
√

2(τ + σ(τ))max(|q− q1|, |r− r1|),

where we used Hadamard’s lemma. So, (5) can be defined with L(τ) =
√

2(τ + σ(τ)). We
chose β =

√
2, then we have p(τ) = 2(τ + σ(τ)), considering that∫ t

t0

(τ + σ(τ))∆τ = t2 − t0
2

and ep(t, t0) ≥ 1 + 2(t2 − t0
2). We verified that (6) holds. The proof of the illustrative

example now follows from Theorem 1.

Using Pachpatte’s results [17–21], it is not possible to prove the existence of the global
solution of the Volterra integrodifferential equation under consideration.

4. Conclusions

In this article, we reduced the integrodifferential equation to the system of Volterra
integral equations. It allows the theory of Volterra integral equations to be used. We use the
rd-continuous function L : IT → R instead of the Lipschitz coefficient. In our case, L can be
an unbounded function. In the proof, we used the characteristic properties of generalized
exponential function for an arbitrary time scale T. Such an approach assumes to obtain
necessary conditions for the existence and uniqueness of the solutions to the nonlinear
Volterra integrodifferential equations from above on unbounded time scales. Next, we have
used a Banach space with a special type of Bielecki norm defined in it. Such an approach
allows the use of the Banach contraction principle. Together, they make it possible to find a
universal, and at the same time conditionally simple, proof for many basic properties of
Volterra integrodifferential equations.
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