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Abstract: An image hiding scheme based on stochastic moiré gratings is proposed, discussed, and
illustrated in this paper. The proposed scheme is based on a counter-intuitive optical feature of
specially designed stochastic moiré gratings when similar images in the static mode become very
different in the time-averaged mode. A soft computing PSO algorithm was used for the construction
of stochastic gratings. Complex computational algorithms were required to construct the cover
image; however, the decryption process was completely visual. The cover image must oscillate in a
predefined direction and at a predefined amplitude (the amplitude of the harmonic oscillation is one
of the parameters of the proposed image hiding scheme). Computational experiments were used to
demonstrate the efficacy of this optical image hiding scheme based on the stochastic moiré gratings.
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1. Introduction

Geometric moiré is a classical optical experimental technique used for the experimen-
tal identification of displacements, strains, etc., from the patterns of moiré fringes [1–4].
Geometric moiré is classified into double exposure geometric moiré and time-averaged
geometric moiré [1,2]. Both optical techniques require the formation of moiré gratings
on the surface of a deformable object. Double exposure geometric moiré uses the su-
perposition of two images. The first image of the moiré grating is taken in the state of
equilibrium. The second image of the grating is taken in a deformed state. Two static moiré
gratings yield a two-dimensional pattern of fringes used to describe the spatial field of
in-plane deformations.

Time-averaged geometric moiré techniques use exposure times such that many oscil-
lation periods fit into the averaging interval. Naturally, time-averaged geometric moiré
techniques are commonly used for vibrating deformable bodies [2].

Two main goals exist in the analysis of moiré patterns (generated by double exposure
or time-averaged techniques). The first goal deals with the interpretation of experimentally
obtained patterns of moiré fringes. Those patterns are used to reconstruct the field of
displacements, strains, etc., at the centerlines of moiré fringes [2–4]. The other goal is
associated with the synthesis of a predefined target pattern of moiré fringes [5,6]. Note that
there is a tight link between both tasks as one task gives insight into the other.

Recently, moiré techniques have been successfully exploited in different image hiding
applications. For example, an image encryption technique based on embedding the secret
image into the geometric moiré pattern is discussed in [7]. Unfortunately, with this method,
rough details of the secret image may still be visible in the deformed pattern of moiré
grating lines, even to the naked eye. To address this issue, an improved algorithm for image
encryption and decryption that uses stochastic moiré grating manipulations is presented
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in [8]. In this approach, the secret information is hidden by deforming a stochastic moiré
grating according to the grayscale intensities of the secret image. Decryption is performed
by correlating the pixel intensities in the encrypted image and the original stochastic moiré
grating [8].

The relationship between the pitch of the moiré grating, the order of the time-averaged
fringe, and the amplitude of the harmonic oscillations forms the basis for the dynamic
visual cryptography (DVC) image hiding technique [9]. This term (DVC) originates from
the concept of visual cryptography (VC), which was introduced in 1995 [10]. VC can be
characterized by two basic features. Complex computational algorithms are required to
encode the secret image. However, a computer is not required to decode the image; the
secret is revealed and can be interpreted by the naked eye [10]. VC algorithms are used to
split the secret image into two (or more) separate shares (usually printed on transparencies).
The secret image emerges when those transparencies are aligned and stacked together [10].

DVC is not based on image sharing [9]. The secret dichotomous image is embedded
into the moiré grating in such a way that the stationary cover image does not reveal any
hidden information, but the secret can be decoded as a pattern of time-averaged moiré
fringes when the cover image oscillates harmonically with a predefined amplitude a, and
time-averaging techniques are used to register the time-averaged image [9]. The secret can
be directly visually decoded by observing the oscillating cover image. The naked human
eye is capable of integrating oscillating images over time and perceiving embedded secret
information only if the minimum frequency of oscillations exceeds 25–28 Hz [11].

The main objective of this paper is to introduce stochastic moiré gratings into DVC
schemes, which enables an increase in the security of the cover image. The main advantage
of the proposed DVC scheme is based on the fact that the stochastic structure of the cover
image ensures robustness to statistical algorithms. In other words, statistical analysis of the
stationary cover image cannot reveal the encoded visual information.

This paper is structured as follows. Section 2 discusses the one-dimensional Wada
index, governing equations of time-averaged geometric moiré, and the scheme for image
hiding in harmonic gratings. The construction of the dynamic visual cryptography scheme
based on near-optimal stochastic gratings is introduced in Section 3. Concluding remarks
are presented in the last section.

2. Preliminaries
2.1. The Wada Index for the Evaluation of the Grating Complexity

It is common to evaluate the randomness of digital grayscale images using the Shannon
entropy [12,13]. In [14], the Wada index, based on weighted and truncated Shannon entropy,
was proposed for detecting Wada boundaries in phase plots of nonlinear dynamical systems.
Moreover, the Wada index provides a numerical estimate of the number of different colors
and their proportions in a two-dimensional phase space diagram, making it applicable
not only in nonlinear dynamics but also in image processing in general [14]. In this study,
the Wada index is used to estimate the number of different grayscale levels and their
distribution in stationary and time-averaged moiré gratings.

Let us list the notations required for the introduction of the one-dimensional (1D)
Wada index, which is used to evaluate the complexity of the 1D digital image:

• s—The length of the 1D observation window measured in the number of pixels; s ≥ 2.
• c—The number of different grayscale levels in the 1D observation window; c ≥ 1.
• νk, k = 1, 2, . . . , c—The number of k-th color pixels in the 1D observation window.
• pk = νk

s2 , k = 1, 2, . . . , c—The discrete probability of the k-th color in the 1D
observation window.

• The indicator function 1(s)2 is equal to 1 if the number of grayscale levels in the 1D

observation window is greater than or equal to 2: 1(s)2 =

{
1, c ≥ 2,
0, c = 1.
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• The indicator function 1(s)3 is equal to 1 if the number of grayscale levels in the 1D

observation window is greater than or equal to 3: 1(s)3 =

{
1, c ≥ 3,
0, c ≤ 2.

• The Shannon entropy of different grayscale levels in the 1D observation window:

e(s)(p1, p2, . . . , pc) = −
c

∑
k=1

pklog (pk). (1)

The Wada index ω
(s)
1 in the 1D observation window of length s reads [14]:

ω
(s)
1 (p1, p2, . . . , pc) =

c
log (c)

1(s)3 e(s) =

{
0, c < 3,
− c

log (c) ∑c
k=1 pklog (pk), c ≥ 3. (2)

Let us denote the number of 1D observation windows covering the whole 1D digital
image as N. Then, the Wada index W(s)

1 for the whole 1D digital image can be formulated
in accordance with [14]:

W(s)
1 =

∑N
k=1 ω

(s)
1,k

∑N
k=1 1(s)2,k

, (3)

where ω
(s)
1,k and 1(s)2,k are the Wada index ω

(s)
1 (Equation (2)) and the indicator function 1(s)2

in the k-th observation window.

2.2. Time-Averaged Geometric Moiré: Harmonic Grating

The one-dimensional harmonic moiré grating M(x) in the state of equilibrium reads:

M(x) =
1
2
+

1
2

cos
(

2π

λ
x
)

, (4)

where x is the one-dimensional spatial coordinate; λ is the pitch of the grating, indicating
the distance between the centers of two adjacent white (or black) grating lines. Values of
M(x) vary from 0 (which corresponds to the black color) to 1 (the white color); values from
the interval [0, 1] represent different grayscale levels.

Let us suppose that the moiré grating M(x) (Equation (4)) oscillates in time accord-
ing to the harmonic function a sin(ωt + ϕ) in the direction perpendicular to the grating
lines (a, ω and ϕ stand for the amplitude, frequency, and phase of harmonic oscillations,
respectively). The brightness of the gray color at point x at time moment t0 reads:

M(x)|t=t0
=

1
2
+

1
2

cos
(

2π

λ
(x− a sin(ωt0 + ϕ))

)
. (5)

If time-averaging techniques are used to register the image in Equation (5) for a
sufficiently long exposure time T, the grayscale time-averaged image reads [2]:

M(x, a) = lim
T→∞

1
T

∫ T

0
M(x− a sin(ωt + ϕ))dt =

1
2
+

1
2

cos
(

2π

λ
x
)

J0

(
2π

λ
a
)

, (6)

where J0 is the zero-order Bessel function of the first kind:

J0(x) = lim
T→∞

1
T

∫ T

0
exp(i · x sin(ωt + ϕ))dt; i2 = −1. (7)

It is clear that the brightness of the grayscale color in the time-averaged geometric
moiré depends only on the amplitude of the harmonic oscillations. The oscillation frequency
ω and the phase ϕ have no influence on the time-averaged M(x, a) (when T → ∞).
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The computational representation of M(x, a) (Equation (6)) can be implemented by
computing the arithmetic average of M(x)|t=tk

(k = 1, 2, 3, . . .) over one period of harmonic
oscillations (0 ≤ tk < 2π) [9]:

M(x, a) = lim
n→∞

1
n

n

∑
k=1

M(x)|t=tk
≈ 1

n

n

∑
k=1

cos2
(

π

λ

(
x− a sin

(
2π

n
(k− 1)

)))
. (8)

The accuracy of a numerical reconstruction of the time-averaged image is determined
by the number of discrete time steps n used in one period of oscillations (Equation (8)). The
relationship between n and the number of reconstructed time-averaged moiré fringes with
a predefined accuracy is given in [9].

Time-averaged moiré fringes become fully developed when

J0

(
2π

λ
a
)
= 0. (9)

The relationship between the sequential number of time-averaged fringes, the ampli-
tude of harmonic oscillations, and the pitch of the moiré grating reads:

2π

λ
ai = ri, (10)

where ri denotes the i-th root of J0 (Equation (7)); ai is the amplitude of oscillations at the
center of the i-th time-averaged fringe.

The graphical interpretation of Equation (10) is presented in Figure 1. One-dimensional
time-averaged moiré gratings M(x, a) at increasing amplitudes of harmonic oscillations a are
depicted in the left panel of Figure 1. Note that the top row of this image (at a = 0) coincides
with the stationary moiré grating M(x). The stationary moiré grating M(x), its optical
representation, and the Wada index W(s)

1 are depicted in Figure 1a. Note that 0 ≤ M(x) ≤ 1,
but the brightness of pixels in the optical representation varies from 0 to 255.
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Figure 1. Optical time-averaging effects induced by harmonic oscillations on a periodic moiré grating
(λ = 0.5). Time-averaged moiré gratings are depicted in the left panel at increasing values of
amplitude a (the numbering on the right boundary of the panel corresponds to the consecutive order
of the time-averaged fringe). Time-averaged moiré gratings, their optical representations, and their

Wada indexes W(s)
1 are shown at a = 0 (panel (a)), a = λri

2π (panel (b)), and a = 0.3 (panel (c)).

The panels representing Wada indexes in Figure 1 are constructed in such a way that
the horizontal axis represents the length of the 1D observation window s. In other words,
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Figure 1 represents the variation of the Wada index W(s)
1 in respect to s. The Wada index

W(s)
1 is depicted at a = 0 (Figure 1a), the middle of the first time-averaged moiré fringe

(a = λr1
2π ≈ 0.1914, Figure 1b), and the zone between the first and the second time-averaged

fringes (a = 0.3, Figure 1c).
Note that W(s)

1 is a monotonous function with respect to s. The wider the observation
window, the larger the number of pixels with different brightness. The maximum value
of W(s)

1 is produced at the largest s. However, periodic moiré gratings (Figure 1a,c) yield

maximum values of W(s)
1 even when the width of the observation window is equal to one

period of the grating.
Time-averaged moiré gratings become continuously gray (the time-averaged fringes

becomes fully developed) at a = λri
2π , i = 1, 2, 3, . . . (see Equation (10) and Figure 1b).

The time-averaged moiré fringe is not fully developed when amplitude a does not satisfy
Equation (10). This fact is illustrated in Figure 1c.

2.3. Image Hiding in Harmonic Gratings

Let us suppose that two moiré gratings M1(x) and M2(x) are given with two different
pitches λ1 = 0.5 and λ2 = 0.57. Static moiré gratings M1(x) and M2(x) are depicted
in Figure 2a,c. Optical representations of the static moiré gratings M1(x) and M2(x) are
depicted in Figure 2b,d.

Both moiré gratings are oscillated harmonically with the same amplitude of oscillations
a = 0.19 (Figure 2). Time-averaged moiré gratings M1(x, 0.19) and M2(x, 0.19) are shown
in Figure 2a,c; their optical representations are shown in Figure 2b,d.

The amplitude of harmonic oscillations a = 0.19 is preselected in such a way that the
pitch λ1 = 0.5 satisfies Equation (10). The time-averaged image M1(x, 0.19) becomes plain
gray and the time-averaged fringe becomes fully developed (Figure 2b).

However, amplitude a = 0.19 and the pitch λ2 = 0.57 do not satisfy the relationship
given by Equation (10). The time-averaged moiré fringe is not fully developed, and
the blurred original moiré grating is still visible in the resulting time-averaged image
(Figure 2d).

The DVC encoding scheme is illustrated by a simple computational example when
a plain circle is embedded into the surrounding background (Figure 2e). The stochastic
initial moiré phase algorithm and the algorithm for the regularization of moiré phases on
the boundary lines between the secret and the background [9] are used to hide the “secret”
circle in the background (Figure 2e). The naked eye cannot interpret the secret image in the
stationary encoded image.

However, the secret image is leaked when the amplitude of harmonic oscillations
is preselected in such a way that a fully developed moiré fringe is formed either in the
background or in the area occupied by the secret image. The Moiré grating M1(x) is
used to cover the background; the moiré grating M2(x) is the area occupied by the circle.
Therefore, the background becomes plain gray, and the circle appears in the form of not-
fully developed moiré fringe in the time-averaged image in Figure 2e.

The image hiding scheme in harmonic gratings (the DVC scheme based on harmonic
moiré gratings) can be characterized by the two essential features. The secret image should
be unrecognizable to the naked eye from the stationary cover image. The secret image
should be interpretable to the naked eye when the cover image oscillates, and the amplitude
of harmonic oscillations is set to a given value (the amplitude of harmonic oscillations is
one of the keys used for decoding the secret) [9].

2.4. Time-Averaged Random Moiré Grating

Two moiré gratings (M1(x) and M2(x)) used to construct the DVC scheme in Figure 2
are harmonic functions. Moreover, although the naked eye cannot interpret the embedded
secret in the static cover image, advanced statistical algorithms could be exploited to check
the variations in the period of the pixel brightness in each row of the digital cover image.
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Figure 2. A schematic illustration of the DVC scheme based on two harmonic moiré gratings. Two
moiré gratings (M1(x) and M2(x)) with slightly different pitches (depicted in panels (a,c)) are used to
represent the background and the secret (the circle); their optical representations are shown in panels
(b,d). The static and time-averaged cover image is shown in panel (e). The amplitude of harmonic
oscillation a is chosen in such a way that the time-averaged moiré fringe is not fully developed in the
area occupied by the secret image.

The robustness of the DVC scheme to statistical algorithms can be enhanced by using
non-harmonic oscillations [15], near-optimal periodic gratings [16], chaotic oscillations [17],
and deformable periodic gratings [18].

Nevertheless, the periodicity of the moiré grating in DVC schemes is a drawback from
the point of view of the robustness of steganalysis algorithms. Note that VC schemes are
completely robust to steganalysis [10,19]. However, VC schemes are required to split the
secret image into shares. The fact that the secret image is split into separate shares also
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raises serious security issues. VC schemes suffer from the possibility of cheating when the
eavesdropper obtains information about one of the shares and can generate another/other
share/shares in order to produce fake secret images [19]. Special advancements in VC
schemes help to lower the cheating probability, but it remains an issue related to the security
of those schemes [20,21].

Therefore, the ability to exploit random non-periodic moiré gratings in DVC schemes
remains an attractive objective, which could raise the security of those schemes to another level.

Time-averaged patterns produced by random moiré gratings are discussed in [22].
Time-averaging effects produced by random moiré gratings are illustrated in Figure 3.
One-dimensional time-averaged random moiré gratings M(x, a) at increasing amplitudes
of harmonic oscillations a are depicted in the left panel of Figure 3. Note that the top row
of this image (at a = 0) coincides with the stationary random moiré grating M(x). The
stationary random moiré grating M(x), its optical representation, and the Wada index W(s)

1
are depicted in Figure 3a.

The time-averaged random moiré grating M(x, a) at a = 0.4, its optical representation,
and the Wada index W(s)

1 are depicted in Figure 3b. The higher the value of the amplitude
of harmonic oscillations, the larger the motion-induced optical blur, and the lower the
maximum value of the Wada index W(s)

1 in the time-averaged image (Figure 3b,c).
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Figure 3. Harmonic oscillations of a random moiré grating produce optical motion-induced blur in
the time-averaged image. Time-averaged random moiré gratings are depicted in the left panel at
increasing values of amplitude a. Time-averaged random moiré gratings, their optical representations,

and their Wada indexes W(s)
1 are shown at a = 0 (panel (a)), a = 0.4 (panel (b)), and a = 0.8 (panel (c)).

3. Dynamic Visual Cryptography Based on Stochastic Gratings
3.1. One-Dimensional Stochastic Gratings for Image Hiding Applications

As mentioned previously, all available DVC schemes exploit the relationship between
the pitch of the periodic moiré grating, the parameters of oscillations, and the order of the
time-averaged fringe to hide the secret in a single cover image. Such DVC schemes are
based on the phase regularization and random initial phase shifting algorithms [9]. The
secret information is leaked as a pattern of time-averaged moiré fringes when the cover
image oscillates at a predefined amplitude, and time-averaging techniques (or the naked
eye) are used to register the time-averaged image [11].

The main objective of this paper is to introduce stochastic moiré gratings into DVC
schemes. The apparent simplicity of the problem is truly misleading. The stationary cover
image must remain uninterpretable (the secret image should not be directly leaked from the
stationary image). The secret image should be leaked in the time-averaged image when the
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cover image oscillates according to a pre-set amplitude of harmonic oscillations. Clearly,
phase regularization and random initial phase shifting algorithms are not applicable for
stochastic moiré gratings (the concept of the phase is lost in the set of pixels with random
brightness). Moreover, changes in the contrast of stochastic images affected by motion
blur are completely different from the mathematical point of view. As discussed in the
previous section, DVC schemes with harmonic gratings are based on Bessel functions and
the interplay of their roots. A completely new nomenclature has to be introduced in order
to describe (and control) motion-induced blur for stochastic gratings.

Recently, the Wada index was introduced to measure the randomness of digital images
that are more complex than fractal dichotomous basin boundaries of nonlinear dynamical
systems [14]. Since the stochastic DVC scheme is based on manipulation with pixels in
separate rows (columns) of the cover image, the concept of the Wada index needs to be
adapted to one-dimensional sets of pixels (Section 2.1).

The proposed DVC scheme based on stochastic moiré gratings is also based on the
interplay between two gratings, where one grating is used to encode the background and
the other grating is used to encode the secret. Unfortunately, as mentioned previously, the
concept of the phase and the pitch is lost in stochastic moiré gratings. A completely new
strategy is required to design those two stochastic gratings.

The basic principle of the DVC scheme must hold true. The first requirement is that
the naked eye should not be able to interpret a secret embedded in the cover image. The
second requirement is that the secret should be optically leaked from the time-averaged
image when the cover image oscillates at a predefined amplitude of harmonic oscillations.

We will use the Wada index W(s)
1 to measure the randomness of the stochastic moiré

gratings. The relationship between W(s)
1 and the size of the one-dimensional observation

window s helps reveal the complexity of the stochastic grating throughout multiple scales.
This is absolutely necessary for the successful implementation of the two DVC requirements
since the pitch of the stochastic grating is not defined.

In fact, it would be easy to construct stochastic moiré gratings if both DVC require-
ments would be constructed in an alternative (opposite) way. It is easy to construct such
stochastic gratings where the secret is leaked in the stationary cover image. Then, the
motion-induced optical blur in the time-averaged images would equalize both gratings,
and the secret would not be recognizable in the time-averaged mode.

However, the formulated DVC requirements pose a serious challenge from both
theoretical and computational perspectives. The Wada indexes for the two stochastic
gratings should be almost identical in the static mode, while being as different as possible
for the same stochastic gratings in the time-averaged mode.

Clearly, manual manipulations with the brightness of pixels cannot be expected to
produce stochastic gratings that satisfy both DVC requirements simultaneously. High-
end machine learning algorithms should be employed for this purpose. Moreover, the
application of machine learning algorithms, including the cost functions and system of
constraints, is highly nontrivial. Special additional requirements for the stochastic gratings
should be formulated and efficiently implemented.

3.2. Requirements for Stochastic Gratings

Requirements for two stochastic gratings M1(x) and M2(x) are formulated in this
section. Grating M1(x) will be used for the background; grating M2(x) will be used in the
areas occupied by the secret information.

3.2.1. Requirements for M1(x)
1. The standard deviation of the stationary grating M1(x) is as high as possible. This

requirement is necessary to ensure that the brightness range of pixels used to construct
the grating is as large as possible.
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2. The mean and standard deviation are approximately the same in any segment of the
stationary grating M1(x). This requirement is necessary to ensure the consistency of
the grating.

3. The difference between the brightness of each pixel of the time-averaged grating
M1(x, a) and the value 127.5 is as small as possible. This requirement ensures that the
time-averaged image of the stochastic grating closely resembles a plain gray image.

3.2.2. Requirements for M2(x)
As mentioned previously, the static stochastic image represented by M2(x) should

be as close as possible to the image represented by M1(x). On the other hand, the time-
averaged image of M2(x) must be as different as possible from the time-averaged image
of M1(x).

1. The stationary grating M2(x) should be as similar as possible to M1(x).
2. The mean of the stationary grating M2(x) is approximately the same as the mean of

M1(x). Otherwise, the secret will be clearly visible in the static cover image.
3. The standard deviation of the stationary grating M2(x) is approximately the same as

the standard deviation of M1(x). This requirement is also crucial for hiding the secret
in the cover image.

4. The Wada index of the stationary grating M2(x) is approximately the same as the
Wada index of M1(x). This requirement defines the similarity of the secret and the
background in multiple scales of the observation window.

5. The standard deviation of the time-averaged grating M2(x, a) is as high as possible.
This requirement ensures that the area occupied by M2(x) is not transformed into a
plain gray image in the time-averaged mode.

6. The mean, the standard deviation, and the Wada index are approximately the same
in any segment of the time-averaged grating M2(x, a). This requirement ensures the
consistency of the secret image in the time-averaged mode.

3.3. The Formulation of the Cost Functions

Let us consider that the spatial coordinate x is bounded by the limits of the one-
dimensional observation interval 0 ≤ x ≤ L. Moreover, let us assume that this observation
interval comprises n grayscale pixels, and that coordinate xi, 1 ≤ i ≤ n is the center point
of the i-th pixel.

Let us divide the observation interval into such q segments that each segment com-
prises exactly ν pixels (qν = n).

3.3.1. Notations of Statistical Characteristics

The following notations of statistical characteristics used in the construction of the
cost functions are introduced:

• The average brightness of the moiré grating M1(x) over the entire observation interval:

m(1) =
1
n

n

∑
i=1

M1(xi). (11)

• The average brightness of M1(x) in the k-th segment:

m(1,k) =
1
ν

ν

∑
i=1

M1

(
x(k−1)·ν+i

)
. (12)

• The standard deviation of the brightness of M1(x) over the entire observation interval:

σ(1) =

√
1
n

n

∑
i=1

(M1(xi)−m(1))2. (13)
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• The standard deviation of the brightness of M1(x) in the k-th segment:

σ(1,k) =

√
1
ν

ν

∑
i=1

(
M1

(
x(k−1)·ν+i

)
−m(1,k)

)2
. (14)

• The average brightness of M1(x, a) over the entire observation interval:

m(1) =
1
n

n

∑
i=1

M1(xi, a). (15)

• The average brightness of M1(x, a) in the k-th segment:

m(1,k) =
1
ν

ν

∑
i=1

M1

(
x(k−1)·ν+i, a

)
. (16)

• The standard deviation of the brightness of M1(x, a) over the entire observation
interval:

σ(1) =

√
1
n

n

∑
i=1

(
M1(xi, a)−m(1)

)2
. (17)

• The standard deviation of the brightness of M1(x, a) in the k-th segment:

σ(1,k) =

√
1
ν

ν

∑
i=1

(
M1

(
x(k−1)·ν+i, a

)
−m(1,k)

)2
. (18)

• The fourth central moment of the brightness of M1(x, a) over the entire observation
interval:

µ
(1)
4 =

1
n

n

∑
i=1

(
M1(xi, a)−m(1)

)4
. (19)

• The maximal Wada index of M1(x, a) over the entire observation interval (s = n) is

denoted as ω
(1)
max = ω

(n)
1 (Equation (3)).

• The maximal Wada index of M1(x, a) in the k-th segment (s = ν) is denoted as ω
(1,k)
max .

The corresponding statistical characteristics m(2), m(2,k), σ(2), σ(2,k), ω
(2)
max for the sta-

tionary grating M2(x) and m(2), m(2,k), σ(2), σ(2,k), µ
(2)
4 , ω

(2,k)
max for the time-averaged grating

M2(x, a) are defined and computed analogously to Equations (3), (11)–(19).

3.3.2. The Formulation of the Cost Function F1

The formulation of the cost function F1(M1) (to be minimized) for the stochastic moiré
grating M1(x) follows the set of requirements defined in Section 3.2.1:

F1(M1) = k1

(
127.5
σ(1)

− 1
)
+ k2

√√√√1
q

q

∑
i=1

(
m(1,i) −m(1)

)2

+ k3

√√√√1
q

q

∑
i=1

(
σ(1,i) − 1

q

q

∑
j=1

σ(1,j)

)2

+ µ
(1)
4 , (20)

where k1, k2, k3 are real positive weighting coefficients.
The larger the standard deviation of the 1D image M1(x) in the state of equilibrium,

the smaller the term 127.5
σ(1) − 1. Note that the highest possible standard deviation of a digital

image is equal to 127.5. Such a situation is possible when half of all pixels in the observation
interval are black, and the other half are white.
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Terms
√

1
q ∑

q
i=1

(
m(1,i) −m(1)

)2 and

√
1
q ∑

q
i=1

(
σ(1,i) − 1

q ∑
q
j=1 σ(1,j)

)2
tend to zero when

the mean brightness and the standard deviation in all segments become approximately
the same.

The term µ
(1)
4 is close to zero when the time-averaged grating M1(x) is continuously

gray (the brightness of all pixels is close to 127.5). The power of 4 in Equation (19) prevents
large fluctuations around 127.5.

3.3.3. The Formulation of the Cost Function F2

According to the requirements listed in Section 3.2.2, the stationary stochastic grating
M2(x) should not differ substantially from M1(x) (otherwise the secret would leak in
the cover image). Therefore, M2(x) is constructed as the perturbation of M1(x). The
perturbation is implemented in the form of additive noise:

M2(x) = M1(x) + ε, (21)

where ε is the array of integer corrections, ε ∈ [−C, C], where C defines the magnitude of
the perturbation.

The vector of corrections ε is constructed in such a way that the second cost function
F2(M1, ε) is minimized:

F2(M1, ε) =
1
n

√
n

∑
i=1

∣∣εi
∣∣+ ∣∣m(1) −m(2)∣∣+ ∣∣σ(1) − σ(2)∣∣+ ∣∣ω(1)

max −ω
(2)
max
∣∣+ k1

σ(2)

+ k2

√√√√1
q

q

∑
i=1

(
m(2,i) −m(2)

)2
+ k3

√√√√1
q

q

∑
i=1

(
σ(2,i) − 1

q

q

∑
j=1

σ(2,j)

)2

+ k4

√√√√1
q

q

∑
i=1

(
ω
(2,i)
max −

1
q

q

∑
j=1

ω
(2,j)
max

)2

, (22)

where k1, k2, k3, and k4 are real positive weighting coefficients. The proportional weights of
terms at k2, k3, and k4 are similar. Therefore, the constraint k2 = k3 = k4 is set in further
computations (which also helps to reduce the computational complexity of the optimization
process). The corrections ε are minimized because the stationary stochastic grating M2(x)
should not be very different from M1(x).

It is clear that lower values of the correction vector ε result in a lower value of the
term 1

n

√
∑n

i=1
∣∣εi
∣∣ in the cost function F2(M1, ε). The terms

∣∣m(1) −m(2)
∣∣, ∣∣σ(1) − σ(2)

∣∣, and∣∣ω(1)
max − ω

(2)
max
∣∣ tend to zero when the means, standard deviations, and maximal Wada

indexes of the gratings M1(x) and M2(x) become similar.
Analogously, the higher the standard deviation σ(2), the smaller the value of the term

1
σ(2) . Note that a higher value of σ(2) is required to ensure that the area occupied by M2(x)
is not transformed into a plain gray image in the time-averaged mode.

The terms

√
1
q ∑

q
i=1

(
m(2,i) −m(2)

)2
,

√
1
q ∑

q
i=1

(
σ(2,i) − 1

q ∑
q
j=1 σ(2,j)

)2
,√

1
q ∑

q
i=1

(
ω
(2,i)
max − 1

q ∑
q
j=1 ω

(2,j)
max

)2
tend to zero when the mean brightness, the standard

deviation, and the maximal Wada index in all segments of the time-averaged image M2(x, a)
become similar.

3.4. Evolutionary Algorithms for the Optimization of Stochastic Gratings for Image
Hiding Applications

It is clear that the complexity of the cost functions (Equations (20) and (22)) is so high
that deterministic optimization algorithms should be replaced by evolutionary optimization
algorithms. Since the particle swarm optimization (PSO) algorithm is widely considered
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to be a robust optimization algorithm with good properties of convergence [23], further
construction of stochastic gratings is performed by means of PSO (though other soft
computing algorithms are also used in image steganography [24]). PSO is an algorithm
inspired by the social behaviors of animal groups [23,25]. The initial version of the algorithm
was proposed by J. Kennedy and R. Eberhart in 1995 [26]. Since then, different modifications
and new versions of the PSO algorithm were introduced [27].

A new parameter, called an inertia weight, incorporated into the original particle
swarm optimizer, improved the performance of the original technique [28]. The constric-
tion coefficient introduced into the PSO algorithm enhance the convergence speed and
improves the balance between global exploration and local exploitation [29]. The sine–
cosine acceleration coefficients are introduced into the particle swarm optimizer in [30]. A
proportional factor based on the Nash equilibrium is incorporated in the PSO in [31].

Numerous new learning and searching strategies for different applications were
incorporated into the PSO optimizer as well. The authors of [32] propose selectively
informed PSO, in which the particles choose different learning strategies based on their
connections. A new version of PSO based on several initializations in different zones of
the search space (using charged particles) is presented in [33]. A level-based multi-strategy
learning swarm optimizer for large-scale multi-objective optimization is introduced in [34].
A multi-swarm particle swarm optimization algorithm using an adaptive factor selection
strategy is described in [35].

The constricted PSO algorithm was employed in further investigations. Note that the
constricted PSO enables the avoidance of early convergence and swarm explosion [23,25].
Information about each particle i is stored in n-dimensional vectors Pi, Qi, and Vi, repre-
senting the current location, the previous best position, and the current velocity of the
particle, respectively. Vector Gb denotes the position of the best particle. In each j-th
iteration, particle i updates its position and velocity according to the following iterative
equations [25,27,29]:

Vij = χ ·
(
Vij + c1 · ϕ1j ·

(
Qij − Pij

)
+ c2 · ϕ2j ·

(
Gbj − Pij

))
, j = 1, 2, . . .

Pij = Pij + Vij, (23)

where ϕ1j and ϕ2j are random numbers uniformly distributed in (0, 1); coefficient c1
pulls the particle towards the position where it has the best fitness, while c2 propels the
particle towards the current best particle; χ is the constriction coefficient χ = 2κ

|2−c−
√

c2−4c|
;

c1 + c2 > 4, 0 < κ ≤ 1. Parameter κ controls the exploitation and exploration abilities of
the swarm. If κ is close to 0, then the convergence is faster with local exploitation, and if κ
approaches 1, then the convergence is slow with a higher degree of exploration [27].

We set c = 4.1 as the convergence is quick and guaranteed at c > 4 [23,27]. The
parameters c1 and c2 are set to be equal (c1 = c2 = 2.05) [27,36]. We use κ = 0.7 in our
computations. Thus, the value of the constriction coefficient is set to χ ≈ 0.5109.

Let us consider the stochastic grating consisting of 100 pixels. Then, the computational
optimization of the cost function F1(M1) in Equation (20) yields the near-optimal stochastic
moiré grating M1(x) (Figure 4a). Unsurprisingly, the time-averaged image M1(x, 5) is
almost a plain image (Figure 4a). Note that the scale of x and the amplitude of oscillations
in M1(x, 5) are defined in terms of discrete pixels (the amplitude is set to cover the distance
equal to five adjacent pixels).

The variation of W(s)
1 for the static stochastic grating M1(x) is almost linear with

respect to s and reaches 77.11 at s = 100 (Figure 4c). However, the variation of the Wada
index W(s)

1 for the time-averaged grating M1(x, 5) only reaches 4.94 (Figure 4c). Such an
effect is caused by the blur induced by the harmonic oscillations of the time-averaged image.

The optimization of the cost function F2(M1, ε) in Equation (22) yields the near-optimal
perturbed stochastic moiré grating M2(x) (Figure 4d). However, M2(x) is not transformed
into a plain image in the time-averaged mode (Figure 4d). This is predetermined by
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the structure of the cost function F2(M1, ε), where (M2(x) is similar to M1(x), but time-
averaged effects produced by M2(x) and M1(x) are substantially different).

Note that W(s)
1 for M2(x) is almost identical to M1(x) in the static mode (Figure 4c,f).

However, W(s)
1 for M1(x, 5) and M2(x, 5) are very different (panels (c) and (f) in Figure 4).

Such optical effects build the foundation for the construction of the dynamic visual cryp-
tography scheme based on stochastic moiré gratings.
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(f)

STATIC TIME-AVERAGEDSTATIC TIME-AVERAGED

Figure 4. Stochastic gratings with similar statistical and visual characteristics yield different time-
averaged gratings. The optimal grating M1(x) is depicted in panel (a); µ1 = 127.8, σ1 = 66.2. The
statistical characteristics of the time-averaged grating M1(x, 5) read as follows: µ1 = 127.9, σ1 = 1.2.

The optical representations of M1(x) and M1(x, 5) are depicted in panel (b). Wada indexes W(s)
1 of

M1(x) and M1(x, 5) are shown in panel (c) (ω(1)
max = 77.1, ω

(1)
max = 5.1). The optimal grating M2(x) is

shown in panel (d); µ2 = 127.9, σ2 = 66.2. The statistical characteristics of the time-averaged grating
M2(x, 5) read as follows: µ2 = 127.9, σ2 = 8.6. The optical representations of M2(x) and M2(x, 5) are

depicted in panel (e). Wada indexes W(s)
1 of M2(x) and M2(x, 5) are given in panel (f) (ω(2)

max = 77.1,

ω
(2)
max = 30.3).

In general, the optical effects illustrated in Figure 4 are strongly counterintuitive. The
motion-induced blur makes the time-averaged images more similar, not vice versa. This
fact is illustrated in Figure 5. Note that the DVC scheme developed in this paper is based
on completely different optical effects than demonstrated in Figure 5.
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Figure 5. The motion-induced blur decreases the contrast of the digital image. Two horizontal sections
of the Lena [37] and the Baboon [38] digital images are denoted by black lines in the left column. The
variations of the brightness of pixels in the section of the static Lena image and the time-averaged
Lena image (the amplitude of oscillations is set to 10) are depicted in panel (a). The variations

of W(s)
1 with respect to s in both one-dimensional images are shown in panel (b) (ω(Lena)

max = 77.7,

ω
(Lena)
max = 37.3). The variations of the brightness of pixels in the section with the static Baboon image

and the time-averaged Baboon image (where the amplitude of oscillations is set to 10) are depicted

in panel (c). The variations of W(s)
1 with respect to s in both one-dimensional images are shown in

panel (d) (ω(Baboon)
max = 57.1, ω

(Baboon)
max = 37.1). Note that one-dimensional images are very different in

the static mode, but become similar in the time-averaged mode. The DVC scheme developed in this
paper is based on a completely different optical effect.

3.5. The DVC Scheme Based on Stochastic Moiré Gratings

Let us consider a two-dimensional dichotomous secret image of size ny × nx (with
ny rows, each containing nx pixels). The main steps of the proposed scheme are shown in
Figure 6. In the preprocessing step (STEP 1), two near-optimal stochastic gratings (M1 and
M2) must be generated. Both gratings M1 and M2 are computed using the PSO algorithm
(the detailed pseudo-code and flowchart of the PSO algorithm are described in [23]). Note
that both near-optimal stochastic gratings M1 and M2 are constructed only once and can be
reused to encode any secret dichotomous image.

The encoding of the two-dimensional secret dichotomous image (STEP 2) is imple-
mented by a straightforward combination of two-dimensional stochastic gratings M1 and
M2. The pixels containing the secret information are covered by M2 (the background is
covered by M1).

The decoding of the secret information (STEP 3) can be performed visually [9,11]
or by using computational simulation [9]. Visual decoding lies in the essence of DVC;
complex algorithms are required to encode the secret, but the decoding of the secret does
not require a computer. In our case, the cover image should oscillate in a given direction
with a given amplitude; the naked eye is sufficient to interpret the secret image [11].
However, computational simulations could also be used to decode the secret. The additive
superposition of a sufficient number of identical copies of the cover image deflected from
the state of equilibrium according to the harmonic motion law with a given amplitude
results in the interpretable secret image [9]. Note that all illustrations of the decoded secret
images in this paper are constructed using computational decoding algorithms.

The preprocessing step appears to be the most computationally intensive stage of the
encoding process. Let us suppose that the swarm size used in the PSO algorithm is preset
to N particles. A comprehensive discussion about the swarm size can be found in [39]
(we used N = 1000 in our computations). Five multiplications and four additions per
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particle per dimension are required for one iteration of the PSO algorithm to update the
particle’s velocity [40]. One “addition” operation per particle per dimension is also required
to update the particle’s position (Equation (23)) [40]. Overall, 10Nnx arithmetic operations
are required for the whole swarm of N particles with dimension nx for one iteration of the
PSO algorithm (for the one-dimensional grating). This number of operations results in an
algorithmic complexity of O(nx) per iteration for the one-dimensional stochastic grating.
The computational complexity of one evaluation of the cost-functions F1(M1) and F2(M1, ε)
is O

(
n2

x
)

per iteration of the PSO algorithm (for the one-dimensional grating).

STEP 1: Preprocessing

(computation of the stochastic gratings)

STEP 2: Encoding the secret

(combining stochastic gratings into the cover image)

STEP 3: Decoding the secret

Computational 

decoding
Visual decoding

Figure 6. The main steps of the proposed scheme.

Although the computations described in STEP 1 are time-consuming, two-dimensional
stochastic gratings are constructed only once and can then be reused for encoding any
secret dichotomous image of size ny × nx. Computational decoding requires the arithmetic
superposition of the encoded image per one period of harmonic oscillations, resulting in a
complexity estimate of O(nx).

The DVC scheme based on the stochastic moiré gratings is illustrated in Figure 7.
The resolution of the cover image is set to 300× 180 pixels. Moreover, 180 copies of non-
identical near-optimal one-dimensional moiré gratings M1(x) constitute the static image
in panel (a) of Figure 7. The time-averaged image M1(x, 5) yields an almost plain gray
image (Figure 7a). Moreover, 180 copies of non-identical near-optimal one-dimensional
moiré gratings M2(x) constitute the static image in Figure 7b. The time-averaged image
M2(x, 5) in panel (b) is very different from M1(x, 5) in panel (a).

The dichotomous secret image is depicted in panel (c). The static digital image in
Figure 7a is used for the construction of the background of the cover image; the static digital
image in Figure 7b is used to fill the regions occupied by the secret. The resulting static
cover image is depicted in Figure 7d. Note that the secret is uninterpretable to the naked
human eye (due to the optimization of M1(x) and M2(x)). However, the time-averaged
cover image yields the secret (Figure 7d).
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(a)

(b)

(c)

(d)

STATIC TIME-AVERAGED

Figure 7. The DVC scheme based on the stochastic moiré gratings. The resolution of the cover image
is set to 300× 180 pixels; 180 copies of non-identical near-optimal one-dimensional moiré gratings
M1(x) constitute the static image in panel (a). The time-averaged image M1(x, 5) yields an almost
plain gray image (panel (a)); 180 copies of non-identical near-optimal one-dimensional moiré gratings
M2(x) constitute the static image in panel (b). The time-averaged image M2(x, 5) in panel (b) is very
different from M1(x, 5) in panel (a). The dichotomous secret image is depicted in panel (c). The static
cover image containing the embedded secret is shown in panel (d). The time-averaged image of the
cover image yields the secret.

3.6. The Comparison between the Proposed Technique and Classical DVC Schemes

The proposed DVC technique based on stochastic gratings is compared with two
classical DVC schemes. The static cover image produced by the DVC scheme based on
the harmonic moiré gratings [9] is depicted in Figure 8a. The static cover image produced
by the DVC scheme based on the dichotomous black and white gratings is shown in
Figure 8b. Note that the embedded secret information is exactly the same as in Figure 7.
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Harmonic oscillations with amplitude a = 5 are used to decode the secret for both schemes
(Figure 8a,b). The same pitches λ1 = 2πa

r1
= 13.06 (Equation (10)) and λ2 = 0.9 · λ1 = 11.75

are used for the harmonic and dichotomous gratings. Pitch λ1 is used for the background
image; pitch λ2 is used for the areas occupied by the secret image.

(a)

(b)

STATIC TIME-AVERAGED

Figure 8. The stationary cover image and the decoded secret image produced by the different DVC
schemes. The DVC scheme based on the harmonic moiré gratings is used to encode and decode
the secret information in panel (a). The DVC scheme based on the dichotomous moiré gratings is
depicted in panel (b).

One of the main features used to characterize the quality of the decoded image in
visual cryptography is the difference between the standard deviation of the pixels in the
background of the decoded image and the standard deviation of the pixels in the areas
of the secret image [41]. This difference in standard deviations defines the contrast and
visual interpretability of the decoded secret. The corresponding calculations are presented
in Table 1. The contrast of the decoded image produced by the proposed scheme is lower
compared to the classical DVC scheme based on the harmonic moiré grating. On the other
hand, the major advantage of the proposed scheme is its robustness to statistical analysis
algorithms (Table 1).

Table 1. The comparison of the proposed scheme with classical DVC schemes (the DVC scheme
based on harmonic moiré gratings (Scheme A), and the DVC scheme based on dichotomous moiré
gratings (Scheme B)).

DVC Scheme Encoded and De-
coded Images

Standard Deviation in
the Background Area

Standard Deviation in
the Secret Area

Difference of Standard
Deviations

Robustness to Statistical
Algorithms

The proposed
scheme Figure 7d 3.17 7.60 4.43 YES

Scheme A Figure 8a 0.92 12.32 11.4 NO

Scheme B Figure 8b 14.71 18.65 3.94 NO

4. Concluding Remarks

A novel DVC scheme based on the stochastic moiré gratings is proposed, discussed,
and illustrated in this paper. The proposed scheme is based on a counter-intuitive optical
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feature of time-averaged moiré gratings, when similar images in the static mode become
very different in the time-averaged mode.

Special cost functions and a complex system of constraints were developed for the
computation of the moiré gratings used for the background and the representation of
the secret. The defined optimization problem is very complicated, and near-optimal soft
computing algorithms are used for the construction of two planar images.

The proposed DVC scheme is a typical VC scheme. Complex computational algorithms
are required for the construction of the cover image. However, a computer is not required
to decrypt the embedded image. The decryption process is completely visual. The cover
image must oscillate in a predefined direction and at a predefined amplitude (the amplitude
of harmonic oscillations is one of the parameters of the proposed image’s hiding scheme).
Computational experiments were used to demonstrate the efficacy of the proposed optical
DVC scheme based on the stochastic moiré gratings.

As mentioned in the introduction, classical DVC schemes are based on harmonic
moiré gratings with slightly different pitches. The proposed DVC scheme based on the
stochastic moiré gratings provides a serious advantage compared to DVC schemes based
on harmonic gratings. It is interesting to observe that this advantage in the security of the
scheme is achieved without compromising the quality of the decrypted secret in the time-
averaged cover image. Moreover, the developed DVC scheme based on the stochastic moiré
gratings provides a foundation for different extensions and a large variety of experimental
applications. DVC schemes based on the stochastic moiré gratings and chaotic oscillations,
as well as building experimental prototypes for testing the human visual system, will
remain definite objectives of future research.
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